
84 July 1996/Vol. 39, No. 7 COMMUNICATIONS OF THE ACM

A Message
Passing

T
HE Message Passing Interface
(MPI) is a portable message-pass-
ing standard that facilitates devel-
opment of parallel applications
and libraries. MPI defines the syn-
tax and semantics of a core of
library routines useful to a wide
range of users writing portable
message-passing programs in For-
tran 77 or C. The standard also
forms a possible target for such lan-
guage compilers as High Perfor-
mance Fortran [7]. Commercial
and free, public-domain imple-

mentations of MPI have been available since
1994 (see the sidebar, “MPI Implementa-
tions”), running on both tightly coupled, mas-
sively parallel processing (MPP) machines and
on networks of workstations (NOWs).

The MPI standard was developed over a 12-
month period in 1993-1994 of intensive meet-
ings involving more than 80 people from
approximately 40 organizations, mainly from
the U.S. and Europe. The meetings were
announced on various bulletin boards and

mailing lists and were open to the technical
community. The MPI meetings operated on a
tight budget (actually no budget when the
first meeting was announced). DARPA pro-
vided partial travel support for U.S. academic
participants through the National Science
Foundation. Support for several European
participants was provided by the European
Commission through its Esprit program. For-
mal voting at the meetings was by a single vote
per organization; in order to vote, an organi-
zation needed to have had at least one repre-
sentative at two of the last three meetings. To
provide guidance for preparing formal pro-
posals, frequent informal votes including all
those present were held. Many vendors of
concurrent computers were involved, as were
researchers from universities, government
laboratories, and industry.

This effort culminated in the 1994 publica-
tion of the MPI specification [8]. Other
sources of information on MPI are available
[10] or are under development (see the side-
bar, “More MPI Assistance”).

Researchers incorporated into MPI the

Jack J. Dongarra, Steve W. Otto, Marc Snir, and David Walker

Standard
MPPand

Workstations
for

COMMUNICATIONS OF THE ACM July 1996/Vol. 39, No. 7 85

most useful features of several systems, rather
than choosing a single system as the standard.
MPI has roots in PVM [4, 5], Express [9], P4
[1], Zipcode [10], and PARMACS [2], and in
systems sold by IBM, Intel, Meiko Scientific,
Cray Research, and nCube.

MPI is used to specify the communication
among a set of processes forming a concur-
rent program. The message-passing paradigm
is attractive because of its wide portability and
scalability. It is easily compatible with both dis-
tributed-memory multicomputers and shared-
memory multiprocessors, with NOWs, and
with combinations of these elements. Message
passing will not be made obsolete by increased
network speeds or by architectures combining
shared and distributed-memory components.

Though much of MPI standardizes the com-
mon practice of existing message-passing sys-
tems, MPI goes further to define such advanced
features as user-defined datatypes, persistent
communication ports, powerful collective com-
munication operations, and scoping mecha-
nisms for communication. No previous system
incorporated all these features.

In considering MPI, it is important to
understand the constraints implied by such
an endeavor and the practical constraints
under which the committee operated, as well
as the following goals:

• Design an application programming inter-
face (not necessarily for compilers or a sys-
tem implementation library).

• Allow efficient communication, avoiding
memory-to-memory copying and support-
ing overlap of computation and communi-
cation and offload to communication
coprocessors where available.

• Allow implementations in heterogeneous
environments.

• Allow convenient C and Fortran 77 bind-
ings for the interface.

• Assume a reliable communication interface
so the user need not cope with communi-
cation failures dealt with by the underlying
communication subsystem.

• Define an interface not too different from
current practice, such as Express, Intel’s
NX, PVM, and P4, while providing exten-

sions allowing greater flexibility.
• Define an interface that can be implement-

ed on many vendors’ platforms with no sig-
nificant changes in the underlying
communication and system software.

• Design interface semantics to be language
independent.

• Design the interface to allow for thread safety.

What MPI Does and Does Not Specify
The standard specifies the form of the following:

• Point-to-point communications. Messages
between pairs of processes.

• Collective communications. Communication
or synchronization operations involving
entire groups of processes.

• Process groups. How process groups are used
and manipulated.

• Communicators. A mechanism for providing
separate communication scopes for mod-
ules or libraries. Each communicator speci-
fies a distinct name space for processes and
a distinct communication context for mes-

The MPI standard defines a core of communication library

routines for the processes forming concurrent programs on MPP

machines and on networks of workstations.

MPI Implementations
MPI is available on parallel computers from Convex
Computer, Cray Research, IBM, Intel, Meiko Scien-
tific, nCube, NEC, and Silicon Graphics. A number
of public-domain MPI implementations are available
and can be found at the following locations:

• Argonne National Laboratory/Mississippi
State University implementation. Available by
anonymous ftp at info.mcs.anl.gov/pub/mpi.

• Edinburgh Parallel Computing Centre CHIMP
implementation. Available by anonymous ftp at
ftp.epcc.ed.ac.uk/pub/chimp/release/chimp.tar.Z.

• Mississippi State University UNIFY implemen-
tation. The UNIFY system provides a subset of
MPI within the PVM environment without sacrific-
ing the PVM calls already available. Available by
anonymous ftp at ftp.erc.msstate.edu/unify.

• Ohio Supercomputer Center LAM implemen-
tation. A full MPI standard implementation for
LAM, a Unix cluster computing environment.
Available by anonymous ftp: tbag.osc.edu/pub/lam.

86 July 1996/Vol. 39, No. 7 COMMUNICATIONS OF THE ACM

sages; it may also carry additional scope-specific
information.

• Process topologies. Functions that allow convenient
manipulation of process labels when the processes
are regarded as forming a particular topology,
such as a Cartesian grid.

• Bindings for Fortran 77 and ANSI C. MPI was
designed so that versions of it in both C and For-
tran had straightforward syntax. In fact, the
detailed form of the interface in these two lan-
guages is specified and is part of the standard.

• Profiling interface. The interface is designed so that
run-time profiling or performance-monitoring tools
can be joined to the message-passing system. It is not
necessary to have access to the MPI source to do per-
formance monitoring and instrumentation; hence
portable profiling systems are easily constructed.

• Environmental management and inquiry functions.
These functions provide a portable timer, some sys-
tem-querying capabilities, and the ability to influ-
ence error behavior and error-handling functions.

However, many relevant issues of parallel program-
ming are not covered by the standard, including:

• Shared-memory operations
• Interrupt-driven messages, remote execution, and

active messages
• Program construction tools
• Debugging support
• Thread support
• Process or task management
• Input and output functions

The main reasons for not addressing these issues
were the committee’s self-imposed time constraint
and by the view that many of them are system depen-
dent. Meetings focusing on extending MPI began in
1995 and will end in 1997. The rest of this article dis-
cusses some of MPI’s more interesting features,
including point-to-point communication, user-

defined datatypes, collective communications, and
groups, contexts, and communicators.

Point-to-Point Communication
MPI provides a set of send and receive functions that
allow the communication of typed data with an asso-
ciated tag. Typing of the message contents is neces-
sary for the heterogeneous support needed for the
performance of correct data representation conver-
sions as data is sent from one architecture to another
architecture. The tag allows selectivity of messages at
the receiving end; a user’s program can receive on a
particular tag, or the program can wildcard, or self-
define, this quantity, allowing reception of messages
with any tag. Also provided is message selectivity on
the source process of the message.

The fragment of code in Figure 1 for the example
of process 0 sending a message to process 1 executes
on both process 0 and process 1, sending a character
string. MPI_COMM_WORLD is a default communicator
provided upon startup. Among other things, a com-
municator defines the allowed set of processes
involved in a communication operation. Process ranks
are integers, serving to label processes and are discov-
ered through inquiry to a communicator (see the call
to MPI_Comm_rank() in Figure 1). The typing of the
communication is evident by the specification of
MPI_CHAR. The receiving process specified that the
incoming data was to be placed in msg and that it had
a maximum size of 20 elements of type MPI_CHAR.
The variable status, set by MPI_Recv(), gives infor-
mation on the source and tag of the message and the
number of elements actually received. For example,
the receiver can examine this variable to find out the
actual length of the character string received.

This example employs blocking send and receive
functions. The send call blocks until the send buffer
can be reclaimed; that is, after the send, process 0 can
safely overwrite the contents of msg. Similarly, the
receive function blocks until the receive buffer actu-
ally contains the contents of the message.

More MPI Assistance
The book by W. Gropp, E. Lusk, and A. Skjellum [6] is a tutorial-level explanation of MPI. An expanded and annotated reference manu-
al for MPI is the book MPI: The Complete Reference by Snir, Otto, Hess-Lederman, Walker, and Dongarra [11].

An MPI-specific newsgroup is accessible through comp.parallel.mpi, and an abundance of information about MPI is available through
the World-Wide Web. The following list includes URLs containing MPI-related information:

• Netlib Repository at the University of Tennessee and Oak Ridge National Lab, http://www.netlib.org/mpi/index.html
• Argonne National Lab, http://www.mcs.anl.gov/mpi
• Mississippi State University, Engineering Research Center, http://www.erc.msstate.edu/mpi
• Ohio Supercomputer Center, LAM Project, http://www.osc.edu/lam.html
• Australian National University, file://dcssoft.anu.edu.au/pub/www/dcs/cap/mpi/mpi.html

A current version of errata for the specification document [8] is available at ftp://www.netlib.org/mpi/errata.ps. The complete email
associated with the MPI Forum is archived in netlib. Send a message to netlib@ornl.gov with the message “send index from mpi”. You
can also get them via ftp from netlib2.cs.utk.edu/mpi. At least one software vendor, PALLAS, in Brühl, Germany, which specializes in
high-performance computing, offers professional support and consulting for MPI; see info@pallas-gmbh.de.

MPI also provides nonblocking send and receive
functions that allow the overlap of message transmit-
tal with computation or the overlap of multiple mes-
sage transmittals with one another. Nonblocking
functions always come in two parts: the posting func-
tions, which begin the requested operation, and the
test-for-completion functions, which allow the appli-
cation program to discover whether the requested
operation has been completed.

While this description may already seem like
rather a lot to say about a simple transmittal of data
from one process to another, there is more. To
understand why, we examine two aspects of the com-
munication: the semantics of the communication
primitives and the underlying protocols that imple-
ment them. Consider the earlier example on process
0 after the blocking send has completed. If the send
has completed, does this tell us anything about the
receiving process? Can we know that the receive has
finished, or even that it has begun?

Such questions of semantics are related to the

nature of the underlying protocol implementing the
operations. If a user wishes to implement a protocol
minimizing the copying and buffering of data, the
most natural semantics might be the rendezvous ver-
sion, in which completion of the send implies the
receive has been initiated (at least). On the other
hand, a protocol that attempts to block processes for
the minimal amount of time necessarily ends up
doing more buffering and copying of data.

The trouble is that one choice of semantics is not
best for all applications, nor is it best for all architec-
tures. Because MPI’s primary goal is to standardize
message-passing operations yet not sacrifice perfor-
mance, the decision was made to include all the major
choices for point-to-point semantics in the standard.

An additional complicating factor is that the amount
of space available for buffering is always finite; on some
systems, that space may be small or nonexistent. There-
fore, MPI does not mandate a minimal amount of
buffering, and the standard is very careful about the
semantics it requires.

These complexities are manifested in MPI
by modes for point-to-point communication.
Both blocking and nonblocking communica-
tions have modes. The mode allows the user to
choose the semantics of the send operation
and, in effect, to influence the underlying pro-
tocol for the transfer of data.

In standard mode, the completion of the
send does not necessarily mean that the match-
ing receive has started, and no assumption
should be made in the application program
about whether the outgoing data is buffered by
MPI. In buffered mode, the user can guarantee
that a certain amount of buffering space is
available. The catch is that the space must be
explicitly provided by the application program.
In synchronous mode, a rendezvous semantics
between sender and receiver is used. Finally,
ready mode allows the user to exploit extra
knowledge to simplify the protocol and poten-
tially achieve higher performance. In a ready-
mode send, the user asserts that the matching
receive is already posted.

User-Defined Datatypes
All MPI communication functions take a
datatype argument. In the simplest case, the
datatype is a primitive type, such as an integer
or floating-point number. An important and
powerful generalization results from allowing
user-defined types wherever the primitive types
can occur. These are not “types” as far as the
programming language is concerned. They are
types only in that MPI is made aware of them
through type-constructor functions describing
the layout in memory of sets of primitive types.
Through user-defined types, MPI supports
communication of complex data structures,
such as array sections and structures contain-
ing combinations of primitive datatypes. Fig-

COMMUNICATIONS OF THE ACM July 1996/Vol. 39, No. 7 87

/* static variable used as “key” for library */
/* Only one per process is necessary, even if multiple */
/* library invocations can be concurrently active. */
extern int lib_key;
/* library init. Need to invoke once by each process, */
/* before library is used. */
void lib_init ()
{
/* allocate a process-unique key */
MPI_Keyval_create(MPI_NULL_FN, MPI_NULL_FN, &lib_key, (void *)NULL);
}
void lib_call(MPI_Comm comm, …)
{
int flag;
/* private communicator for library-internal communication */
MPI_Comm *private_comm;
/* retrieve private communicator */
MPI_Attr_get(comm, lib_key, &private_comm, &flag);
if (!flag) {
/* get failed; this is first call and private_comm */
/* has not yet been allocated. So, do it. */
/* Make new communicator, with same process group as comm. */
private_comm = (MPI_Comm *)malloc(sizeof(MPI_Comm));
MPI_Comm_Dup(comm, private_comm);
/* Cache private communicator with public one. */
MPI_Attr_put(comm, lib_key, (void *)private_comm);
}
/* Execute library code, using private_comm for */
/* internal communication. */
…
}
char msg[20] ;
int myrank, tag = 99;
MPI_Status status;
…
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find my rank */
if (myrank == 0) {
strcpy(msg, “Hello there”);
MPI_Send(msg, strlen(msg)+1, MPI_CHAR, 1, tag, MPI_COMM_WORLD);
} else {
MPI_Recv(msg, 20, MPI_CHAR, 0, tag, MPI_COMM_WORLD, &status);
}

Figure 1. C code. Process 0 sends a message to process 1.

ure 2 gives an example of using a user-defined type to
send the upper-triangular part of a matrix.

Collective Communications
Collective communications transmit data among all
the processes specified by a communicator object.
One function, the barrier, serves to synchronize
processes without passing data. MPI provides the fol-
lowing collective communication functions:

• Barrier synchronization across all processes
• Broadcast from one process to all
• Gathering data from all processes to one
• Scattering data from one to all
• Allgather, like a gather followed by a broadcast of

the gather output
• Alltoall, like a set of gathers in which each process

receives a distinct result
• Global reduction operations, such as sum, max,

min, and user-defined functions
• Scan (or prefix) across processes

Figure 3 shows broadcast, scatter, gather, allgather,
and alltoall. Many of the collective functions also have
“vector” variants, whereby different amounts of data
can be sent to or received from different processes. For
these vector variants, the simple grids in Figure 3
become more complex.

The syntax and semantics of the MPI collective
functions were designed to be consistent with point-to-
point communications. However, to keep the number
of functions and their argument lists at a reasonable
level of complexity, the MPI committee made collec-
tive functions more restrictive than the point-to-point
functions in several ways. One restriction is that, in
contrast to point-to-point communication, the amount
of data sent must exactly match the amount of data
specified by the receiver. This restriction was imposed
to avoid the need for an array of status variables as an
argument to the functions that would otherwise be
necessary for the receiver to discover the amount of
data actually received.

A major simplification is that collective functions
come only in blocking versions. Though a standing
joke at committee meetings concerned the nonblock-
ing barrier, such functions can be quite useful1 and
may be included in a future version of MPI.

A final simplification of collective functions con-
cerns modes, which come in only one type that may be
regarded as analogous to the standard mode of point-
to-point. Specifically, the semantics are: A call collec-
tive function (on a given process) can return to the
user’s program as soon as its participation in the over-
all communication is complete. As usual, the comple-
tion indicates that the caller is now free to access and
modify locations in the communication buffer. The
completion does not indicate that other processes
have completed—or even started—the operation.

Thus, a collective communication may or may not have
the effect of synchronizing all calling processes. The
barrier, of course, is the exception to this statement.

These semantics were chosen to allow a variety of
implementations. And the MPI user must keep these
issues in mind. For example, even though a particular
implementation of MPI may provide a broadcast with
the side effect of synchronization (the standard allows
this side effect), the standard does not require it, and
hence, any program that relies on synchronization is
nonportable. On the other hand, a correct and portable
program must allow a collective function to be synchro-
nizing. Though one should not rely on synchronization
side effects, one must program to allow for them.

Though these issues and statements may seem
unusually obscure, they are merely a consequence of
the desire of MPI to do two things:

• Allow efficient implementations on a variety of
architectures

• Be clear about exactly what is and what is not guar-
anteed by the standard

Groups, Contexts, and Communicators
A key feature needed to support robust, parallel
libraries is a guarantee that communication within a
library routine does not conflict with communication
extraneous to the routine. The concepts encapsulat-
ed by an MPI communicator provide this support.

A communicator is a data object that specifies the
scope of a communication operation, that is, the
group of processes involved and the communication
context. Contexts partition the communication
space. A message sent in one context cannot be
received in another context. Process ranks are inter-
preted with respect to the process group associated
with a communicator. MPI applications begin with a
default communicator, MPI_COMM_WORLD, which
has as its process group the entire set of processes (of

88 July 1996/Vol. 39, No. 7 COMMUNICATIONS OF THE ACM

double a[100][100];
int disp[100] ,blocklen[100] , i;
MPI_Datatype upper;
…
/* compute start and size of each row */
for (i=0; i<100; ++i) {
disp[i] = 100 * i + i;
blocklen[i] = 100 – i;
}
/* create datatype for upper triangular part */
MPI_Type_indexed(100, blocklen, disp, MPI_DOUBLE, &upper);
MPI_Type_commit(&upper);
/* . . and send it */
MPI_Send(a, 1, upper, dest, tag, MPI_COMM_WORLD);

Figure 2. Using a user-defined datatype, a single send
transmits the upper-triangular part of a matrix.

1The nonblocking barrier would, of course, block at the test-for-completion call.

this parallel job). New communicators are created
from existing communicators; creation of a commu-
nicator is a collective operation.

Communicators are especially important for the
design of parallel software libraries. Suppose we have
a parallel matrix-multiplication routine as a member
of a library. We would like to allow distinct subgroups
of processes to concurrently perform different matrix
multiplications. A communicator provides a conve-
nient mechanism for passing into the library routine
the appropriate group of processes, and within the
routine, process ranks are interpreted relative to this
group. The grouping and labeling mechanisms pro-
vided by communicators are useful, and communica-
tors are typically passed into library routines that
perform internal communications.

Such library routines can also create their own
unique communicators for internal use. For exam-
ple, consider an application in which process 0 posts
a wildcarded, nonblocking receive just before entry
to a library routine. Such “promiscuous” posting of
receives is a common technique for increasing per-
formance. If an internal communica-
tor is not created, incorrect behavior
may result, since the receive may be
satisfied by a message sent by process
1 from within the library routine—if
process 1 invokes the library ahead of
process 0. Another example is a case
in which a process sends a message
before entry into a library routine, but
the destination process does not post
the matching receive until after it
exits the library routine. In this case,
the message may be received incor-
rectly within the library routine.

These problems are avoided by
proper design and use of parallel
libraries. One workable design is for
the application program to pass com-
municators into the library routine
specifying the group and ensuring a
safe context. Another design has the
library create a “hidden” and unique
communicator in a library initializa-
tion call, again leading to correct par-
titioning of the message space
between application and library.

The sidebar, “Library Communica-
tor and Caching,” reveals how one
might implement the second type of
design. Some thought reveals that as
one creates separate communicators

for libraries, it is convenient to associate these new
communicators with the old communicators from
which they were derived. The MPI caching mecha-
nism provides a way to set up such an association.
Though one can associate arbitrary objects with com-
municators using caching, the ability to perform such
associations for library internal communicators is one
of the most important uses of caching.

Conclusions
A pleasant surprise for participants in the MPI effort
was the interesting intellectual issues that kept com-
ing up. This article has concentrated on some of
them, but for most cases, programming in MPI is
straightforward and similar to programming with
other message-passing interfaces.

MPI does not claim to be the definitive answer to all
message-passing needs. Indeed, our insistence on sim-
plicity and timeliness of the standard precludes MPI
being the definitive passing system. The MPI interface
provides a useful basis for developing software for mes-
sage-passing environments. Besides promoting the

COMMUNICATIONS OF THE ACM July 1996/Vol. 39, No. 7 89

A0 A0

A0

A0

A0

A0

A0

A0 A0

A1

A2

A3

A4

A5

A0 A0

A0

A0

A0

A0

A0

A0 A0

A1

A2

A3

A4

A5

B0

B1

B2

B3

B4

B5

C0

C1

C2

C3

C4

C5

D0

D1

D2

D3

D4

D5

E0

E1

E2

E3

E4

E5

F0

F1

F2

F3

F4

F5

B0

B0

B0

B0

B0

B0

C0

C0

C0

C0

C0

C0

D0

D0

D0

D0

D0

D0

E0

E0

E0

E0

E0

A0

F0

F0

F0

F0

F0

F0

A1 A2 A3 A4 A5

B0

C0

D0

E0

F0

broadcast

alltoall

allgather

scatter

gather

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C1 C2 C3 C4 C5

D1 D2 D3 D4 D5

E1 E2 E3 E4 E5

F1 F2 F3 F4 F5

B0

C0

D0

E0

F0

data
processes

Figure 3. Collective move functions for a
group of six processes. For each process,
each row of boxes represents data loca-
tions in one process. Thus, in the broad-
cast, initially only the first process
contains the data A0, but after the broad-
cast all processes contain the data.

emergence of parallel software, a message-passing stan-
dard gives vendors a clearly defined base set of rou-
tines they can implement efficiently. Hardware
support for parts of the system is also possible and may
greatly enhance parallel scalability.

The final MPI 1 Forum meeting in February 1994
decided that plans for extending MPI should wait for
more experience with the current version. The MPI 2
Forum now under way is moving in the following
directions:

• Parallel input/output
• Remote store/access
• Active messages
• Process startup
• Dynamic process control
• Nonblocking collective operations
• Fortran 90 and C++ language bindings
• Graphics
• Real-time support

For more information, see the MPI-specific news-
group at comp.parallel.mpi. The official version of
the specification document can be obtained from
netlib [3] by sending an email message to
netlib@www.netlib.org with the message: “send mpi-
report.ps from mpi”. A postscript file will be mailed
back to you by the netlib server. The document may
also be obtained via anonymous ftp from
www.netlib.org/mpi/mpi-report.ps. A hypertext ver-
sion is available on the World-Wide Web at
http://www.mcs.anl.gov/mpi/mpi-report/mpi-
report.html.

References
1. Butler, R., and Lusk, E. Monitors, messages, and clusters: The

P4 parallel programming system. Parallel Comput. 20 (April
1994), 547–564.

2. Calkin, R., Hempel, R., Hoppe, H., and Wypior, P. Portable
programming with the PARMACS Message-Passing Library.
Parallel Comput., Special Issue on Message-Passing Interfaces 20
(April 1994), 615–632.

3. Dongarra, J., and Grosse, E. Distribution of mathematical software
via electronic mail. Commun. ACM 30, 5 (July 1987), 403–407.

4. Dongarra, J., Geist, A., Manchek, R., and Sunderam, V. Inte-
grated PVM framework supports heterogeneous network com-
puting. Comput. Phys. 7, 2 (April 1993), 166–175.

5. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and
Sunderam, V. PVM: A Users’ Guide and Tutorial for Networked Par-
allel Computing. MIT Press, Cambridge, Mass., 1994. The book is
available electronically; see ftp://www.netlib.org/pvm3/
book/pvm-book.ps.

6. Gropp, W., Lusk, E., and Skjellum, A. Using MPI: Portable Paral-
lel Programming with the Message-Passing Interface. MIT Press,
Cambridge, Mass., 1994.

7. Koelbel, C., Loveman, D., Schreiber, R., Steele, G., Jr., and
Zosel, M. The High Performance Fortran Handbook. MIT Press,
Cambridge, Mass., 1994.

8. Message Passing Interface Forum. MPI: A message-passing
interface standard. Int. J. Supercomput. Appl. and High Perfor-
mance Comput., Special Issue on MPI 8, 3/4 (1994). Also see
ftp://www.netlib.org/mpi/mpi-report.ps.

9. Parasoft Corp., Monrovia, Calif. Express User’s Guide, Version
3.2.5, 1992. See parasoft@parasoft.com.

10. Skjellum, A., and Leung, A. Zipcode: A portable multicom-
puter communication library atop the reactive kernel. In Pro-
ceedings of the 5th Distributed Memory Concurrent Computing
Conference, D.W. Walker and Q.F. Stout, eds. (Charleston, S.
Car, Apr. 1990) IEEE Press, 1990, pp. 767–776.

11. Snir, M., Otto, S., Hess-Lederman, S., Walker, D., and Don-
garra, J., MPI: The Complete Reference. MIT Press, Cambridge,
Mass., 1996. Available electronically; see http://www.netlib.
org/utk/papers/mpi-book/mpi-book.html

About the Authors:
JACK J. DONGARRA holds a joint appointment as Distinguished
Professor of Computer Science in the Computer Science Depart-
ment at the University of Tennessee and as Distinguished Scientist
in the Mathematical Sciences Section at Oak Ridge National Labo-
ratory under the UT/ORNL Science Alliance Program. Author’s
Current Address: Computer Science Department, University of
Tennessee, Knoxville, TN 37996-1301; email: dongarra@cs.utk.edu
and http://www.netlib.org/utk/people/jackdongarra.html

STEVE W. OTTO is on the faculty of the Computer Science and
Engineering Department of the Oregon Graduate Institute and
also recently joined Intel Development Laboratories. Author’s Cur-
rent Address: Oregon Graduate Institute, Computer Science
Department, 19600 NW Von Neumann Drive, Beaverton, OR
97006-1999; email: otto@cse.ogi.edu

MARC SNIR is a senior manager at the IBM T. J. Watson Research
Center. Author’s Current Address: IBM T. J. Watson Research Cen-
ter, Route 134, P.O. Box 218, Yorktown Heights, NY 10598; email:
snir@watson.ibm.com

DAVID WALKER is a senior research staff member in the Mathe-
matical Sciences Section at Oak Ridge National Laboratory and an
Adjunct Associate Professor in the Department of Computer Sci-
ence at the University of Tennesseee, Knoxville. Author’s Current
Address: Building 6012, MS-6367, P. O. Box 2008, Oak Ridge
National Laboratory, Oak Ridge, TN 37831-6367; email:
walker@rios2.epm.ornl.gov

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage; the copyright notice, the title
of the publication, and its date appear; and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.

© ACM 0002-0782/96/0700 $3.50

C

90 July 1996/Vol. 39, No. 7 COMMUNICATIONS OF THE ACM

Library Communicator and Caching
We wish to give a parallel library its own communicator with a unique context. The strategy is to pass in—at each invocation of the library—a
communicator that describes the process group to be used. The library function “duplicates” the process group, getting a similar communica-
tor but one with a unique communication context. This context becomes the private, library-internal communicator.

The MPI caching mechanism is used to make the process of attaching arbitrary pieces of information work well. The private com-
municator is associated (cached) with the communicator passed in by the application. This association means that the private communi-
cator needs to be created only the first time the library is invoked with that particular communicator as argument. The caching hides
the internal communicator from the application, so the application need not explicitly manage the internal communicators. See the
sources in the second sidebar for details concerning the caching mechanism.

