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This paper discusses issues in the design of ScaLAPACK, a software library for performing 
dense linear algebra computations on distributed memory concurrent computers. These issues 
are illustrated using the ScaLAPACK routines for reducing matrices to Hessenberg, tri- 
diagonal, and bidiagonal forms. These routines are important in the solution of eigenproblems. 
The paper focuses on how building blocks are used to create higher-level library routines. 
Results are presented that demonstrate the scalability of the reduction routines. The most 
commonly-used building blocks used in ScaLAPACK are the sequencing BLAS, the parallel 
BLAS (PBLAS) and the Basic Linear Algebra Communication Subprograms (BLACS). 
Each of the matrix reduction algorithms consists of a series of steps in each of which one 
block column (or panel), and/or block row, of the matrix is reduced, followed by an update 
of the portion of the matrix that has not been factorized so far. This latter phase is performed 
using Level 3 PBLAS operations and contains the bulk of the computation. However, the panel 
reduction phase involves a significant amount of communication, and is important in deter- 
mining the scalability of the algorithm. The simplest way to parallelize the panel reduction 
phase is to replace the BLAS routines appearing in the LAPACK routine (mostly matrix- 
vector and matrix-matrix multiplications) with the corresponding PBLAS routines. However, 
in some cases it is possible to reduce communication startup costs by performing the commu- 
nication necessary for consecutive BLAS operations in a single communication using a BLACS 
call. Thus, there is a tradeoff between efficiency and software engineering considerations, such 
as ease of programming and simplicity of code. 

1. I n t r o d u c t i o n  

This  pape r  addresses  issues in the design and  imp lemen ta t i on  o f  S c a L A P A C K ,  a 
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software library for performing dense linear algebra computations on distributed 
memory concurrent computers. Upon completion, ScaLAPACK ("Scalable 
LAPACK") will make available on distributed memory machines the same set of 
library routines that LAPACK [1,2] provides for vector and shared memory 
architectures. 

A set of Basic Linear Algebra Subprograms (Level 1, 2, and 3 BLAS) [8,11,20] is 
available as a highly efficient machine-specific implementation on many modern 
high-performance computers. They provide high performance with portability 
and are used as the building blocks of a number of applications, including 
LAPACK. The Basic Linear Algebra Communication Subprograms (BLACS) 
[10] comprise a package that provides ease-of-use and portability for message- 
passing in parallel linear algebra applications. The Parallel BLAS (PBLAS), 
which provide a simplified interface around the Parallel Block BLAS (PB- 
BLAS) [7], are intermediate level routines based on the sequential BLAS and 
the BLACS. The PBLAS provide all the functionality supported by parallel 
versions of the Level 1, 2, and 3 BLAS on a restricted class of matrices having 
a block cyclic data distribution. The ScaLAPACK routines are built using the 
sequential BLAS, the BLACS, and the PBLAS modules. ScaLAPACK can be 
ported with minimal code modification to any machine on which the BLAS and 
the BLACS are available. 

Of particular interest in this paper is the tradeoff between performance and mod- 
ular algorithm design. This tradeoff will be illustrated using routines that use 
Householder transformations to reduce a real general matrix to Hessenberg or 
bidiagonal form, and a symmetric matrix to tridiagonal form. The reduction of a 
matrix to Hessenberg form is an important computational component in the 
unsymmetric eigenvalue problem. The reduction to tridiagonal form plays a Similar 
role in the symmetric eigenvalue problem. Reduction to bidiagonal form is impor- 
tant in evaluating the singular value decomposition (SVD) of a matrix, which in 
turn is used in the least-squares solution of overdetermined systems of linear 
equations. 

Currently ScaLAPACK also includes LU, QR, and Cholesky factorization rou- 
tines with their solvers. The implementation details, performance, and scalability of 
the ScaLAPACK factorization routines are presented in a separate paper [4]. 

The design philosophy of the ScaLAPACK library is addressed in section 2. In 
section 3, we introduce the block equations of the reduction routines and describe 
the ScaLAPACK reduction routines by comparing them with the corresponding 
LAPACK routines. Section 4 presents performance results and scalability of the 
algorithms on the Intel family of computers: the iPSC/860, the Touchstone 
Delta, and the Paragon. In section 5, conclusions and future work are presented. 

2. Design philosophy 

In ScaLAPACK, algorithms are presented in terms o f  p r o c e s s e s ,  rather than the 
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processors of the physical hardware. A process is an independent thread of control 
with its own nonshared, distinct memory. Processes communicate by pairwise 
point-to-point communication, or by collective communication, as necessary. In 
general there may be several processes on a physical processor, in which case it is 
assumed that the runtime system handles the scheduling of processes. For example, 
execution of a process waiting to receive a message may be suspended and another 
process scheduled, thereby overlapping communication and calculation. In the 
absence of such a sophisticated operating system, ScaLAPACK has been developed 
and tested for the case of one process per processor. 

2.1. Factors affecting performance 

Two key factors in ensuring that the ScaLAPACK algorithms have good scal- 
ability and performance characteristics are maintaining long vector lengths, and 
maximizing data reuse in the upper levels of memory. Long vector lengths result 
in more effective use of the vector or RISC processors found in many parallel com- 
puters. Thus, in implementing ScaLAPACK we must avoid performing operations 
on small matrices and vectors. By reusing data in the upper levels of memory 
(registers and cache) the longer latencies associated with accesses to lower levels 
of memory (main memory, off-processor memory) are avoided. In ScaLAPACK, 
high levels of data reuse are ensured by the use of block partitioned algorithms 
that exploit locality of reference. This reduces the frequency of communication 
between processes, thereby avoiding message startup latency. The sequential com- 
putations performed by each process are mostly expressed in terms of Level 2 and 
Level 3 Basic Linear Algebra Subprograms (BLAS) [8,11]. These computations are 
done using commercially available assembly coded routines that have good data 
reuse characteristics, and make efficient use of the target chip architecture. 

In many of the ScaLAPACK routines, such as the factorization routines dis- 
cussed in [16] and the reduction routines in this paper, columns and/or rows of 
the matrix are eliminated as the computation progresses. This leads to a tradeoff 
between data reuse and load balance. This tradeoff has been discussed in an earlier 
paper [17], and may be controlled at the user level by varying the parameters of the 
data distribution, as discussed in the next subsection. 

2.2. Data distribution 

In many linear algebra algorithms the distribution of work may become uneven 
as the algorithm progresses, as in LU factorization in which rows and columns 
become eliminated from the computation. ScaLAPACK, therefore, makes use of 
the block cyclic data distribution in which matrix blocks separated by a fixed 
stride in the row and column directions are assigned to the same process. A 
number of researchers have made use of the block cyclic data distribution in par- 
allel dense linear algebra algorithms [5,6,9,13,21]. The block cyclic data distribution 
is parameterized by the four numbers P, Q, r, and c, where P x Q is the process 
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template  and r x c is the block size. All S c a L A P A C K  routines work  for arbitrary 
values of  these parameters ,  subject to certain "compat ibi l i ty  condi t ions" .  Thus,  for 
example,  in the LU factorizat ion rout ine  we require that  the blocks be square, since 
nonsquare  blocks would  lead to addi t ional  software complexi ty  and communica-  
tion overhead.  When  mult iplying two matrices, C = AB, we require that  all three 
matrices are distr ibuted over the same P x Q process template;  rectangular  
blocks are permit ted,  but  we require that  if the blocks of  matr ix  A are r • t, then 
those of  B and C mus t  be t x c and r • c, respectively, so it is possible to mult iply 
the individual  blocks o f  A and B to form blocks o f  C. 

Suppose we have M objects indexed by the integers 0, 1 , . . . ,  M - 1. In the block 
cyclic data  distr ibut ion the mapp ing  of  the global index, m, can be expressed as 
m H (p, b, i), where p is the logical process number ,  b is the block number  in process 
p, and i is the index within block b to which m is mapped .  Thus,  if the number  of  
data  objects in a block is r, the block cyclic data  dis tr ibut ion may  be written 

m ~ < s m o d  P, Ls/PJ,mmodr), (1) 

where s = [m/rJ, and P is the number  of  processes. The  distr ibut ion of  a 
block-par t i t ioned matr ix can be regarded as the tensor  p roduc t  o f  two such map-  
pings, one that  distributes the rows of  the matr ix over P processes, and another  
that  distributes the co lumns  over Q processes. It should  be noted  that  equat ion  
(1) reverts to the cyclic dis tr ibut ion when r = 1, with local index i = 0 for all 
blocks. A block dis tr ibut ion is recovered when r = FM/P], in which case there 
is a single block in each process with block n u m b e r  b = 0. Thus,  we have 

m H<m m o d  P, [m/PJ ,  0) (2) 

for a cyclic data  distr ibution,  and 

m~--~<[m/LJ, 0 , m m o d L ) ,  (3) 

for a block distr ibution,  where L = FM/P]. A subtle dist inction between the block 
distr ibut ion given by equat ion  (3) and that  of ten used elsewhere (see for example 
[I 8,24]) should be noted. Consider  the block distribution of  6 items over 4 processes. 
This is commonly  distributed as (2, 2, 1, 1), i.e., 2 items in two of  the processes and 1 
item in the other two processes. The block distribution given by equat ion (3) results 
in the distribution (2, 2, 2, 0), so that  one of  the processes contains no data  items. 
Clearly, since the load imbalance is measured by the difference between the maxi- 
m u m  and the average loads, both  distr ibution schemes have the same degree o f  
load imbalance. We prefer the block distribution given by equat ion (3) because the 
arithmetic needed to convert  between global and  local indices is simpler, and because 
of  the symmetry between the equations for the block and cyclic distributions (com- 
pare equations (2) and (3)). There appear  to be no other  compelling reasons why one 
of  the above forms of  block distribution should be preferred to the other in all cases. 

2.3. Building blocks 

The  S c a L A P A C K  rout ines are built  out  o f  a small n u m b e r  o f  modules .  The  mos t  
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fundamental of these are the Basic Linear Algebra Communication Subprograms 
(BLACS) [10,14], that perform common matrix-oriented communication tasks, 
and the sequential Basic Linear Algebra Subprograms (BLAS) [8,11,20], in particu- 
lar the Level 2 and 3 BLAS. ScaLAPACK can be ported with minimal code modifi- 
cation to any machine on which the BLACS and the BLAS are available. The 
Parallel BLAS (PBLAS) provide a simplified interface to the Parallel Block 
BLAS (PB-BLAS) [7] - the PBLAS are essentially C wrappers around the PB- 
BLAS, which in turn are intermediate-level routines based on the BLACS and 
sequential BLAS. The BLACS, the sequential BLAS, and the PBLAS are the mod- 
ules from which the higher level ScaLAPACK routines are built. Thus, the entire 
ScaLAPACK package contains modules at a number of different levels. For 
many users the top level ScaLAPACK routines will be sufficient to build custo- 
mized routines not provided in ScaLAPACK. 

The BLACS package attempts to provide the same ease of use and portability for 
MIMD message-passing linear algebra communication that the BLAS provide for 
linear algebra computation. Therefore, future software for dense linear algebra on 
M I M D  platforms could consist of calls to the PBLAS for computation and calls to 
the BLACS for communication. Since both packages will have been optimized for 
each particular platform, good performance should be achieved with relatively little 
effort. 

In the ScaLAPACK routines all interprocess communication takes place within 
the PBLAS and the BLACS, so the source code of the top software layer of ScaLA- 
PACK looks very similar to that of LAPACK. The BLACS have been imple- 
mented for the Intel family of computers, the TMC CM-5, the IBM SP1 and 
SP2, the Cray T3D, and for PVM. 

The PBLAS are distributed BLAS routines in which at least one of the matrix 
sizes is limited to the block size. That is, at least one of the matrices consists of a 
single row or column of blocks, and is located in a single row or column of the pro- 
cess template. An example of a PBLAS operation would be the multiplication of a 
matrix of M • N blocks by a "vector" of N blocks. The PBLAS make use of calls 
to the sequential BLAS for local computations, and calls to the BLACS for com- 
munication. The PBLAS are used, for example, to perform block-oriented 
matrix/vector multiplications when reducing a column of blocks in the parallel 
reduction algorithms described in section 3. 

3. D e n s e  reduct ion  rout ines  

In this section, block-partitioned algorithms for reducing matrices to Hessen- 
berg, tridiagonal, and bidiagonal form by applying a sequence of orthogonal simi- 
larity transforms are discussed. The basic approach for these algorithms is to 
aggregate Householder transforms [19] and to apply them in a blocked fashion 
[3,22], thus achieving algorithms that are rich in matrix-matrix operations [12]. 
The sequential versions of the algorithms are derived and parallel versions are 
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Table 1 
Nota t ion  relating to an m x n matrix A. 

Nota t ion  Meaning Type Size 

d general matrix matrix m x n 
Aj = [A]:, i j matrix which includes first j columns of  A matrix m x j 
aj = [A]:j j t h  column of  A column vector m 

ai4 = [A]id element (i,j) of  A scalar 1 

presented. The block reduction to Hessenberg form algorithms are examined in 
detail to show how the ScaLAPACK building blocks are used to parallelize the 
algorithm. We do not go into such detail for the reduction to tridiagonal and bidia- 
gonal forms since the same approach and remarks apply as in the case of Hessen- 
berg reduction. 

The parallel algorithms described below extend and generalize previous work. 
Dongarra and van de Geijn [15] have presented a parallel, block-partitioned algo- 
rithm for reduction to Hessenberg form, and assumed a one-dimensional, block 
column data distribution. Their data distribution corresponds to a 1 x Q process 
template in the terminology of section 2.2. Smith et al. have described and imple- 
mented a parallel algorithm for Householder tridiagonalization on a square process 
template [23]. In the terminology of section 2.2 this corresponds to the case n b = 1 
with a P x P process template. 

Before describing the routines we shall first introduce some notation. For an 
rn x n matrix A, [A]i.j,kj denotes the submatrix of A consisting of elements of row 
i , . . .  , j  and columns k , . . . ,  l. [A]:.k:/ and [A]i:j,: will be used if all columns or rows 
of the matrix are involved, respectively. And the meaning of Aj, aj, and aij is as 
given in table 1, except where explicitly stated otherwise. 

3.1. Reduction to Hessenberg form 

A nonsymmetric M x M matrix A may be reduced to Hessenberg form H, by an 
orthogonal similarity transform, QTAQ = H. The (upper) Hessenberg form has 
zeros below the first subdiagonal. The transformation matrix Q is a product of 
Householder transformations, Q = Q(~)Q(2)... Q(M-2). Each of the matrices Q(k) 
for k = 1 ,2 , . . . ,  M - 2 is symmetric. Thus, we may write 

i ( k + l )  = o(k)A(k)o(k)  = o ( k ) o ( k - 1 ) . . .  Q ( 1 ) A Q ( I ) . . .  o ( k - l ) o ( k ) ,  (4) 

where A(~)= A and A(M-~)= H. The Householder matrices have the form, 
Q(k) = I - "rvv r, where v = vk and T = 7- k = 2/[[v]]~, and we omit the (k) subscripts 
on v and T for notational clarity. The Householder vector v is 

( 1 ) ( x + a e k + , )  v -= (k) 
\ak+l,k + 

and a = sign(a(k/'+ ~ ld,)[[x[[2. Here, a! k) denotes the (i,j)th element of A (k). The vector IJ  
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x is the kth column of  A (k) with the first k entries set to zero. The vector e i is zero 
except for the ith entry which is 1. Thus, 

a(k) 
i,k is a scalar, v = ( 0 , . . . ,  0, 1, Wk+2, WM) T, where w i _(k) + cr 

r + 1,k 
for i = k + 2 , . . . , M .  

Applying the matrix QIk) to A (k) from the right, and then Q/k) from the left, intro- 
duces zeros below the first subdiagonal of  column k, and updates columns 
k + 1 , . . .  , M  of  A Ikl to give A (k+ll. Usually the algorithm is performed in-place, 
so A Ik+ 1) overwrites A (~). And after the M - 2 steps of the algorithm are completed, 
the original matrix A has been overwritten by the Hessenberg form H. Further- 
more, the kth column of  A below the first subdiagonal is overwritten by the last 
M -  k -  1 elements of  the Householder  vector in step k. Since the (k + 1)th 
entry of the Householder vector is unity, it does not have to be explicitly stored. 
The values of  7- for each step are stored in a vector, making it possible to reapply 
the Householder  transformations Q(k). 

3.1.1. Sequent ia l  b lock  Hessenberg  reduction 
We can rewrite equation (4) as follows: 

A (k+I) = Q(k)A(k)Q(k) = ( I  -- "cvvT)A(k)(I  -- 7.VV T) = ( I  -- 7.VVr) �9 (A (k) - y v r ) ,  (5) 

where y = 7.A(k)v. 
By mathematical induction, assume that 

A (k)-~- ( I - -  Vk_ITT_IVT_I)*(A(1) - -  Yk_ lVT_l ) ,  (6) 

where Vk_ l and Yk- l are M • (k - 1) matrices such that Vk_ l = (vl ,  v 2 , . . . ,  Vk_ 1) 
and Y~-i = ( Y l , Y 2 , . . .  ,Yk -1 ) .  And Tk-1 is a ( k -  1) • ( k -  1) upper triangular 
matrix. 

Then, 

A ~ + ') = (1  - ~ J ) -  A / ~ .  ( I  - ~-~v ~ )  

= ( I  - "CVVT)(I -- V k _ i T [ _ l  Vff_l)" (h (1)-  Yk-1 vT-I)( I -- T~yl)T) 

= ( I  r v v  r V k - I T [ - 1 V  r - -  - -  k-  I "~- TT)~jT Vk-  I TT- I VT-1) 

�9 (A('~ - rk_~ v [ _ , -  ~(A~l~ - r~_,V[_~)~ ~) 

�9 ( A c , ~  _ (rk_,,y)(Vk_,, v) T) 

=(I - -  V k T [ V [ ) . ( A  (0 - YkV[) ,  (7) 
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where 

y =  rk_, vLlv), (8) 

Tk = ( Tk-lO -7 -Tk- l  . (9) 

If we assumed that TI = "q, equation (6) is true for k = 2. By equation (7), equation 
(6) is true for all k (k _> 2). 

Suppose the matrix A is partitioned into panels, with each panel consisting of nb 
consecutive columns of A. In step k of the block-partitioned version of the Hessen- 
berg reduction algorithm, the kth panel is reduced. The Householder vectors for 
each column of the panel are found and are used to update the next column of 
the panel, but the updating of panels to the right is deferred until the reduction 
of the current panel is completed. 

Step k of the LAPACK routine, DGEHI~D, proceeds in three main phases. 

1. Dr.AHRD: Reduce the kth panel of the matrix and compute V, Y, and T. 
[Repeat n b times for i = 1 , . . . ,  nb (let k i = (k - 1)n b + i).] 

1. Compute the Householder vector v;. 
2. Compute Yi = 7-( Avi  - Yi-  i Vi r- l vi). 
3. Compute [Ti]l:i-l,i - -7 -T i - i  ~ r  - -  i -  IVi" 
4. Update the (ki+ t)th column of A ([A]:,k,+,) if necessary. 

�9 Apply the block Householder vector from the right: 
[A]:,ki+,- 

�9 Apply the block Householder vector from the left: 
v iv i  T 

2. DGF_a~: Update A with Y and V, A r A - Y V .  
3. DLARFB: Apply the block Householder vector from the left, 

A r ( I -  V T  r VT)A.  

We omit the (nb) subscripts on Y, V, and T for notational simplicity. Subrou- 
tines called by DGF_J-IRD are specified in the front of each procedure. 

To understand better how the parallel version of the algorithm is implemented 
we shall examine the first of these 3 phases in more detail. The reduction of each 
M x n b panel is similar to the unblocked algorithm described in section 3.1. The 
Householder vector for each column in the panel is evaluated in turn, and all 
such vectors computed so far are used to update the next column in the panel. 
As each column of a panel is processed a new column of V, Y, and T is constructed. 
At the start of processing the ith column of some panel the first i - 1 columns of V, 
Y, and T are known. The columns of V are simply the Householder vectors. In the 
LAPACK Hessenberg reduction algorithm, the routine DLARFG is called to evaluate 
the Householder vector vi and the value of 7-. 

Calls to the Level 2 BLAS routine, DGF_klV, which multiplies a matrix by a vector, 
are then used to evaluate Avg and Vir~v~. A third call to DGErfq evaluates 
A v g -  Yi_l(Vir__lvi), which is then scaled by 7- to give Yi according to equation 
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(8). The first (i - 1) entries of the ith column of Ti are found by scaling Vi r_ lvi by 7-, 
and then calling the Level 2 BLAS routine, DTRblV, which multiplies a triangular 
matrix by a vector, to give IT;],:i_ ~,; by equation (9). This completes the evaluation 
of the ith column of V, Y, and T. 

The next task is to update the (i + 1 )th column of the panel of A by applying the 
effects of the i Householder vectors evaluated so far for this panel. This involves a 
series of calls to the Level 2 BLAS routines, DGEMV and DTRMV. We update the 
( i +  1)th column in the panel by computing [A]:,k,- Yi[Vi]k~,: and then apply 
(I - Vi Ti r Vi r) to this column. 

We have described how each column in a panel is processed and updated by 
calls to Level 2 BLAS routines. In the next section we shall consider how the 
same operations are performed using the building blocks of the ScaLAPACK 
library. 

3.1.2. Parallel Hessenberg reduction 
The number of rows and columns in a block of the data distribution are chosen 

to be equal to the block size of the computation nb, i.e., r = c = nb. An important 
consequence of this is that each panel lies in a single column of the process tem- 
plate. Moreover, the triangular matrix T lies in just one process. 

The general structure of the parallel Hessenberg reduction algorithm is the same 
as in the sequential case. The routine PDLAHRD is called to reduce each panel. The 
PBLAS routine PDGF_MM is called to apply the block reflector for a panel from the 
left, and PDLARFB applies the block reflector from the right. We shall now examine 
PDLAHRD in more detail. 

The structure of PDLAHPd3 is also very similar to that of DLAHRD for the ith column 
of a panel, the routine PDLARFG is called to evaluate the Householder vector vi and 
the value of 7-. The Householder vector is distributed over the processes in one 
column of the process template. 

The next step is the evaluation of Avi and V~ r_ t v,. as preliminary steps in finding 
the next column of Y and T. In the parallel algorithm these matrix-vector products 
are performed by the PBLAS routine, PDGFMV. Computing the next column of T is 
done on one process by calling DTRMV and DSCAL, which require no communication. 

Evaluation of the (i + 1)th column in the panel of [A]:,k,- Yi[Vi]k~,: requires 
matrix-vector multiplication which is performed by a single PDGEMV call. Next, 
( I -  ViTirVi r) is applied to the column. This involves a series of calls to general 
matrix-vector multiplications, and triangular matrix-vector multiplications. 

The general matrix-vector multiplications are performed by calls to PBLAS 
routine, PDGEMV. The triangular matrices (T is upper triangular and the top part 
of V is unit lower triangular) lie in just one process, so the triangular matrix- 
vector multiplications are performed by the sequential BLAS routine, DTRMV. 

3.2. Reduction to tridiagonal form 

If A is a symmetric M x M matrix, then application of the Householder 
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transformations described in section 3.1 reduces A to tridiagonal form. In this 
section, we describe the reduction algorithm for the symmetric lower triangular 
matrix. The algorithm for symmetric the upper triangular matrix is very similar. 

3 . 2 . 1 .  S e q u e n t i a l  b l o c k  t r i d i a g o n a l  r e d u c t i o n  

As before, we assume A is partitioned into panels of width nb columns, and in the 
kth step of the algorithm the kth panel is reduced. A series of the Householder 
reflectors is applied to A, but in this case we make use of the symmetry of A to 
express the update as a block update of rank 2. We describe first the unblocked 
version of the algorithm, and then expand the algorithm to the blocked version 

A ( k +  1) = Q ( k ) A ( k ) Q ( k )  = ( I  --  " r v v r ) A ( k ) ( I  -- "rvv T)  

= A (k) _ v v v r A ( k )  _ T A w  r + T 2 v v V A ( k ) v v  v 

= A (k) _ VX T -- XV r + T ( v T x ) v v  r ,  

where x = r A ( k ) v .  Let w = x - " r v ( v r  x ) / 2 ,  then 

A (k+l )  = A ( k ) _ v w  T _  w v  T. 

By mathematical induction, assume that 

A(~)=  A I ' ) -  Vk_,W~._,  - w k _ , v L , ,  

where V k _ l  = (V l ,  Vz,  . . . , Vk_  l)  and W k - t  = ( W l ,  W2, . . . W k - 1 ) .  Then 

A(k+ l) _~ A(  k) _ v w  T - w v  T 

= ~ , 4  (1) - V k _ I W T _ I  - W k _ l  Vl~Ll - v w  T -  w y  T 

= A (') - ( V k _ , , v ) ( W k _ , ,  W) T -- ( W k _ , ,  w ) ( V k _ , , V )  r 

= A(')-  Vk W l -  W~ Vl. 

x = 7-A(k)v  = "r(A(t)  - -  V k - z  WVk-I  - -  W k -  I V ~ - l ) V  

---- T ( A  (l) - V k _ I W T _ I  v -  W k _ l V ~ _ l V ) ,  

w = x - T v ( v V x ) / 2 .  

Also, 

(10) 

(11) 

(12) 

(13) 

(14) 

By comparing equation (10) with equation (11), equation (11) is true for k = 2. 
And from equation (12), equation (11) is true for all k _> 2. 

In LAPACK, a real symmetric matrix is reduced to tridiagonal form by calling 
the routine DSYTRD. Step k of the block algorithm proceeds as follows: 

1. DLATRD: Reduce the kth panel of the matrix and compute V and W. 
[Repeat n b times for i = 1 , . . . ,  n b (let k i  = ( k  - 1)nb + i).] 
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1. Compute the Householder vector v;. 
2. Compute xi = "r(Al ' lv i  - W i - i  (V i  r- lv i ) .  - V i - i  ( W i  r_ lv i ) ) .  
3. Compute w i = x i - T V i ( v T x i ) / 2 .  

4. Update the ki+ lth column of A([A]:,k,+t ) if necessary. 
2. DSYR2K: Apply a block rank-2 update, A ~ A - V W  r - W V  r.  

DSYTRD reduces each panel of A in turn by first calling DLATRD to generate V and 
W, then calling DSYR2K to apply the block rank 2 update. The routine DLATRD loops 
over columns of the panel and in the ith pass applies the previous (i - 1) House- 
holder vector to update column i of the panel, and adds a new column i to the 
matrices V and W. 

The routine DLARFG is then called to evaluate the Householder transformation, 
(r, v,.). vi is the ith column of the matrix V, which overwrites the lower triangular 
portion of A. The vector x,- is found next by equation (13). The symmetric 
matrix-vector multiplication A v  i is performed by a Level 2 BLAS routine, DSYr~', 
and the other matrix-vector multiplications needed to evaluate x; are performed 
by four calls to DGF_a'vlV. The evaluation of x; is completed by a DSCAL call to scale 
x; by 7-. Then wi is computed by calls to DDOT to evaluate v r x i ,  and then DAXPY 
to subtract the two terms on the righthand side of equation (14), and it is over- 
written to x;. Denoting column i of the panel by [A]:,k,, [A]:,k,, is updated from 
equation (11) as follows, 

[A]:,k , +--[A]:,k , -- V i _ , w  f - W i _ l V  f .  (15) 

This update is performed by two calls to the Level 2 BLAS routine, DGEI~. 
After the routine DLATRD has looped over the n b columns of the panel, the con- 

struction of the M • nb matrices V and W is complete. Upon return from DLATRD, 
V and W are passed to the routine DSYR2K which applies a block rank 2 update to 
the unprocessed panels of A. This update is a Level 3 BLAS operation, and is the 
main computational task in the reduction to tridiagonal form. 

3 .2 .2 .  P a r a l l e l  b l o c k  t r i d i a g o n a l  r e d u c t i o n  
The conversion of the sequential routine for reduction to tridiagonal form 

DSYTRD to the parallel version PDSYTRD is quite straightforward. The parallel rou- 
tine calls PDLATRD to reduce a panel and to evaluate the corresponding matrices V 
and W. Then the routine PDSYR2K uses V and W to apply the Householder trans- 
formations for the panel to the unprocessed part of the matrix. 

The routine DLATRD is parallelized by replacing the calls to the Level 2 BLAS 
routines, DSYI~, DGEWq, DSCAL, DDOT, and DAXPY by calls to the corresponding 
PBLAS routines, PDSYMV, PDGEHV, PDSCAL, PDDOT, and PDAXPY. The call to 
DLARFG to evaluate the Householder transformation is replaced by a call to the 
equivalent parallel routine, PDLARFG. 

On exit from DLATRD, the diagonal elements of the reduced matrix are returned in 
the separate vector d. All the processes in a column of the process template hold the 
portions of d that they were involved in computing, i.e., d is block cyclically 
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distributed over the columns of  the template. This requires the process containing 
the diagonal block of  the matrix A to communicate the nb values of  d evaluated by a 
call to PDLATRD to the other process in the template column before returning from 
PDLk.TRD. This is done by calls to the BLACS routines DGEBS2D and DGEBR2D. 

In reducing a panel in PDLk, TRD, all processes are involved in the call to PDSYI.IV to 
evaluate h v  i. However, all the other computat ion in reducing a panel involves pro- 
cesses in a single column of  the process template. Thus, the panel reduction phase 
suffers from load imbalance. In general all processes are involved in updating the 
unprocessed port ion of  the matrix in PDSYR2K, and this phase of  the computat ion 
is well load balanced. 

3.3. R e d u c t i o n  to b id iagona l  f o r m  

If  A is an M • N matrix then Householder transformations can be used to 
reduce it to bidiagonal form Q T A P  = B. If M > N, the reduced matrix B is 
upper bidiagonal, and otherwise is lower bidiagonal. We describe below the reduc- 
tion to upper bidiagonal form; the algorithm for reduction to lower bidiagonal 
form is very similar. 

3.3.1.  S e q u e n t i a l  b id iagona l  reduc t ion  

We describe first the unblocked version of  the algorithm to reduce an M • N 
matrix to the bidiagonal form 

A(k+ 1) = Q(k)AIk)p(k) = ( I  -- % v v T ) A ( k ) ( I  -- ~,UU r)  

= A (k) _ % v v T A  (k) _ %A(k)UU r + %-CuvvrA(k)uu r 

= A (k) - v y  T - (z  - " 6 v y r u ) u  r ,  

where y = %A(k)Tv and z = T,A(k)u.  Let x = z - r ,  v y r  u. Then, 

A (k+l) = A Ik) - v y  r - x u  r.  (16) 

By mathematical induction, assume that 

A (k) = A ( 1 ) -  Vk_  I Y T  l -- X k _ I U T _ 1 ,  (17) 

where V k - l  = ( V l , . . . , V k - I ) ,  U k - I  = ( U l , . - . , U k - 1 ) ,  X k - l  = ( X l , . . . , X k - I ) ,  and 
Y k - l  = ( Y l , . . .  , Y k - l ) .  Equation (17) is true for k = 2. 

A(k+ l) : A(k) _ v y r  _ XU r 

= a Ill  - V k _  1 r [ _ l  - X k  ~ U [ - I  - v y  r - x u  ~ 

= A (1) _ ( V k _ l , V ) ( Y k _ l ~ y )  T - -  ( ) r  T 

: A lit - V,  r [  - x ~ u l .  (18) 
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Also, 

yT  = T.A k TV = -- Vk_ ,  r L  , - v L , ) %  

= %(AClFv - Y k _ , V f _ , v - -  U k _ , X f _ l v ) ,  (19) 

x = z - "r, vyTu = 7"uA(k)u -- ~-uvyTu 

= T u ( A  ( 1 )  - -  X k _  I u T _ I  --  Vk_  1 y T _ I ) U  -- %vyTu  

= "r,(A(')u - Xk_ ,  U r_ lU - (Vk_ , ,  v)(  r k _ , ,  y)V)U 

= ~,(Al l lu  - X k _ , U f _ , u -  Vk r f ) u .  (20) 

From equations (16) and (18), equation (17) is true for all k _> 2. A is assumed to 
be partitioned into square blocks of size nb• nb. In step k, the kth column of blocks 
(column panel) and the kth row of blocks (row panel) of A are reduced, after which 
the block reflectors are applied to the unprocessed trailing submatrix. 

In LAPACK, a real matrix is reduced to bidiagonal form by calling the routine 
DGEBPd3. Step k of the block algorithm proceeds as follows: 

1. DLABRD: Reduce the kth panel of the matrix and compute V,,~, U,~, Y,~, and X,~. 
[Repeat nb times for i = 1 , . . . ,  n b (let ki = (k - 1)n b + i).] 

1. Update the kith column of A. 
2. Compute the ith column Householder vector of A, vi. 

_ _  T _ _  .,~lr T 3. Compute YT = %(ATv i  Y i - i  Vi_ lvi Ui_ l i -  lVi). 
4. Update the kith row of A. 
5. Compute the ith row Householder vector of A, ui. 
6. Compute xi 7"u(Aui "J(i- 1 V = - ui_ ui- v i r l u 3 .  

2. DGEIV~I: Update A with V and Y,  A r A - V Y  r. 
3. DGF_k~: Update A with X and U, A ~ A - X U  r. 

DGEBRD reduces each column panel and row panel of A in turn to generate the 
matrices V, U, Y,  and X. The diagonal and off-diagonal elements of the reduced 
matrix are returned in two vectors. DGEBI~ calls the routine, DLABRD, to do the 
column and row panel reductions, and then makes two calls to the general 
matrix multiplication routine, DGF_bl/,I, to apply the updates to the trailing submatrix 
of A. 

In DLABRD, nb loops are performed in each of which a new column of V, U, Y,  
and X is evaluated. V and U T overwrite the lower and upper triangular portions 
of A, respectively. X and Y are stored in M x nb and N x n b work arrays, respec- 
tively. In the ith loop, two calls are made to DGF_MV to reduce the ith column of the 
column panel [A]:,ki: 

[Al : ,k  i +--- [Al:,k i -- V i _ l Y  T -- X i _ l  uT. (21) 

Next, the routine DL~.I~G is called to generate the Householder transformation 
(%, vi) that introduces zeros below the diagonal in the ith column panel. From 
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equation (19), a sequence of five calls to the matrix-vector multiplication routine 
DGEMV, and a call to the scaling routine DSCAL, evaluates Yi. 

Denoting the ith row of the current row panel of A as [A]k,.:, it is reduced using 
two DGEMV calls: 

[A]k,: ~ [A]k,,: - Yivri - U i _ , x  ri_,. (22) 

The routine DLARFG is called again to generate the Householder transformation 
(T,, u;) that introduces zeros to the right of the superdiagonal in the ith row of the 
row panel. It should be noted that this reduction is performed after applying the 
transformations for the previous i -  1 loops, and the transformation (%,v;) for 
the current loop. Thus, in this algorithm Householder transformations are applied 
first on the lefthand side, and then from the righthand side. This is why Y;, which 
has i nonzero columns, is used in equation (20), rather than ]i,._ l- Then five calls to 
DGEMV, and one call to DSCAL, are used to evaluate x i. 

3 . 3 . 2 .  P a r a l l e l  b i d i a g o n a l  r e d u c t i o n  

The conversion of the sequential routine for reducing a real matrix to bidiagonal 
form, DGEBRD to the parallel ScaLAPACK version, PDGEBRD, is straightforward. 
The ScaLAPACK routine calls PDLABRD to reduce the kth column and row 
panels. This routine also returns the matrices X and Y needed to update the unpro- 
cessed portion of the matrix, and the scalar variables, % and %. The unprocessed 
portion of the matrix is then updated as in equation (17) by two calls to the 
PBLAS matrix multiplication routine, PDGEMM. 

The ScaLAPACK routine PDLABRD is implemented from the LAPACK routine 
DLABRD by replacing the calls to DLARFG, DGEMV, and DSCAL by calls to the corre- 
sponding parallel routines PDLARFG, PDGEMV, and PSCAL, respectively. 

There is one complicating factor relating to how columns of the matrix Y are 
computed and stored. The matrix Y is an N • n b matrix, and for a particular 
panel reduction phase, it lies in a single row of the process template. Thus, to con- 
form to the data layout requirements of the PBLAS, Y is stored in transposed form 
as an nb x N matrix, in the same way that U is also stored. The ith column of Y 
evaluated in equation (19) is stored as row i of yr. In our Fortran code better per- 
formance is obtained if this row is evaluated as a temporary column vector of con- 
tiguous elements, stored in working space, and then transposed to be stored in yr. 

4. Results  and discussion 

In the ScaLAPACK versions of the three reduction routines the block size of the 
block cyclic data distribution is taken as nb • Thus, each column (row) panel lies 
in one column (row) of the process template. All M • n b matrices lie within one 
column of the process template, all nb• N matrices (i.e., U r and y r  in the algo- 
rithm for reduction to bidiagonal form) lie within one row of the process template, 
and all nb • nb matrices lie in just one process. 
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In the panel reductions most of the Level 2 BLAS operations involve only pro- 
cesses in a single row or column of the process template. Thus, the panel reduction 
phase suffers from load imbalance. In general all processes are involved in the Level 
3 BLAS operations that update the unprocessed portion of the matrix, and this 
phase of the computation is well load balanced. 

The ScaLAPACK reduction routines were produced by parallelizing the corre- 
sponding LAPACK routines. This involved 3 basic tasks: (1) writing a parallel 
version of the routine DLARFG to compute the Householder transformation for a 
given vector; (2) inserting control statements to control which columns and rows 
of the process template are involved in different phases of the algorithms; (3) 
replacing the BLAS calls in the LAPACK code by corresponding calls to the 
PBLAS. Note that we do not have to replace the calls to DTRblV since these involve 
a nb X nb matrix on a single process. All three of these tasks are quite straight- 
forward, thus parallelizing the reduction routines was rather easy. The ease with 
which the reduction algorithms could be parallelized is largely due to the avail- 
ability of well-designed, lower-level modules from which to construct them, in 
particular the PBLAS. 

Although replacing the sequential Level 1, 2, and 3 BLAS routines in LAPACK 
with the corresponding parallel PBLAS routines is a simple strategy for paralleliza- 
tion, in some cases better performance may be obtained by directly using the 
sequential BLAS and BLACS. The tradeoff between performance and software 
modularity arises in the restructuring of algorithms to reduce communication 
startup costs. Consider, for example, two successive independent calls to PBLAS 
routines in which the same pattern of communication is performed in each routine. 
Rather than sending two messages, it would be more efficient to combine them, and 
perform the communication with just one message. To "piggyback" messages in 
this way we would need to replace the PBLAS calls with calls to the BLACS and 
sequential BLAS. This situation arises in the parallel algorithm for reduction to 
Hessenberg form discussed in section 3.1.1. In evaluating y; in step k of the algo- 
rithm (see equation (8)) we must first find Y i - I  Vi l'- l'~ �9 This requires vT_I'Ui to  be 
broadcast over a column of the process template. The subsequent evaluation of 
the (i + 1)th column o fA  - YiV i  r requires row nb(k  -- 1) + i of V to be broadcast 
in the same way. Thus, the two broadcasts can be combined. In this instance, how- 
ever, we have found the performance gain to be small, and so have chosen to use 
calls to the PBLAS for these operations, rather than piggybacking messages and 
using lower level calls to the BLACS and the sequential BLAS. 

The three ScaLAPACK reduction routines were developed on a 128-node Intel 
iPSC/860 hypercube. Extensive performance evaluation has been done on the Intel 
iPSC/860, Delta, and Paragon computers. In figure 1, we plot performance on the 
Intel Delta measured in Gflops (gigaflops per second) against number of processors 
while keeping the size of the matrix per processor fixed at 9 Mbytes. For an N • N 
matrix, the floating point operation count was assumed to be 10 N3/3  for reduction 
to Hessenberg form, 8173/3 for reduction to bidiagonal form, and 4N3/3 for 
reduction to tridiagonal form. The algorithms for reduction to Hessenberg and 
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Figure 1. Isogranularity plots for the Hessenberg (HRD), tridiagonal (TRD), and bidiagonal reduction 
(BRD) routines on the Intel Delta. The matrix size per processor is fixed at 9 Mbytes. 

bidiagonal form run at 11.5 and 10.5 Gflops on 512 processors, respectively, while 
that for reduction to tridiagonal form runs at about 6.5 Gflops. This difference is 
attributable to the fact that the tridiagonal reduction routine involves operations 
on a symmetric matrix, that is, the main updating computation routine, 
PDSYI:t2K, in equation (12) involves only the half of the matrix: upper or lower tri- 
angular part of the matrix. Thus, the total number of floating point operations is 
less than in the Hessenberg and bidiagonal reduction algorithms. The communica- 
tion overhead, however, is similar in all cases, and so the ratio of computation to 
communication is lower for the tridiagonal reduction algorithm, and its perfor- 
mance is consequently poorer [15]. The fact that the plots in figure 1 are almost 
linear shows that the algorithms scale well on the Intel Delta at a granularity of 
9 Mbytes/node. The isogranularity plots at 5 Mbytes/node are also almost linear, 
showing that good scalability is achieved when only about half of the available 
memory is used. 

Figures 2, 3, and 4 show the performance of the three reduction algorithms as a 
function of matrix size for the 128-node Intel iPSC/860, the 512-node Intel Delta, 
and the 512-node Intel Paragon, respectively. Again, the differences in performance 
between the algorithms is largely attributable to their different floating-point 
operation counts. 

Figure 5 compares the performance of the algorithm for reduction to Hessenberg 
form for the three Intel computers. For each machine we choose the optimum 
layout of the process template and the optimum block size. The Intel iPSC/860 
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Figure 2. Performance of the Hessenberg (HRD), tridiagonal (TRD), and bidiagonal reduction 
(BRD) routines on the 128-node Intel iPSC/860 as a function of matrix size N. The optimum 
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Figure 3. Performance of  the Hessenberg (HRD), tridiagonal (TRD), and bidiagonal reduction 
(BRD) routines on the 512-node Intel Delta as a function of matrix size N. The optimum block 
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Figure 5. Performance of  the algorithm for reduction to Hessenberg form as a function of  matrix size 
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and Delta machines both use the same 40 MHz i860 processor, so we attribute the 
better performance of the Delta compared with the iPSC/860 to its higher commu- 
nication bandwidth. The Paragon uses the faster 50 MHz i860XP processor, and 
has a larger communication bandwidth than the Delta and iPSC/860. Hence, the 
performance of the Paragon is significantly faster than the other two machines. 

The Hessenberg, bidiagonal, and tridiagonal reduction routines attained 11.6, 
10.9 and 6.7 Gflops for N = 26000 on the 512-node Intel Delta, which corresponds 
to 22.7, 21.2 and 13.1 Mflops per processor, respectively. The peak performance of 
the sequential assembly-coded BLAS routine, DGEI,N, on the Delta is about 
36.2Mflops for a 400 x 400 matrix multiplication. Then the routines achieve 
62.7, 58.6, and 36.1% of the theoretical maximum performance of the machine. 
Owing to the larger communication bandwidth, the routines go up to 83.2, 76.7, 
and 52.1%, respectively, for N = 36000 on the Paragon. 

5. Conclusions 

We have shown how dense matrix reduction algorithms can be parallelized fairly 
easily using a small set of low-level modules, namely the sequential BLAS, the 
BLACS, and the PBLAS. The PBLAS, which themselves are built using the sequen- 
tial BLAS and BLACS, are particularly useful in simplifying the task of paralleliz- 
ing dense linear algebra algorithms. In general, calls to the Level 1, 2, and 3 BLAS 
in the LAPACK code can be replaced on a one-for-one basis by the corresponding 
PBLAS routine. 

The tradeoff between performance and software design considerations, such as 
modularity and clarity, is particularly important in the design of software libraries. 
In section 3.1.2, we have discussed how nonstandard storage schemes for the matrix 
Y can result in better performance. We have also discussed, in section 4, how the 
piggybacking of messages can reduce communication costs, again at the cost of 
replacing calls to the PBLAS by calls to the lower level BLACS and sequential 
BLAS. Here we have found the gain in performance too small to justify the loss 
in software modularity, and so do not piggyback messages. 

Our results on the Intel family of parallel computers show that the ScaLAPACK 
reduction routines have good performance and scalability characteristics on these 
machines. Future work will involve similar performance studies on more recent 
machines, such as the CRAY T3D and the IBM SP1 and SP2. 

The ScaLAPACK reduction routines are currently available through netlib for all 
numeric data types, such as single and double precision real and complex. To obtain 
the routines, send the message "send index from sca lapack"  to n e t l i b ~ o r n l ,  gov. 
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