
Numerical Algorithms 10(1995)379-399 379

The design
library:

of a parallel dense linear algebra software
Reduction to Hessenberg, tridiagonal,

and bidiagonal form*

J a e y o u n g Choi , a J ack J. D o n g a r r a a'b and D a v i d W. Walke r b

aDepartment of Computer Science, University of Tennessee at Knoxville, 107 Ayres Hall,
Knoxville, TN 37996-1301, USA

bMathematical Sciences Section, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 6012,
Oak Ridge, TN 37831-6367, USA

Received 19 January 1995
Communicated by C. Brezinski

This paper discusses issues in the design of ScaLAPACK, a software library for performing
dense linear algebra computations on distributed memory concurrent computers. These issues
are illustrated using the ScaLAPACK routines for reducing matrices to Hessenberg, tri-
diagonal, and bidiagonal forms. These routines are important in the solution of eigenproblems.
The paper focuses on how building blocks are used to create higher-level library routines.
Results are presented that demonstrate the scalability of the reduction routines. The most
commonly-used building blocks used in ScaLAPACK are the sequencing BLAS, the parallel
BLAS (PBLAS) and the Basic Linear Algebra Communication Subprograms (BLACS).
Each of the matrix reduction algorithms consists of a series of steps in each of which one
block column (or panel), and/or block row, of the matrix is reduced, followed by an update
of the portion of the matrix that has not been factorized so far. This latter phase is performed
using Level 3 PBLAS operations and contains the bulk of the computation. However, the panel
reduction phase involves a significant amount of communication, and is important in deter-
mining the scalability of the algorithm. The simplest way to parallelize the panel reduction
phase is to replace the BLAS routines appearing in the LAPACK routine (mostly matrix-
vector and matrix-matrix multiplications) with the corresponding PBLAS routines. However,
in some cases it is possible to reduce communication startup costs by performing the commu-
nication necessary for consecutive BLAS operations in a single communication using a BLACS
call. Thus, there is a tradeoff between efficiency and software engineering considerations, such
as ease of programming and simplicity of code.

1. I n t r o d u c t i o n

This pape r addresses issues in the design and imp lemen ta t i on o f S c a L A P A C K , a

* Research was supported in part by the Applied Mathematical Sciences Research Program of the
Office of Energy Research, U.S. Department of Energy, by the Defense Advanced Research Projects
Agency under contract DAAL03-91-C-0047, administered by the Army Research Office, and in part
by the Center for Research on Parallel Computing.

�9 J.C. Baltzer AG, Science Publishers

380 J. Choi et al. / The design of ScaLAPACK

software library for performing dense linear algebra computations on distributed
memory concurrent computers. Upon completion, ScaLAPACK ("Scalable
LAPACK") will make available on distributed memory machines the same set of
library routines that LAPACK [1,2] provides for vector and shared memory
architectures.

A set of Basic Linear Algebra Subprograms (Level 1, 2, and 3 BLAS) [8,11,20] is
available as a highly efficient machine-specific implementation on many modern
high-performance computers. They provide high performance with portability
and are used as the building blocks of a number of applications, including
LAPACK. The Basic Linear Algebra Communication Subprograms (BLACS)
[10] comprise a package that provides ease-of-use and portability for message-
passing in parallel linear algebra applications. The Parallel BLAS (PBLAS),
which provide a simplified interface around the Parallel Block BLAS (PB-
BLAS) [7], are intermediate level routines based on the sequential BLAS and
the BLACS. The PBLAS provide all the functionality supported by parallel
versions of the Level 1, 2, and 3 BLAS on a restricted class of matrices having
a block cyclic data distribution. The ScaLAPACK routines are built using the
sequential BLAS, the BLACS, and the PBLAS modules. ScaLAPACK can be
ported with minimal code modification to any machine on which the BLAS and
the BLACS are available.

Of particular interest in this paper is the tradeoff between performance and mod-
ular algorithm design. This tradeoff will be illustrated using routines that use
Householder transformations to reduce a real general matrix to Hessenberg or
bidiagonal form, and a symmetric matrix to tridiagonal form. The reduction of a
matrix to Hessenberg form is an important computational component in the
unsymmetric eigenvalue problem. The reduction to tridiagonal form plays a Similar
role in the symmetric eigenvalue problem. Reduction to bidiagonal form is impor-
tant in evaluating the singular value decomposition (SVD) of a matrix, which in
turn is used in the least-squares solution of overdetermined systems of linear
equations.

Currently ScaLAPACK also includes LU, QR, and Cholesky factorization rou-
tines with their solvers. The implementation details, performance, and scalability of
the ScaLAPACK factorization routines are presented in a separate paper [4].

The design philosophy of the ScaLAPACK library is addressed in section 2. In
section 3, we introduce the block equations of the reduction routines and describe
the ScaLAPACK reduction routines by comparing them with the corresponding
LAPACK routines. Section 4 presents performance results and scalability of the
algorithms on the Intel family of computers: the iPSC/860, the Touchstone
Delta, and the Paragon. In section 5, conclusions and future work are presented.

2. Design philosophy

In ScaLAPACK, algorithms are presented in terms o f p r o c e s s e s , rather than the

J. Choi et al./ The design of ScaLAPACK 381

processors of the physical hardware. A process is an independent thread of control
with its own nonshared, distinct memory. Processes communicate by pairwise
point-to-point communication, or by collective communication, as necessary. In
general there may be several processes on a physical processor, in which case it is
assumed that the runtime system handles the scheduling of processes. For example,
execution of a process waiting to receive a message may be suspended and another
process scheduled, thereby overlapping communication and calculation. In the
absence of such a sophisticated operating system, ScaLAPACK has been developed
and tested for the case of one process per processor.

2.1. Factors affecting performance

Two key factors in ensuring that the ScaLAPACK algorithms have good scal-
ability and performance characteristics are maintaining long vector lengths, and
maximizing data reuse in the upper levels of memory. Long vector lengths result
in more effective use of the vector or RISC processors found in many parallel com-
puters. Thus, in implementing ScaLAPACK we must avoid performing operations
on small matrices and vectors. By reusing data in the upper levels of memory
(registers and cache) the longer latencies associated with accesses to lower levels
of memory (main memory, off-processor memory) are avoided. In ScaLAPACK,
high levels of data reuse are ensured by the use of block partitioned algorithms
that exploit locality of reference. This reduces the frequency of communication
between processes, thereby avoiding message startup latency. The sequential com-
putations performed by each process are mostly expressed in terms of Level 2 and
Level 3 Basic Linear Algebra Subprograms (BLAS) [8,11]. These computations are
done using commercially available assembly coded routines that have good data
reuse characteristics, and make efficient use of the target chip architecture.

In many of the ScaLAPACK routines, such as the factorization routines dis-
cussed in [16] and the reduction routines in this paper, columns and/or rows of
the matrix are eliminated as the computation progresses. This leads to a tradeoff
between data reuse and load balance. This tradeoff has been discussed in an earlier
paper [17], and may be controlled at the user level by varying the parameters of the
data distribution, as discussed in the next subsection.

2.2. Data distribution

In many linear algebra algorithms the distribution of work may become uneven
as the algorithm progresses, as in LU factorization in which rows and columns
become eliminated from the computation. ScaLAPACK, therefore, makes use of
the block cyclic data distribution in which matrix blocks separated by a fixed
stride in the row and column directions are assigned to the same process. A
number of researchers have made use of the block cyclic data distribution in par-
allel dense linear algebra algorithms [5,6,9,13,21]. The block cyclic data distribution
is parameterized by the four numbers P, Q, r, and c, where P x Q is the process

382 J. Choi et al./ The design of ScaLAPACK

template and r x c is the block size. All S c a L A P A C K routines work for arbitrary
values of these parameters , subject to certain "compat ibi l i ty condi t ions" . Thus, for
example, in the LU factorizat ion rout ine we require that the blocks be square, since
nonsquare blocks would lead to addi t ional software complexi ty and communica-
tion overhead. When mult iplying two matrices, C = AB, we require that all three
matrices are distr ibuted over the same P x Q process template; rectangular
blocks are permit ted, but we require that if the blocks of matr ix A are r • t, then
those of B and C mus t be t x c and r • c, respectively, so it is possible to mult iply
the individual blocks o f A and B to form blocks o f C.

Suppose we have M objects indexed by the integers 0, 1 , . . . , M - 1. In the block
cyclic data distr ibut ion the mapp ing of the global index, m, can be expressed as
m H (p, b, i), where p is the logical process number , b is the block number in process
p, and i is the index within block b to which m is mapped . Thus, if the number of
data objects in a block is r, the block cyclic data dis tr ibut ion may be written

m ~ < s m o d P, Ls/PJ,mmodr), (1)

where s = [m/rJ, and P is the number of processes. The distr ibut ion of a
block-par t i t ioned matr ix can be regarded as the tensor p roduc t o f two such map-
pings, one that distributes the rows of the matr ix over P processes, and another
that distributes the co lumns over Q processes. It should be noted that equat ion
(1) reverts to the cyclic dis tr ibut ion when r = 1, with local index i = 0 for all
blocks. A block dis tr ibut ion is recovered when r = FM/P], in which case there
is a single block in each process with block n u m b e r b = 0. Thus, we have

m H<m m o d P, [m/PJ , 0) (2)

for a cyclic data distr ibution, and

m~--~<[m/LJ, 0 , m m o d L) , (3)

for a block distr ibution, where L = FM/P]. A subtle dist inction between the block
distr ibut ion given by equat ion (3) and that of ten used elsewhere (see for example
[I 8,24]) should be noted. Consider the block distribution of 6 items over 4 processes.
This is commonly distributed as (2, 2, 1, 1), i.e., 2 items in two of the processes and 1
item in the other two processes. The block distribution given by equat ion (3) results
in the distribution (2, 2, 2, 0), so that one of the processes contains no data items.
Clearly, since the load imbalance is measured by the difference between the maxi-
m u m and the average loads, both distr ibution schemes have the same degree o f
load imbalance. We prefer the block distribution given by equat ion (3) because the
arithmetic needed to convert between global and local indices is simpler, and because
of the symmetry between the equations for the block and cyclic distributions (com-
pare equations (2) and (3)). There appear to be no other compelling reasons why one
of the above forms of block distribution should be preferred to the other in all cases.

2.3. Building blocks

The S c a L A P A C K rout ines are built out o f a small n u m b e r o f modules . The mos t

J. Choi et aL / The design of ScaLAPACK 383

fundamental of these are the Basic Linear Algebra Communication Subprograms
(BLACS) [10,14], that perform common matrix-oriented communication tasks,
and the sequential Basic Linear Algebra Subprograms (BLAS) [8,11,20], in particu-
lar the Level 2 and 3 BLAS. ScaLAPACK can be ported with minimal code modifi-
cation to any machine on which the BLACS and the BLAS are available. The
Parallel BLAS (PBLAS) provide a simplified interface to the Parallel Block
BLAS (PB-BLAS) [7] - the PBLAS are essentially C wrappers around the PB-
BLAS, which in turn are intermediate-level routines based on the BLACS and
sequential BLAS. The BLACS, the sequential BLAS, and the PBLAS are the mod-
ules from which the higher level ScaLAPACK routines are built. Thus, the entire
ScaLAPACK package contains modules at a number of different levels. For
many users the top level ScaLAPACK routines will be sufficient to build custo-
mized routines not provided in ScaLAPACK.

The BLACS package attempts to provide the same ease of use and portability for
MIMD message-passing linear algebra communication that the BLAS provide for
linear algebra computation. Therefore, future software for dense linear algebra on
M I M D platforms could consist of calls to the PBLAS for computation and calls to
the BLACS for communication. Since both packages will have been optimized for
each particular platform, good performance should be achieved with relatively little
effort.

In the ScaLAPACK routines all interprocess communication takes place within
the PBLAS and the BLACS, so the source code of the top software layer of ScaLA-
PACK looks very similar to that of LAPACK. The BLACS have been imple-
mented for the Intel family of computers, the TMC CM-5, the IBM SP1 and
SP2, the Cray T3D, and for PVM.

The PBLAS are distributed BLAS routines in which at least one of the matrix
sizes is limited to the block size. That is, at least one of the matrices consists of a
single row or column of blocks, and is located in a single row or column of the pro-
cess template. An example of a PBLAS operation would be the multiplication of a
matrix of M • N blocks by a "vector" of N blocks. The PBLAS make use of calls
to the sequential BLAS for local computations, and calls to the BLACS for com-
munication. The PBLAS are used, for example, to perform block-oriented
matrix/vector multiplications when reducing a column of blocks in the parallel
reduction algorithms described in section 3.

3. D e n s e reduct ion rout ines

In this section, block-partitioned algorithms for reducing matrices to Hessen-
berg, tridiagonal, and bidiagonal form by applying a sequence of orthogonal simi-
larity transforms are discussed. The basic approach for these algorithms is to
aggregate Householder transforms [19] and to apply them in a blocked fashion
[3,22], thus achieving algorithms that are rich in matrix-matrix operations [12].
The sequential versions of the algorithms are derived and parallel versions are

384 J. Choi et al. / The design of ScaLAPACK

Table 1
Nota t ion relating to an m x n matrix A.

Nota t ion Meaning Type Size

d general matrix matrix m x n
Aj = [A]:, i j matrix which includes first j columns of A matrix m x j
aj = [A]:j j t h column of A column vector m

ai4 = [A]id element (i,j) of A scalar 1

presented. The block reduction to Hessenberg form algorithms are examined in
detail to show how the ScaLAPACK building blocks are used to parallelize the
algorithm. We do not go into such detail for the reduction to tridiagonal and bidia-
gonal forms since the same approach and remarks apply as in the case of Hessen-
berg reduction.

The parallel algorithms described below extend and generalize previous work.
Dongarra and van de Geijn [15] have presented a parallel, block-partitioned algo-
rithm for reduction to Hessenberg form, and assumed a one-dimensional, block
column data distribution. Their data distribution corresponds to a 1 x Q process
template in the terminology of section 2.2. Smith et al. have described and imple-
mented a parallel algorithm for Householder tridiagonalization on a square process
template [23]. In the terminology of section 2.2 this corresponds to the case n b = 1
with a P x P process template.

Before describing the routines we shall first introduce some notation. For an
rn x n matrix A, [A]i.j,kj denotes the submatrix of A consisting of elements of row
i , . . . , j and columns k , . . . , l. [A]:.k:/ and [A]i:j,: will be used if all columns or rows
of the matrix are involved, respectively. And the meaning of Aj, aj, and aij is as
given in table 1, except where explicitly stated otherwise.

3.1. Reduction to Hessenberg form

A nonsymmetric M x M matrix A may be reduced to Hessenberg form H, by an
orthogonal similarity transform, QTAQ = H. The (upper) Hessenberg form has
zeros below the first subdiagonal. The transformation matrix Q is a product of
Householder transformations, Q = Q(~)Q(2)... Q(M-2). Each of the matrices Q(k)
for k = 1 ,2 , . . . , M - 2 is symmetric. Thus, we may write

i (k + l) = o(k)A(k)o(k) = o (k) o (k - 1) . . . Q (1) A Q (I) . . . o (k - l) o (k) , (4)

where A(~)= A and A(M-~)= H. The Householder matrices have the form,
Q(k) = I - "rvv r, where v = vk and T = 7- k = 2/[[v]]~, and we omit the (k) subscripts
on v and T for notational clarity. The Householder vector v is

(1) (x + a e k + ,) v -= (k)
\ak+l,k +

and a = sign(a(k/'+ ~ ld,)[[x[[2. Here, a! k) denotes the (i,j)th element of A (k). The vector IJ

J. Choi et al. / The design of ScaLAPACK 385

x is the kth column of A (k) with the first k entries set to zero. The vector e i is zero
except for the ith entry which is 1. Thus,

a(k)
i,k is a scalar, v = (0 , . . . , 0, 1, Wk+2, WM) T, where w i _(k) + cr

r + 1,k
for i = k + 2 , . . . , M .

Applying the matrix QIk) to A (k) from the right, and then Q/k) from the left, intro-
duces zeros below the first subdiagonal of column k, and updates columns
k + 1 , . . . , M of A Ikl to give A (k+ll. Usually the algorithm is performed in-place,
so A Ik+ 1) overwrites A (~). And after the M - 2 steps of the algorithm are completed,
the original matrix A has been overwritten by the Hessenberg form H. Further-
more, the kth column of A below the first subdiagonal is overwritten by the last
M - k - 1 elements of the Householder vector in step k. Since the (k + 1)th
entry of the Householder vector is unity, it does not have to be explicitly stored.
The values of 7- for each step are stored in a vector, making it possible to reapply
the Householder transformations Q(k).

3.1.1. Sequent ia l b lock Hessenberg reduction
We can rewrite equation (4) as follows:

A (k+I) = Q(k)A(k)Q(k) = (I -- "cvvT)A(k)(I -- 7.VV T) = (I -- 7.VVr) �9 (A (k) - y v r) , (5)

where y = 7.A(k)v.
By mathematical induction, assume that

A (k)-~- (I - - Vk_ITT_IVT_I)*(A(1) - - Yk_ lVT_l) , (6)

where Vk_ l and Yk- l are M • (k - 1) matrices such that Vk_ l = (vl , v 2 , . . . , Vk_ 1)
and Y~-i = (Y l , Y 2 , . . . ,Yk -1) . And Tk-1 is a (k - 1) • (k - 1) upper triangular
matrix.

Then,

A ~ + ') = (1 - ~ J) - A / ~ . (I - ~-~v ~)

= (I - "CVVT)(I -- V k _ i T [_ l Vff_l)" (h (1)- Yk-1 vT-I)(I -- T~yl)T)

= (I r v v r V k - I T [- 1 V r - - - - k- I "~- TT)~jT Vk- I TT- I VT-1)

�9 (A('~ - rk_~ v [_ , - ~(A~l~ - r~_,V[_~)~ ~)

�9 (A c , ~ _ (rk_,,y)(Vk_,, v) T)

=(I - - V k T [V [) . (A (0 - YkV[) , (7)

386 J. Choi et al. / The design of ScaLAPACK

where

y = rk_, vLlv), (8)

Tk = (Tk-lO -7 -Tk- l . (9)

If we assumed that TI = "q, equation (6) is true for k = 2. By equation (7), equation
(6) is true for all k (k _> 2).

Suppose the matrix A is partitioned into panels, with each panel consisting of nb
consecutive columns of A. In step k of the block-partitioned version of the Hessen-
berg reduction algorithm, the kth panel is reduced. The Householder vectors for
each column of the panel are found and are used to update the next column of
the panel, but the updating of panels to the right is deferred until the reduction
of the current panel is completed.

Step k of the LAPACK routine, DGEHI~D, proceeds in three main phases.

1. Dr.AHRD: Reduce the kth panel of the matrix and compute V, Y, and T.
[Repeat n b times for i = 1 , . . . , nb (let k i = (k - 1)n b + i).]

1. Compute the Householder vector v;.
2. Compute Yi = 7-(Avi - Yi- i Vi r- l vi).
3. Compute [Ti]l:i-l,i - -7 -T i - i ~ r - - i - IVi"
4. Update the (ki+ t)th column of A ([A]:,k,+,) if necessary.

�9 Apply the block Householder vector from the right:
[A]:,ki+,-

�9 Apply the block Householder vector from the left:
v iv i T

2. DGF_a~: Update A with Y and V, A r A - Y V .
3. DLARFB: Apply the block Householder vector from the left,

A r (I - V T r VT)A.

We omit the (nb) subscripts on Y, V, and T for notational simplicity. Subrou-
tines called by DGF_J-IRD are specified in the front of each procedure.

To understand better how the parallel version of the algorithm is implemented
we shall examine the first of these 3 phases in more detail. The reduction of each
M x n b panel is similar to the unblocked algorithm described in section 3.1. The
Householder vector for each column in the panel is evaluated in turn, and all
such vectors computed so far are used to update the next column in the panel.
As each column of a panel is processed a new column of V, Y, and T is constructed.
At the start of processing the ith column of some panel the first i - 1 columns of V,
Y, and T are known. The columns of V are simply the Householder vectors. In the
LAPACK Hessenberg reduction algorithm, the routine DLARFG is called to evaluate
the Householder vector vi and the value of 7-.

Calls to the Level 2 BLAS routine, DGF_klV, which multiplies a matrix by a vector,
are then used to evaluate Avg and Vir~v~. A third call to DGErfq evaluates
A v g - Yi_l(Vir__lvi), which is then scaled by 7- to give Yi according to equation

J. Choi et al./ The design of ScaLAPACK 387

(8). The first (i - 1) entries of the ith column of Ti are found by scaling Vi r_ lvi by 7-,
and then calling the Level 2 BLAS routine, DTRblV, which multiplies a triangular
matrix by a vector, to give IT;],:i_ ~,; by equation (9). This completes the evaluation
of the ith column of V, Y, and T.

The next task is to update the (i + 1)th column of the panel of A by applying the
effects of the i Householder vectors evaluated so far for this panel. This involves a
series of calls to the Level 2 BLAS routines, DGEMV and DTRMV. We update the
(i + 1)th column in the panel by computing [A]:,k,- Yi[Vi]k~,: and then apply
(I - Vi Ti r Vi r) to this column.

We have described how each column in a panel is processed and updated by
calls to Level 2 BLAS routines. In the next section we shall consider how the
same operations are performed using the building blocks of the ScaLAPACK
library.

3.1.2. Parallel Hessenberg reduction
The number of rows and columns in a block of the data distribution are chosen

to be equal to the block size of the computation nb, i.e., r = c = nb. An important
consequence of this is that each panel lies in a single column of the process tem-
plate. Moreover, the triangular matrix T lies in just one process.

The general structure of the parallel Hessenberg reduction algorithm is the same
as in the sequential case. The routine PDLAHRD is called to reduce each panel. The
PBLAS routine PDGF_MM is called to apply the block reflector for a panel from the
left, and PDLARFB applies the block reflector from the right. We shall now examine
PDLAHRD in more detail.

The structure of PDLAHPd3 is also very similar to that of DLAHRD for the ith column
of a panel, the routine PDLARFG is called to evaluate the Householder vector vi and
the value of 7-. The Householder vector is distributed over the processes in one
column of the process template.

The next step is the evaluation of Avi and V~ r_ t v,. as preliminary steps in finding
the next column of Y and T. In the parallel algorithm these matrix-vector products
are performed by the PBLAS routine, PDGFMV. Computing the next column of T is
done on one process by calling DTRMV and DSCAL, which require no communication.

Evaluation of the (i + 1)th column in the panel of [A]:,k,- Yi[Vi]k~,: requires
matrix-vector multiplication which is performed by a single PDGEMV call. Next,
(I - ViTirVi r) is applied to the column. This involves a series of calls to general
matrix-vector multiplications, and triangular matrix-vector multiplications.

The general matrix-vector multiplications are performed by calls to PBLAS
routine, PDGEMV. The triangular matrices (T is upper triangular and the top part
of V is unit lower triangular) lie in just one process, so the triangular matrix-
vector multiplications are performed by the sequential BLAS routine, DTRMV.

3.2. Reduction to tridiagonal form

If A is a symmetric M x M matrix, then application of the Householder

388 J. Choi et al . / The design o f S c a L A P A C K

transformations described in section 3.1 reduces A to tridiagonal form. In this
section, we describe the reduction algorithm for the symmetric lower triangular
matrix. The algorithm for symmetric the upper triangular matrix is very similar.

3 . 2 . 1 . S e q u e n t i a l b l o c k t r i d i a g o n a l r e d u c t i o n

As before, we assume A is partitioned into panels of width nb columns, and in the
kth step of the algorithm the kth panel is reduced. A series of the Householder
reflectors is applied to A, but in this case we make use of the symmetry of A to
express the update as a block update of rank 2. We describe first the unblocked
version of the algorithm, and then expand the algorithm to the blocked version

A (k + 1) = Q (k) A (k) Q (k) = (I -- " r v v r) A (k) (I -- "rvv T)

= A (k) _ v v v r A (k) _ T A w r + T 2 v v V A (k) v v v

= A (k) _ VX T -- XV r + T (v T x) v v r ,

where x = r A (k) v . Let w = x - " r v (v r x) / 2 , then

A (k+l) = A (k) _ v w T _ w v T.

By mathematical induction, assume that

A(~)= A I ') - Vk_,W~._, - w k _ , v L , ,

where V k _ l = (V l , Vz, . . . , Vk_ l) and W k - t = (W l , W2, . . . W k - 1) . Then

A(k+ l) _~ A(k) _ v w T - w v T

= ~ , 4 (1) - V k _ I W T _ I - W k _ l Vl~Ll - v w T - w y T

= A (') - (V k _ , , v) (W k _ , , W) T -- (W k _ , , w) (V k _ , , V) r

= A(')- Vk W l - W~ Vl.

x = 7-A(k)v = "r(A(t) - - V k - z WVk-I - - W k - I V ~ - l) V

---- T (A (l) - V k _ I W T _ I v - W k _ l V ~ _ l V) ,

w = x - T v (v V x) / 2 .

Also,

(10)

(11)

(12)

(13)

(14)

By comparing equation (10) with equation (11), equation (11) is true for k = 2.
And from equation (12), equation (11) is true for all k _> 2.

In LAPACK, a real symmetric matrix is reduced to tridiagonal form by calling
the routine DSYTRD. Step k of the block algorithm proceeds as follows:

1. DLATRD: Reduce the kth panel of the matrix and compute V and W.
[Repeat n b times for i = 1 , . . . , n b (let k i = (k - 1)nb + i).]

J. Choi et al./ The design o f ScaLAPACK 389

1. Compute the Householder vector v;.
2. Compute xi = "r(Al ' lv i - W i - i (V i r- lv i) . - V i - i (W i r_ lv i)) .
3. Compute w i = x i - T V i (v T x i) / 2 .

4. Update the ki+ lth column of A([A]:,k,+t) if necessary.
2. DSYR2K: Apply a block rank-2 update, A ~ A - V W r - W V r.

DSYTRD reduces each panel of A in turn by first calling DLATRD to generate V and
W, then calling DSYR2K to apply the block rank 2 update. The routine DLATRD loops
over columns of the panel and in the ith pass applies the previous (i - 1) House-
holder vector to update column i of the panel, and adds a new column i to the
matrices V and W.

The routine DLARFG is then called to evaluate the Householder transformation,
(r, v,.). vi is the ith column of the matrix V, which overwrites the lower triangular
portion of A. The vector x,- is found next by equation (13). The symmetric
matrix-vector multiplication A v i is performed by a Level 2 BLAS routine, DSYr~',
and the other matrix-vector multiplications needed to evaluate x; are performed
by four calls to DGF_a'vlV. The evaluation of x; is completed by a DSCAL call to scale
x; by 7-. Then wi is computed by calls to DDOT to evaluate v r x i , and then DAXPY
to subtract the two terms on the righthand side of equation (14), and it is over-
written to x;. Denoting column i of the panel by [A]:,k,, [A]:,k,, is updated from
equation (11) as follows,

[A]:,k , +--[A]:,k , -- V i _ , w f - W i _ l V f . (15)

This update is performed by two calls to the Level 2 BLAS routine, DGEI~.
After the routine DLATRD has looped over the n b columns of the panel, the con-

struction of the M • nb matrices V and W is complete. Upon return from DLATRD,
V and W are passed to the routine DSYR2K which applies a block rank 2 update to
the unprocessed panels of A. This update is a Level 3 BLAS operation, and is the
main computational task in the reduction to tridiagonal form.

3 .2 .2 . P a r a l l e l b l o c k t r i d i a g o n a l r e d u c t i o n
The conversion of the sequential routine for reduction to tridiagonal form

DSYTRD to the parallel version PDSYTRD is quite straightforward. The parallel rou-
tine calls PDLATRD to reduce a panel and to evaluate the corresponding matrices V
and W. Then the routine PDSYR2K uses V and W to apply the Householder trans-
formations for the panel to the unprocessed part of the matrix.

The routine DLATRD is parallelized by replacing the calls to the Level 2 BLAS
routines, DSYI~, DGEWq, DSCAL, DDOT, and DAXPY by calls to the corresponding
PBLAS routines, PDSYMV, PDGEHV, PDSCAL, PDDOT, and PDAXPY. The call to
DLARFG to evaluate the Householder transformation is replaced by a call to the
equivalent parallel routine, PDLARFG.

On exit from DLATRD, the diagonal elements of the reduced matrix are returned in
the separate vector d. All the processes in a column of the process template hold the
portions of d that they were involved in computing, i.e., d is block cyclically

390 J. Choi et al . / The design o f S e a L A P A C K

distributed over the columns of the template. This requires the process containing
the diagonal block of the matrix A to communicate the nb values of d evaluated by a
call to PDLATRD to the other process in the template column before returning from
PDLk.TRD. This is done by calls to the BLACS routines DGEBS2D and DGEBR2D.

In reducing a panel in PDLk, TRD, all processes are involved in the call to PDSYI.IV to
evaluate h v i. However, all the other computat ion in reducing a panel involves pro-
cesses in a single column of the process template. Thus, the panel reduction phase
suffers from load imbalance. In general all processes are involved in updating the
unprocessed port ion of the matrix in PDSYR2K, and this phase of the computat ion
is well load balanced.

3.3. R e d u c t i o n to b id iagona l f o r m

If A is an M • N matrix then Householder transformations can be used to
reduce it to bidiagonal form Q T A P = B. If M > N, the reduced matrix B is
upper bidiagonal, and otherwise is lower bidiagonal. We describe below the reduc-
tion to upper bidiagonal form; the algorithm for reduction to lower bidiagonal
form is very similar.

3.3.1. S e q u e n t i a l b id iagona l reduc t ion

We describe first the unblocked version of the algorithm to reduce an M • N
matrix to the bidiagonal form

A(k+ 1) = Q(k)AIk)p(k) = (I -- % v v T) A (k) (I -- ~,UU r)

= A (k) _ % v v T A (k) _ %A(k)UU r + %-CuvvrA(k)uu r

= A (k) - v y T - (z - " 6 v y r u) u r ,

where y = %A(k)Tv and z = T,A(k)u. Let x = z - r , v y r u. Then,

A (k+l) = A Ik) - v y r - x u r. (16)

By mathematical induction, assume that

A (k) = A (1) - Vk_ I Y T l -- X k _ I U T _ 1 , (17)

where V k - l = (V l , . . . , V k - I) , U k - I = (U l , . - . , U k - 1) , X k - l = (X l , . . . , X k - I) , and
Y k - l = (Y l , . . . , Y k - l) . Equation (17) is true for k = 2.

A(k+ l) : A(k) _ v y r _ XU r

= a Ill - V k _ 1 r [_ l - X k ~ U [- I - v y r - x u ~

= A (1) _ (V k _ l , V) (Y k _ l ~ y) T - - () r T

: A lit - V, r [- x ~ u l . (18)

J. Choi et al. / The design o f S c a L A P A C K 391

Also,

yT = T.A k TV = -- Vk_ , r L , - v L ,) %

= %(AClFv - Y k _ , V f _ , v - - U k _ , X f _ l v) , (19)

x = z - "r, vyTu = 7"uA(k)u -- ~-uvyTu

= T u (A (1) - - X k _ I u T _ I -- Vk_ 1 y T _ I) U -- %vyTu

= "r,(A(')u - Xk_ , U r_ lU - (Vk_ , , v)(r k _ , , y)V)U

= ~,(Al l lu - X k _ , U f _ , u - Vk r f) u . (20)

From equations (16) and (18), equation (17) is true for all k _> 2. A is assumed to
be partitioned into square blocks of size nb• nb. In step k, the kth column of blocks
(column panel) and the kth row of blocks (row panel) of A are reduced, after which
the block reflectors are applied to the unprocessed trailing submatrix.

In LAPACK, a real matrix is reduced to bidiagonal form by calling the routine
DGEBPd3. Step k of the block algorithm proceeds as follows:

1. DLABRD: Reduce the kth panel of the matrix and compute V,,~, U,~, Y,~, and X,~.
[Repeat nb times for i = 1 , . . . , n b (let ki = (k - 1)n b + i).]

1. Update the kith column of A.
2. Compute the ith column Householder vector of A, vi.

_ _ T _ _ .,~lr T 3. Compute YT = %(ATv i Y i - i Vi_ lvi Ui_ l i - lVi).
4. Update the kith row of A.
5. Compute the ith row Householder vector of A, ui.
6. Compute xi 7"u(Aui "J(i- 1 V = - ui_ ui- v i r l u 3 .

2. DGEIV~I: Update A with V and Y, A r A - V Y r.
3. DGF_k~: Update A with X and U, A ~ A - X U r.

DGEBRD reduces each column panel and row panel of A in turn to generate the
matrices V, U, Y, and X. The diagonal and off-diagonal elements of the reduced
matrix are returned in two vectors. DGEBI~ calls the routine, DLABRD, to do the
column and row panel reductions, and then makes two calls to the general
matrix multiplication routine, DGF_bl/,I, to apply the updates to the trailing submatrix
of A.

In DLABRD, nb loops are performed in each of which a new column of V, U, Y,
and X is evaluated. V and U T overwrite the lower and upper triangular portions
of A, respectively. X and Y are stored in M x nb and N x n b work arrays, respec-
tively. In the ith loop, two calls are made to DGF_MV to reduce the ith column of the
column panel [A]:,ki:

[Al : ,k i +--- [Al:,k i -- V i _ l Y T -- X i _ l uT. (21)

Next, the routine DL~.I~G is called to generate the Householder transformation
(%, vi) that introduces zeros below the diagonal in the ith column panel. From

392 J. Choi et al. / The design of ScaLAPACK

equation (19), a sequence of five calls to the matrix-vector multiplication routine
DGEMV, and a call to the scaling routine DSCAL, evaluates Yi.

Denoting the ith row of the current row panel of A as [A]k,.:, it is reduced using
two DGEMV calls:

[A]k,: ~ [A]k,,: - Yivri - U i _ , x ri_,. (22)

The routine DLARFG is called again to generate the Householder transformation
(T,, u;) that introduces zeros to the right of the superdiagonal in the ith row of the
row panel. It should be noted that this reduction is performed after applying the
transformations for the previous i - 1 loops, and the transformation (%,v;) for
the current loop. Thus, in this algorithm Householder transformations are applied
first on the lefthand side, and then from the righthand side. This is why Y;, which
has i nonzero columns, is used in equation (20), rather than]i,._ l- Then five calls to
DGEMV, and one call to DSCAL, are used to evaluate x i.

3 . 3 . 2 . P a r a l l e l b i d i a g o n a l r e d u c t i o n

The conversion of the sequential routine for reducing a real matrix to bidiagonal
form, DGEBRD to the parallel ScaLAPACK version, PDGEBRD, is straightforward.
The ScaLAPACK routine calls PDLABRD to reduce the kth column and row
panels. This routine also returns the matrices X and Y needed to update the unpro-
cessed portion of the matrix, and the scalar variables, % and %. The unprocessed
portion of the matrix is then updated as in equation (17) by two calls to the
PBLAS matrix multiplication routine, PDGEMM.

The ScaLAPACK routine PDLABRD is implemented from the LAPACK routine
DLABRD by replacing the calls to DLARFG, DGEMV, and DSCAL by calls to the corre-
sponding parallel routines PDLARFG, PDGEMV, and PSCAL, respectively.

There is one complicating factor relating to how columns of the matrix Y are
computed and stored. The matrix Y is an N • n b matrix, and for a particular
panel reduction phase, it lies in a single row of the process template. Thus, to con-
form to the data layout requirements of the PBLAS, Y is stored in transposed form
as an nb x N matrix, in the same way that U is also stored. The ith column of Y
evaluated in equation (19) is stored as row i of yr. In our Fortran code better per-
formance is obtained if this row is evaluated as a temporary column vector of con-
tiguous elements, stored in working space, and then transposed to be stored in yr.

4. Results and discussion

In the ScaLAPACK versions of the three reduction routines the block size of the
block cyclic data distribution is taken as nb • Thus, each column (row) panel lies
in one column (row) of the process template. All M • n b matrices lie within one
column of the process template, all nb• N matrices (i.e., U r and y r in the algo-
rithm for reduction to bidiagonal form) lie within one row of the process template,
and all nb • nb matrices lie in just one process.

J. Choi et al. / The design of ScaLAPACK 393

In the panel reductions most of the Level 2 BLAS operations involve only pro-
cesses in a single row or column of the process template. Thus, the panel reduction
phase suffers from load imbalance. In general all processes are involved in the Level
3 BLAS operations that update the unprocessed portion of the matrix, and this
phase of the computation is well load balanced.

The ScaLAPACK reduction routines were produced by parallelizing the corre-
sponding LAPACK routines. This involved 3 basic tasks: (1) writing a parallel
version of the routine DLARFG to compute the Householder transformation for a
given vector; (2) inserting control statements to control which columns and rows
of the process template are involved in different phases of the algorithms; (3)
replacing the BLAS calls in the LAPACK code by corresponding calls to the
PBLAS. Note that we do not have to replace the calls to DTRblV since these involve
a nb X nb matrix on a single process. All three of these tasks are quite straight-
forward, thus parallelizing the reduction routines was rather easy. The ease with
which the reduction algorithms could be parallelized is largely due to the avail-
ability of well-designed, lower-level modules from which to construct them, in
particular the PBLAS.

Although replacing the sequential Level 1, 2, and 3 BLAS routines in LAPACK
with the corresponding parallel PBLAS routines is a simple strategy for paralleliza-
tion, in some cases better performance may be obtained by directly using the
sequential BLAS and BLACS. The tradeoff between performance and software
modularity arises in the restructuring of algorithms to reduce communication
startup costs. Consider, for example, two successive independent calls to PBLAS
routines in which the same pattern of communication is performed in each routine.
Rather than sending two messages, it would be more efficient to combine them, and
perform the communication with just one message. To "piggyback" messages in
this way we would need to replace the PBLAS calls with calls to the BLACS and
sequential BLAS. This situation arises in the parallel algorithm for reduction to
Hessenberg form discussed in section 3.1.1. In evaluating y; in step k of the algo-
rithm (see equation (8)) we must first find Y i - I Vi l'- l'~ �9 This requires vT_I'Ui to be
broadcast over a column of the process template. The subsequent evaluation of
the (i + 1)th column o fA - YiV i r requires row nb(k -- 1) + i of V to be broadcast
in the same way. Thus, the two broadcasts can be combined. In this instance, how-
ever, we have found the performance gain to be small, and so have chosen to use
calls to the PBLAS for these operations, rather than piggybacking messages and
using lower level calls to the BLACS and the sequential BLAS.

The three ScaLAPACK reduction routines were developed on a 128-node Intel
iPSC/860 hypercube. Extensive performance evaluation has been done on the Intel
iPSC/860, Delta, and Paragon computers. In figure 1, we plot performance on the
Intel Delta measured in Gflops (gigaflops per second) against number of processors
while keeping the size of the matrix per processor fixed at 9 Mbytes. For an N • N
matrix, the floating point operation count was assumed to be 10 N3/3 for reduction
to Hessenberg form, 8173/3 for reduction to bidiagonal form, and 4N3/3 for
reduction to tridiagonal form. The algorithms for reduction to Hessenberg and

394 J. Choi et al. / The design of ScaLAPACK

12

10

8

o
~ 6

I I I I

HRD

........ TRD

. x ~l . . -

I

I i I

0 128 256 384 512
Number of Processors

Figure 1. Isogranularity plots for the Hessenberg (HRD), tridiagonal (TRD), and bidiagonal reduction
(BRD) routines on the Intel Delta. The matrix size per processor is fixed at 9 Mbytes.

bidiagonal form run at 11.5 and 10.5 Gflops on 512 processors, respectively, while
that for reduction to tridiagonal form runs at about 6.5 Gflops. This difference is
attributable to the fact that the tridiagonal reduction routine involves operations
on a symmetric matrix, that is, the main updating computation routine,
PDSYI:t2K, in equation (12) involves only the half of the matrix: upper or lower tri-
angular part of the matrix. Thus, the total number of floating point operations is
less than in the Hessenberg and bidiagonal reduction algorithms. The communica-
tion overhead, however, is similar in all cases, and so the ratio of computation to
communication is lower for the tridiagonal reduction algorithm, and its perfor-
mance is consequently poorer [15]. The fact that the plots in figure 1 are almost
linear shows that the algorithms scale well on the Intel Delta at a granularity of
9 Mbytes/node. The isogranularity plots at 5 Mbytes/node are also almost linear,
showing that good scalability is achieved when only about half of the available
memory is used.

Figures 2, 3, and 4 show the performance of the three reduction algorithms as a
function of matrix size for the 128-node Intel iPSC/860, the 512-node Intel Delta,
and the 512-node Intel Paragon, respectively. Again, the differences in performance
between the algorithms is largely attributable to their different floating-point
operation counts.

Figure 5 compares the performance of the algorithm for reduction to Hessenberg
form for the three Intel computers. For each machine we choose the optimum
layout of the process template and the optimum block size. The Intel iPSC/860

2.5

J. Choi et al. I The design of ScaLAPACK

I I I

395

2.0

t,.D
......x""" TRD

0.5

x " 1 . - x . - 1

0.0 ~ ~ n -

O 2000 400() (~t)t)O 8000 10000
Matrix Sizc, N

Figure 2. Performance of the Hessenberg (HRD), tridiagonal (TRD), and bidiagonal reduction
(BRD) routines on the 128-node Intel iPSC/860 as a function of matrix size N. The optimum

block size nh = 6 was used.

12

I 0

8

~ 6

1 I I t I

HRD

.x .x""

/ "".x x ""

i i I I I

5000 10000 15000 20000 25000
Matr ix Size, N

Figure 3. Performance of the Hessenberg (HRD), tridiagonal (TRD), and bidiagonal reduction
(BRD) routines on the 512-node Intel Delta as a function of matrix size N. The optimum block

size nb = 8 was used.

396 J. Choi et al./ The design of ScaLAPACK

I I I ~ I I I

20 HRD

. . . . ~ ---~

~ 1 0

- - / 7 "
/

/ x ' , . .- '"

x " " . x ' "

0 I I I I I I

0 5000 10000 15000 20000 25000 30000 35000
Matrix Size, N

Figure 4. Performance of the Hessenberg (HRD), tridiagonal (TRD), and bidiagonal reduction
(BRD) routines on the 512-node Intel Paragon as a function of matrix size N. The optimum block

size nb = 6 was used.

20 I I ._L I I I I

Block size = 6 on iPSC/860 and Para3,,n
Blocksize 8onDel ta ~ x l 6 : P a r a g o n

15

/
o 1 0 ~ 1 6 x 3 2 : D e l t a

oo ~~

5 ~'"

d~(;'.~ %'-" 16 • 8:iPSC/860

0 I I L I I

0 5000 10000 15000 20000 25000 30 00 35000
Matr ix Size, N

Figure 5. Performance of the algorithm for reduction to Hessenberg form as a function of matrix size
N, on the Intel iPSC/860, Delta, and Paragon.

J. Choi et al. / The design of ScaLAPACK 397

and Delta machines both use the same 40 MHz i860 processor, so we attribute the
better performance of the Delta compared with the iPSC/860 to its higher commu-
nication bandwidth. The Paragon uses the faster 50 MHz i860XP processor, and
has a larger communication bandwidth than the Delta and iPSC/860. Hence, the
performance of the Paragon is significantly faster than the other two machines.

The Hessenberg, bidiagonal, and tridiagonal reduction routines attained 11.6,
10.9 and 6.7 Gflops for N = 26000 on the 512-node Intel Delta, which corresponds
to 22.7, 21.2 and 13.1 Mflops per processor, respectively. The peak performance of
the sequential assembly-coded BLAS routine, DGEI,N, on the Delta is about
36.2Mflops for a 400 x 400 matrix multiplication. Then the routines achieve
62.7, 58.6, and 36.1% of the theoretical maximum performance of the machine.
Owing to the larger communication bandwidth, the routines go up to 83.2, 76.7,
and 52.1%, respectively, for N = 36000 on the Paragon.

5. Conclusions

We have shown how dense matrix reduction algorithms can be parallelized fairly
easily using a small set of low-level modules, namely the sequential BLAS, the
BLACS, and the PBLAS. The PBLAS, which themselves are built using the sequen-
tial BLAS and BLACS, are particularly useful in simplifying the task of paralleliz-
ing dense linear algebra algorithms. In general, calls to the Level 1, 2, and 3 BLAS
in the LAPACK code can be replaced on a one-for-one basis by the corresponding
PBLAS routine.

The tradeoff between performance and software design considerations, such as
modularity and clarity, is particularly important in the design of software libraries.
In section 3.1.2, we have discussed how nonstandard storage schemes for the matrix
Y can result in better performance. We have also discussed, in section 4, how the
piggybacking of messages can reduce communication costs, again at the cost of
replacing calls to the PBLAS by calls to the lower level BLACS and sequential
BLAS. Here we have found the gain in performance too small to justify the loss
in software modularity, and so do not piggyback messages.

Our results on the Intel family of parallel computers show that the ScaLAPACK
reduction routines have good performance and scalability characteristics on these
machines. Future work will involve similar performance studies on more recent
machines, such as the CRAY T3D and the IBM SP1 and SP2.

The ScaLAPACK reduction routines are currently available through netlib for all
numeric data types, such as single and double precision real and complex. To obtain
the routines, send the message "send index from sca lapack" to n e t l i b ~ o r n l , gov.

Acknowledgements

This research was performed in part using the Intel iPSC/860 hypercube and the

398 J. Choi et al. / The design of ScaLAPACK

P a r a g o n c o m p u t e r s at O a k Ridge N a t i o n a l L a b o r a t o r y , an d in pa r t using the Intel
T o u c h s t o n e De l t a sys tem o p e r a t e d by the Ca l i fo rn ia Ins t i tu te o f T e c h n o l o g y o n
beha l f o f the C o n c u r r e n t S u p e r c o m p u t i n g C o n s o r t i u m . Access to the De l t a
sys tem was p r o v i d e d t h r o u g h the C e n t e r fo r Resea rch o n Para l le l C o m p u t i n g .

References

[I] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.
Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen, LAPACK User's Guide (SIAM,
Philadelphia, PA, 1992).

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J.J. Dongarra, J. DuCroz, A. Greenbaum, S.
Hammarling, A. McKenney and D. Sorensen, Lapack: A portable linear algebra library for
high-performance computers, in: Proc. Supercomputing '90 (IEEE Press, 1990) pp. 1-10.

[3] C. Bischof and C. Van Loan, The wy representation for products of Householder matrices,
SIAM J. Sci. Statist. Comp. 8 (1987) 2-13.

[4] J. Choi, J.J. Dongarra, S. Ostrouchov, A.P. Petitet, D.W. Walker and R.C. Whaley, The design
and implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines, sub-
mitted to Sci. Progr. (1994). Also available on Oak Ridge National Laboratory Technical
Reports, TM-12270 (September, 1994).

[5] J. Choi, J.J. Dongarra, R. Pozo and D.W. Walker, ScaLAPACK: A scalable linear algebra
library for distributed memory concurrent computers, in: Proc. 4th Symp. on Massively Parallel
Computing, ed. H.J. Siegel (1992) pp. 120-127.

[6] J. Choi, J.J. Dongarra and D.W. Walker, The design of scalable software libraries for distributed
memory concurrent computers, in: Environments and Tools for Parallel Scientific Computing, eds.
J.J. Dongarra and B. Tourancheau, Proc. of Workshop, Saint Hilaire du Touvet, France (1993)
pp. 3-15.

[7] J. Choi, J.J. Dongarra and D.W. Walker, PB-BLAS: A set of parallel block basic linear algebra
subprograms, in: Proc. 1994 Scalable High Performance Computing Conf. (IEEE Computer
Society, 1994).

[8] J. Dongarra, J. Du Croz, I. Duff and S. Hammarling, A set of level 3 basic linear algebra sub-
programs, ACM Trans. Math. Softw. 16 (1990) 1-17.

[9] J. Dongarra and S. Ostrouchov, LAPACK block factorization algorithms on the Intel iPSC/860,
Technical Report CS-90-115, University of Tennessee at Knoxville, Computer Science Depart-
ment (October 1990).

[10] J.J. Dongarra, LAPACK Working Note 34: Workshop on the BLACS, Computer Science Dept.
Technical Report CS-91-134, University of Tennessee, Knoxville, TN (May 1991) (LAPACK
Working Note #34).

[1 1] J.J. Dongarra, J. Du Croz, S. Hammarling and R. Hanson, An extended set of Fortran basic
linear algebra subroutines, ACM Trans. Math. Softw. 14 (1988) 1-17.

[12] J.J. Dongarra, S.J. Hammarling and D.C. Sorensen, Block reduction of matrices to condensed
forms for eigenvalue computations, J. Comp. Appl. Math. 27 (1989) 215-227.

[13] J.J. Dongarra, R. van de Geijn and D.W. Walker, A look at scalable dense linear algebra
libraries, in: Proc. Scalable High-Performance Computing Conf. (IEEE, 1992) pp. 372-379.

[14] J.J. Dongarra and R.A. van de Geijn, Two-dimensional basic linear algebra communication sub-
programs, Technical Report LAPACK working note 37, Computer Science Department,
University of Tennessee, Knoxville, TN (October 1991).

[l 5] J.J. Dongarra and R.A. van de Geijn, Reduction to condensed form for the eigenvalue problem
on distributed memory architectures, Parallel Comp. 18 (1992) 973-982.

[16] J.J. Dongarra, R.A. van de Geijn and D.W. Walker, Scalability issues affecting the design of
dense linear algebra library, J. Parallel Distr. Comp. (1994), to appear.

J. Choi et al./ The design of ScaLAPACK 399

[17] J.J. Dongarra and D.W. Walker, Software libraries for linear algebra computations on high per-
formance computers, SIAM Rev. 37 (1995) 151-180.

[18] G.C. Fox, M.A. Johnson, G.A. Lyzenga, S.W. Otto, J.K. Salmon and D.W. Walker, Solving
Problems on Concurrent Processors, vol. 1 (Prentice Hall, Englewood Cliffs, NJ, 1988).

[19] G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd ed. (The Johns Hopkins Press, Bal-
timore, MD, 1989).

[20] C. Lawson, R. Hanson, D. Kincaid and F. Krogh, Basic linear algebra subprograms for Fortran
usage, ACM Trans. Math. Softw. 5 (1979) 308-323.

[21] W. Lichtenstein and S.L. Johnsson, Block cyclic dense linear algebra, SIAM J. Sci. Comp. 14
(1993) 1259-1288.

[22] R. Schreiber and C. Van Loan, A storage efficient wy representation for products of Householder
transformations, SIAM J. Sci. Statist. Comp. 10 (1989) 53-57.

[23] C. Smith, B. Hendrickson and E. Jessup, A parallel algorithm for Householder tridiagonaliza-
tion, in: Proc. 5th SlAM Conf. on Applied Linear Algebra (June 1994) pp. 361-365.

[24] E.F. Van de Velde, Data redistribution and concurrency, Parallel Comp. 16 (December 1990).

