International Journal of High Performance
Computing Applications

http://hpc.sagepub.com/

Recent Enhancements To Pvm
Adam Beguelin, Jack Dongarra, Al Geist, Robert Manchek and Vaidy Sunderam
International Journal of High Performance Computing Applications 1995 9: 108
DOI: 10.1177/109434209500900204

The online version of this article can be found at:
http://hpc.sagepub.com/content/9/2/108

Published by:
®SAGE

http://www.sagepublications.com

Additional services and information for International Journal of High Performance Computing Applications can be found at:
Email Alerts: http://hpc.sagepub.com/cgi/alerts
Subscriptions: http://hpc.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations: http://hpc.sagepub.com/content/9/2/108.refs.html

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/
http://hpc.sagepub.com/content/9/2/108
http://www.sagepublications.com
http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com/content/9/2/108.refs.html
http://hpc.sagepub.com/

RECENT
ENHANCEMENTS
TO PVM

Adam Beguelin1
Jack Dongarra™
Al Geist®

Robert Manchek?
Vaidy Sunderam®

'SCHOOL OF COMPUTER SCIENCE,
CARNEGIE MELLON UNIVERSITY,
PITTSBURGH, PENNSYLVANIA 15213,
AND

PITTSBURGH SUPERCOMPUTING
CENTER

ZUNIVERSITY OF TENNESSEE,
KNOXVILLE, TENNESSEE 37996-1301
S0AK RIDGE NATIONAL LABORATQORY
BOX 2008, BUILDING 6012

OAK RIDGE, TENNESSEE 37831-6367
*EMORY UNIVERSITY

DEPARTMENT OF MATHEMATICS AND
COMPUTER SCIENCE

ATLANTA, GECRGIA 30322

Summary

This paper presents new features of PVM, a popular
standard for writing parallel programs that execute
over networks of heterogeneous machines. Although
PVM has become an important infrastructure for paral-
lel programmers, we continue to develop the system
based both on user feedback and our own research
interests. In this paper we present new communica-
tions routines and briefly characterize their perfor-
mance. We describe new extensible services that allow
advanced users to customize certain aspects of the de-
fault PVM functionality. An overview of shared-mem-
ory PVM optimizations is presented. PVM’s new trac-
ing facility and a graphical console that utilizes this
capability are described. Finally, we discuss future ex-
tensions to PYM now under investigation.

The International Journal of Supercomputer Appli-
cations, Volume 9, No. 2, Summer 1995, pp. 108-127
© 1995 Massachusetts Institute of Technology.

introduction

The past several years have witnessed ever-increasing
acceptance and adoption of parallel processing, both
tor high-performance scientific computing as well as
for more general-purpose applications. Furthermore,
the message-passing model appears to be gaining pre-
dominance as the paradigm of choice, in terms of mul-
tiprocessor architectures as well as applications, lan-
guages, and software systems for message-passing
support.

PVM (Parallel Virtual Machine) (Geist et al., 1993)
was produced by the Heterogeneous Network Proj-
ect—a collaborative effort by researchers at Oak Ridge
National Laboratory, the University of Tennessee, Em-
ory University, and Carnegie Mellon University specif-
ically to facilitate heterogeneous parallel computing.
PVM is a software system that lets programmers utilize
a network of heterogeneous computers (some of which
may be MPPs) as a single multicomputer. The system
has become popular both for developing parallel appli-
cations and as an infrastructure for developing more
advanced parallel programming tools.

Version 3 of the PVM system is composed of two
parts. The first part is a daemon process, called pvmd,
that resides on all the computers making up the virtual
computer. pvmd 1s designed so that any user with a valid
login can install it on a machine. A user who wishes to
run a PVM application executes pvmd on one of the
computers which, in turn, starts up pvmd on each of the
computers making up the user-defined virtual ma-
chine. A PVM application can then be started from a
Unix prompt on any of these computers.

The second part of the system is a library of PVM
interface routines. This library contains user-callable
routines for passing messages, spawning tasks, coordi-
nating those tasks, and modifying the virtual machine.
Application programs must be linked with this library
to use PVM.

In this paper we describe new features of the latest
version of PVM (version 3.3) and present an overview
of future directions for PVM.

1 Point-to-Point Communication

In general, PVM programs consist of tasks that com-

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

municate via messages. A task is a basic unit of compu-
tation in PVM, a Unix process for instance. Prior to
PVM 3.3 there had been only a single routine to send a
message to another task. In PVM 3.3 there is an addi-
tional routine for sending and two new routines for
receiving messages. In this section we describe the
point-to-point communication routines in PVM 3.3 and
show how to enhance the performance of applications
using these routines.

The philosophy of PVM has always been to keep
the user interface simple and easy to understand in or-
der to improve performance, letting PVM do all the
hard work underneath. For example, a user who has
sent a message would like the data to arrive instantly at
the destination. In reality this can never happen, since
there is always some startup latency besides the time it
takes to move the data. These overheads cannot be
avoided but they can be masked by other work. Some
message-passing interfaces, such as MPI (MPI: A mes-
sage-passing interface standard), go to great lengths to
supply many variants of send to allow the user several
ways of managing explicitly the masking of the send
overheads. This is a good approach if the goal is to
provide the ability to achieve the ultimate peak perfor-
mance of a large multiprocessor, but it requires an ex-
pert in parallel programming to achieve this peak. The
vast majority of scienuists and engineers who use paral-
lel programming are not experts in it. They generally
use only the basic send and receive primitives in their
codes.

The PVM communication model] assumes that any
task can send a message to any other PVM task and, in

addition, that there is no limit to the size or number of

such messages. While all hosts have physical memory
limitations that restrict potential butfer space, the com-
munication model does not restrict itself to a particular
machine’s limitations; it assumes sufficient memory is
available. PVM allocates buffer space dynamically so the
size or volume of messages that can arrive at a single
host at the same time is limited solely by the available
memory on the machine.

The PVM communication model provides asyn-
chronous blocking send, asynchronous blocking re-
ceive, and nonblocking receive functions. A blocking
send returns as soon as the send buffer is free for reuse,

“The PVM communication model as-
sumes that any task can send a
message to any other PVM task and,
in addition, that there is no limit to
the size or number of such mes-
sages. While all hosts have physical
memory limitations that restrict po-
tential buffer space, the communica-
tion model does not restrict itself to
a particular machine’s limitations; it
assumes sufficient memory is avail-
able.”

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

and an asynchronous send does not depend on the re-
ceiver calling a matching receive before the send can
return. A nonblocking receive immediately returns with
either the data or a flag that the data has not arrived,
while a blocking receive returns only when the data is in
the receive buffer. Wildcards can be specified in the
receive for the source and message type, allowing either
or both of these contexts to be ignored. A routine can
be called to provide information about received
messages.

The PVM model guarantees that message order is
preserved between two tasks. For example, if task 1
sends message A to task 2 and then sends message B to
task 2, message A will arrive at task 2 before message B.
Moreover, if both messages arrive before task 2 does a
receive, a wildcard receive will always return message A.
The programmer can also specify a specific message
type, called a tag. When a tag is specified, PVM will
return the first incoming message with the requested
tag.

Until PVM 3.3, sending a message with PVM re-
quired three function calls. First, a send buffer would
be initialized by a call to pvm_initsend(). 'T'his step also
had the effect of clearing any previous send buffer.
Second, the message had to be “packed” into this buffer
using any number and combination of pvm_pk*() rou-
tines. At this step PVM would take care of any data
encoding needed for heterogeneity and build the
butfer in fragments (required by the network protocols)
so that the overhead of fragmenting a large buffer dur-
ing transmission was avoided. Third, the completed
message would be sent to another process by calling the
pvm_send() routine.

There were several advantages to this three-step
method. It let the user pack a message with several dif-
ferent pieces of data. A message could contain a float-
ing-point array and an integer defining its size. Or a
single message might contain an entire “structure,” in-
cluding integer arrays, character strings, and floating-
point arrays. Why is this important? Packing a message
is faster than transferring the data over a network, al-
though this 15 beginning to change as networks become
faster. By combining several different pieces of infor-
mation into a single message, the user was able to de-

crease the number of sends in an algorithm, eliminating
the startup latency for all the sends that are saved. An-
other important advantage was the avoidance of match-
ing “structures” back up on the receiver. Let’s illustrate
this with a contrived example. Assume we restrict mes-
sages to a single data type and specify that the data
structure to be sent is a sparse floating-point array with-
out zeros, an integer specifying the number of floats,
and an integer array of indices corresponding to the
matrix location of each floating-point value. Now as-
sume that one task has to receive several structures of
this kind from several other tasks. Because messages
may come from different sources and because the or-
der in which the floating-point and integer messages
arrive at the receiver is arbitrary, several structures
could be interleaved in the message queue. The re-
ceiver then was responsible for searching the queue and
properly reassembling the structures. This search and
reconstruct phase was not needed when the various
data types are combined into the same message. 'The
philosophy of PVM emphasized simplicity, a feature
clearly in evidence here in that it is easy for a nonexpert
to understand the concept of packing up a structure of
data, sending it, and unpacking the message at the
receiver.

Another advantage of the three-step method is that
the message has to be encoded and fragmented only
once. In PVM once the message is packed, it can be sent
to several different destinations. There are many par-
allel scientitic applications in which a task must send its
data to its “neighbors.” In such cases PVM eliminates
the overhead of packing for each send separately. A
further advantage is that PVM packs only once when a
user broadcasts a message.

The separate buffer initialization step also has the
advantage that the user can append data to a buffer
that has already been sent. Since PVM doesn’t clear the
buffer until the next pvm_initsend() call, a task can pack
and send a message to one destination then append to
that message and send it to another destination and so
on. There are certain ring algorithms that benefit from
such a capability. :

Although there are several advantages to the three-
step send, there are many parallel algorithms that just

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

need to send one array of a given data type to one
destination. Because this type of message is so common,
it would be useful to avoid the three-step send in this
case. This is now possible in PVM 3.3 using the new
function pvm_psend(), which combines the initialize,
pack, and send steps into a single call oriented toward
high performance.

The request for a pvm_psend() call and its comple-
ment, pvm_precv(), initially came from MPP vendors
who were developing optimized PVM versions for their
systems. On MPP systems vendors try to supply rou-

tines with the smallest possible latency. The overhead of

three subroutine calls is high relative to raw communi-

cation times on MPP systems. The addition of

pvm_psend/pvm_precv to PVM has significantly boosted
the performance of point-to-point PVM communica-
tion on MPP machines. As an example, Table 1 shows
that the message-passing performance on the Intel Par-
agon using pvm_psend/pvm_precv is only 5—8% higher
than the native calls esend/crecv. This low overhead on
the Paragon can be attributed to the close mapping be-
tween the functionality of the PVM calls and Intel’s na-
tive calls. On the CRAY T3D, PVM is the native mes-
sage-passing interface. The latency for pvm_psend() on
T3D is only 18 microseconds while the bandwidth is
over 45 Mbytes/sec.

PVM provides several methods of receiving mes-
sages at a task. There is no function-matching require-
ment in PVM; therefore, it is not necessary that a
pvm_psend be matched with a pvm_precv. Any of the
following routines can be called for any incoming mes-
sage no matter how it was sent {or mutticast).

¢ pvm_recv(—blocking receive

® pvm_trecv(}—timeout receive

® pvm_nrecv(—nonblocking receive

® pvm_precv(}—combined unpack and blocking receive

PVM 3.3 supplies a timeout version of receive,
pvm_trecv. Consider the case in which a message is
never going to arrive (due to error or failure). Here the
routine pvm_recv would block forever. There are times
when the user wants to give up after waiting for a fixed
amount of time. pvm_trecv allows the user to spec-
ify a timeout period. If the timeout period is set

Table 1

Paragon node to node round trip comparison
of PVM and native calls

Paragon csend/crecv

Msg size (bytes) Round trip (psec) bandwidth (MB/s)
8 376 0.0213
80 315 0.2540
800 314 2.5478
8,000 670 11.9403
80,000 3,978 20.1106

Paragon pvm_psend/pvm__precv

Msg size (bytes) Round trip {psec) bandwidth (MB/s)

8 322 0.0248

80 317 0.2524
800 314 2.5478
8,000 676 11.8343
80,000 4,061 19.6996

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

very large, pvm_trecv acts like pvm_recv. If the
timeout period is set to zero, pvm_trecv acts like
pvm_nrecv. Thus, pvm_trecv fills the gap between the
blocking and nonblocking receive functions.

1.1 PERFORMANCE

There are several options at the user’s disposal that al-
low PVM to optimize communication on a given virtual
machine. Communication across nodes of a MPP and
across processors of a shared-memory multiprocessor
are automatically optimized using native communica-
tion calls and shared memory, respectively. The follow-
ing discussion is restricted to performance improve-
ments across a network of hosts.

PVM uses UDP and TCP (Comer, 1991) sockets to
move data over networks. UDP is a connectionless data-
gram protocol in which packet delivery is not guaran-
teed, while TCP requires a connection between pro-
cesses and implements sophisticated retry algorithms to
ensure data delivery. In PVM, the default, scalable
transfer method is for a task to send the message to the
local PVM daemon. The local daemon transfers the
message to the remote daemon using UDP and finally
the remote daemon transfers the message to the remote
task when requested by a pvm_recv(). Since UDP does
not guarantee packet delivery, PVM implements a
lightweight protocol to assure full message delivery be-
tween daemons. PVM 3.3 improves the performance of
this route by using Unix domain sockets between tasks
and the local PVM daemon. This modification im-
proves the task to daemon latency and bandwidth by a
factor of 1.5 to 2.

A less scalable, but faster transfer method is avail-
able in PVM. Calling pvm_setopt(PvmRoute, PvmRoute-
Direct) enables PVM to set up a direct task-to-task TCP
link between the calling task and any other task it sends
to. The initial TCP set-up time is high but all subse-
quent messages between the same two tasks is 2—3 times
faster than the default route method. The primary
drawback of this method is that each TCP socket con-
sumes one file descriptor. Thus, there is potential need
for O(n®) file descriptors, where # is the number of tasks
in the virtual machine. Since direct routing only in-
volves a single call at the top of a PVM program, it is

RO S R one S8 LT oo 3 B2 PRSI HTN TS A S TR T2 T £ T S S S ol GRS T ¢

reasonable to try PvmRouteDirect to see if it improves
the performance of an application.

Two encoding options available in PVM 3.3 are in-
tended for boosting communication performance.
Since a message may be sent to several destinations,
by default PVM encodes messages for heterogeneous
delivery during packing. If the message will only
be sent to hosts with a compatible data format, the user
can tell PVM to skip the encoding step by calling
pvm_initsend(PvmDataRaw).

The second encoding option is pvm_initsend(Pvm-
Datalnplace). When PvmDatainPlace is specified, the
data is never packed into a buffer. Instead it is left “in-
place” in user memory until pvm_send(} is called and
then copied directly from user memory to the network.
During the packing steps, PVM simply keeps track of
where and how much data is specified. This option re-
duces the pack time dramatically and also has the ben-
efit of reducing memory requirements since the send
buffer no longer holds a copy of the message.

On the other hand, care must be exercised when
using PvmbDatalnPlace. If the user’s data is modified af-
ter the pack call but before the send call, the modified
data will be sent, not the data originally specified in the
pack call. This behavior is different from using the
other pvm_initsend() modes in which the data is copied
at pack time.

As mentioned earlier, pvm_psend() was im-
plemented for performance reasons. As such it uses
PvmDatalnPlace. This, coupled with only one call
overhead, makes pvm_psend(), when combined with
PvmRouteDirect, the fastest method for sending data in
PVM 3.3.

Figure 1 plots bandwidth versus message size for
various packing and routing options. The lines marked
dir and hop indicate the direct and default routing, re-
spectively. (The term “hop” is used because the default
messages make extra hops through the PVM daemons.)
Inplace packing is indicated by inp. Lines marked raw
show the case of no data conversion, while xdr indicates
conversion of messages into the XDR format before
being sent and from the XDR format after being re-
ceived at the destination. The tests were run on DEC
Alpha workstations connected by FDDI. The experi-

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

ment showed that the avoidance of data copying and
conversion along with direct routing enabled PVM 1o
achieve good end-to-end performance for large mes-
sages. The peak bandwidth of FDDI is 100Mbit/sec or
12.5 MByte/sec. In the best case, we achieved approxi-
mately 8 MByte/sec bandwidth for large messages,
which is 64% of the network’s peak bandwidth. Note
that these times include the time needed to pack the
message at the sender and to unpack the message
buffer at the receiver. The advantage of inplace pack-
ing for large messages is clearly shown. The high cost of
heterogeneous data conversion can also be seen trom
the XDR bandwidth curves.

Figure 2 shows latency measurements for the same
experiment. We see that latency is much lower when
using directly connected message routing. Both raw
and inplace packing achieve the lowest latency with in-
place being slightly better for large messages.

2 Collective Communication

PVM 3 always had a very flexible and powerful model
for grouping tasks, but until PVM 3.3 there were only
two collective communication routines: either broadcast
to a group of tasks or barrier across a group of tasks.
PVM 3.3 adds several new collective communication
routines, including global sum, global maximum, and
scatter/gather. These new routines are described here.

The semantics of the PVM collective communica-
tion routines were developed using the MPI draft as a
guide, but also adhering to the PVM philosophy to keep
the user interface simple and easy to understand. By
adding more collective routines, PVM saves users un-
necessary effort, and allows MPP implementations to
exploit any built-in native collective routines.

The pvm_reduce() function performs a global arith-
metic operation across the group, for example, global
sum or global maximum. It is called by all members of
the group, and the result of the reduction operation
appears on the member specified as root, also called the
root task. PVM supplies four predefined reduce
functions:

® PvmMax—global maximum
® PvmMin—global minimum

Median Transfer Rate / 10 trials (Mbyte/S)

T T
10 100 1000 10000

T
100000

1
1000000

- -/

—e— dir-inp
—&— dir-raw
—e— dir-xdr
—— hop-1np
—3¢— hop-raw
——+— hop-xdr

Message Length (bytes)
Fig. 1 PVM message
bandwidth versus size.
10+
8 -
I
K]
T 6+ ~—eo— dir-inp
S —a— dir-raw
~ —— dir-adr
g —4— hop-inp
;‘Hi —3— hop-raw
,5 4 —+— hop-xdr
:
=
24
L
0 T T T U
Q 2000 4000 6000 8000

Message Length (bytes)

Fig. 2 PVM message
latency versus size.

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

e Shise

http://hpc.sagepub.com/

A(1) = localmax1
A(2) = localmax?2
root = 0O

call pvmfreduce(PvmMax, A, 2, REAL8, msgtag, mygroup,
root, info)
if (me .eq. root) then
globaimax1 = A(1)
globalmax2 = A(2)
endif

Fig. 3 Fortran reduce
example.

® PyvmSum—global sum
® PvmProduct—global product

These reduction operations are performed element-
wise on the input data. For example, it the data array
contains two floating-point numbers and the function is
PvmMax, the result contains two numbers—the global
maximum of each group member’s first number and
the global maximum of each member’s second number.
The Fortran code fragment to do this is shown in Fig-
ure 3. If all the group members need to know the result,
the root task can broadcast the information.

Optionally, users can define their own function for
use by pvm_reduce(). The PVM source distribution in-
cludes an example employing a user-defined function.
The first argument in pvm_reduce() is a pointer to a
function. Users can simply substitute their own func-
tion. Unlike the case of MPI, no additional PVM func-
tions are required to define the user function.

pvm_reduce() is built on top of the point-to-point
routines and supports all the basic data types supported
in point-to-point PVYM messages.

pvm_gather() gathers data into one task. As in
pvm_reduce(), all members of the group must call
pvm_gather(} with consistent arguments. In particular, a
root must be specified. Following the gather, the root
task receives the data trom all group members, includ-
ing itself, concatenated into a single vector. The data is
concatenated in rank order (defined by the group being
used), as in MPIL.

The use and syntax of pvm_gather() is illustrated in
the following example which collects the PVM task IDs
for the group members in order into a vector.

call pvmfmytid(data)
call pvmfgather({ result, data, 1, INTEGER4, msgtag. group,
root, info)

Following this call, the root task has a result vector
containing the task ID for group member 0, task 1D for
group member 1, and so on. As in MPI, the result vec-
tor is significant only on the root task; all the other tasks
can use a dummy argument for result.

pvm_scatter() is the inverse of the gather operation.
The root starts out with a large vector containing equal
size pieces destined for individual group members. Fol-

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

lowing the scatter, all group members have their own
piece of the vector. For example, to scatter the previous
task ID result back out to the group members, assuming
result is still a dummy argument for every task except
the root:

call pymfscatter(data, result, 1, INTEGER4, msgtag. group,
root, info)

Following this call, every task, including the root,
has one integer in data. This integer is the same task ID
placed into pvm_gather() by the task.

Typically, gather and scatter operations are used to
gather data from a group of tasks, to modify this data
using some global information or information that re-
quires all the data, and then to scatter the modified data
back out to the tasks.

3 Extensible Services

The PVM system is used not only by programmers who
wish to construct parallel programs, but also by systems
builders who are interested in issues related to the de-
sign of distributed systems. To aid systems builders, we
have discussed some of the functionalities of PVM to
show systems programmers how to easily extend the
base functionality. Note that the normal PVM program-
ming interface for applications programmers is unaf-
fected by these extensions.

New interfaces in version 3.3 allow PVM tasks to
assume functions normally performed by the daemons,
such as starting hosts and tasks and making scheduling
decisions. These interfaces allow the PVM system to be
extended without modifications to the source code.
This can be an important labor-saving device for re-
searchers who want to integrate their additions to PVM
and distribute the resulting code. Any PVM task can
register dynamically with the system, allowing the system
to assume the specified function. This registration can
occur while the virtual machine and applications are
running, which aids in debugging the additions; in ad-
dition, all communication is done via normal PVM
messages.

In PVM 3.3 the pvmds were maodified to allow them
to receive messages from arbitrary tasks (tasks

of other pvmds). A new entry point in the pvmd,
schentry(), serves all three new interfaces.

3.1 RESOURCE MANAGER

A resource manager (RM) is responsible for making task
and host scheduling (placement) decisions. The simple
schedulers embedded in the pvmd handle many com-
mon conditions, but require the user to explicitly place
program components to get the maximum efficiency.
Using knowledge not available to the pvmds, such as
host load averages, an RM can make more informed
decisions automatically. For example, when spawning a
task, the RM could pick the host to balance the comput-
ing load. Or, when reconfiguring the virtual machine,
the RM could interact with an external queuing system
to allocate a new host.

The number of RMs registered can vary from one
for an entire virtual machine to one per pvmd. The RM
running on the master host (which is where the master
pvmd runs) manages any slave pvmds that do not have
their own RMs. A task connecting anonymously (not via
a pvm_spawn call) to a virtual machine is assigned the
default RM of the pvmd to which it connects. A task
spawned from within the systemn inherits the RM of its
parent task.

If a task has an RM assigned to it, service requests
from the task to its pvmd are routed to the RM instead.
The messages intercepted by the RM and their corre-
sponding libpvm functions are shown in Table 2. Que-
ries also go to the RM, since it knows more about the
state of the virtual machine. The query messages are
shown in Table 3.

The call to register a task as an RM (pvm_reg_rm())
is also redirected if an RM is already running. In this
way the existing RM learns of the new RM, and can
grant or refuse the request to register.

Using the two messages SM_EXEC and SM_ADD,
the RM can directly command the pvmds to start tasks
or to reconfigure the virtual machine. On receiving ac-
knowledgment for the commands, it replies to the client
task. The RM is free to interpret service request param-
eters in any way it wishes. For example, the architecture
class given to pvm_spawn() could be used to distinguish
hosts by memory size or CPU speed.

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

Table 2

Messages from the libpvm Functions
Intercepted by the Resource Manager

Libpvm function Default Message RM Message
pvm_addhost() TM_ADDHOST SM_ADDHOST
pvm__dethost() TM_DOELHOST SM_DELHOST
pvm__spawn{) TM_SPAWN SM__SPAWN
Table 3

Query Messages from the libpvm Functions to
the Resource Manager

Libpvm function Default Message RM Message
pvm__config() TM_CONFIG SM_CONFIG
pvm__natify() TM_NOTIFY SM__NOTIFY
pvm_task() TM_TASK SM_TASK
Table 4

Format of Startup Messages

3.2 HOSTER

A hoster 1s a task that starts slave pvmd processes on
command from the master pymd. Normally, the master
pvmd uses the rsh program or the rexec() function (de-
pending on whether a password is used) to start the
pvmd process on a new slave host. Over the socket cre-
ated by rsh, the master and slave have a short dialogue
to bootstrap the pvmd-pvmd message drivers, which al-
lows the slave to be brought up the rest of the way via
normal PVM messages. The hoster allows a user to alter
this mechanism for adding new hosts to the virtual ma-
chine. This might be useful for dealing with systems in
which additional security is needed or in which the new
host, say an MPP, does not support standard rsh/rexec
interfaces.

If a hoster task is registered (using pvm_reg_hoster()
with the master pvmd when a host-add is requested (i.e.,
upon receipt of a DM_ADD message), the master pvmd
sends an SM_STHOST message to the hoster and waits
for an SM_STHOSTACK message in reply to complete
the operation.

SM_STHOST

int nhosts Number of hosts

int tid Of host

string options From hostfile so= field

string login In form [username(® Jhostname.domain
} Inhosts) string command To run on remote host

SM_STHOSTACK

int ud Of host

string status Line of output from slave or error code
i} Count is implied

Table 5
Format of the Start Task Message
SM_STTASK int tid

int flags

string path

int argc

string argvlargc]
int nenv
string envinenv]

Of task

As passed to pvm_spawn()
Absolute path of the executable
Number of args for process

Arg strings

Number of environment for process
Environment strings

R
£ e

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

The bootstrap protocol between the master pvmd
and the slave is designed to minimize what the hoster
needs to know about the protocol. The hoster is sent a
list of hosts and commands to run. It runs the com-
mands and returns their output to the master pvmd,
which does the parsing. The remainder of the startup is
always done by the master pvmd. Table 4 shows these
message formats.

The host file startup options pw (password) and ms
(manual startup) were combined into a single option,
so= (startup option); the new forms are so=pw and
so=ms. The value of so can be set to any string, and is
null by default. This allows information specific to a
custom hoster to be passed from the host file to the
hoster without being processed by the pvmd. The de-
fault “hoster” (built into the pvmd) understands only pw
and ms. A replacement hoster might accept those or
expect completely different options.

3.3 USE IN CONDOR

The resource manager and hoster interfaces were cre-
ated in cooperation with members of the Condor proj-
ect (Litzkow, Livity, and Mutka, 1988) and are used
together by Condor. There was initially a single inter-
face for both functions, but the two were logically sep-
arated because either part is generally useful.

In Condor, the scheduler is responsible for all the
tasks in the system. If an application attempts to recon-
figure the virtual machine, PVM calls Condor through
the resource manager interface to determine whether
another host can be allocated, and if so, which one. The
names of the hosts that are requested refer to classes of
machines, instead of specific hosts.

pvmds and user processes can run under a bor-
rowed login assigned to Condor, using cycles from idle
workstations. If the workstation owner should return,
the processes must be stopped immediately and cleared
off the host in a timely manner; any temporary files
must be moved as well. The hoster interface allows Con-
dor to start slave pvmds, a necessary step since they are
run under a Condor-owned login.

3.4 TASKER

A tasker is 2 PVM task that starts (execs, is the parent of)
other tasks. The tasker facility allows a specific PVM

-~

task to control the creation and execution of all tasks in
the system. This is useful when newly spawned tasks
need to be under the control of some other process for
debugging or performance monitoring reasons. In gen-
eral, a debugger is a process that controls the execution
of other processes, and is able to read and write their
memories and start and stop instruction counters. On
many versions of Unix a debugger must be the direct
parent of any of the processes it controls, a situation
that is becoming less common with the growing avail-
ability of the attachable ptrace interface.

Prior to version 3.3, PVM provided a simple debug-
ger interface. If a task is spawned (via the pvm_spawn
call) with the flag PvmTaskDebug set, the pvmd now
executes a debugger program instead of the actual task
executable. The debugger arguments are the execut-
able file and arguments for the task. The debugger can
then start the task to be debugged.

The tasker interface coexists with this simple de-
bugger interface but is fundamentally different for two
reasons. First, the tasker cannot be enabled or disabled
by spawn flags, so it is always in control. Second, all tasks
running under a pvmd (during the life of the tasker)
may be children of a single tasker process. With
PvmTaskDebug, a new debugger must be started for
each task.

If a tasker is registered (using pvm_reg_tasker())
with a pvmd when a DM_EXEC message is received to
start new tasks, the pvmd sends an SM_STTASK
message to the tasker instead of calling execv(). No
SM_STTASKACK message is required; as usual closure
comes from the task reconnecting to the pvmd. The
pvmd does not get SIGCHLD signals when a tasker is in
use because it is not the parent process of tasks, so that
the tasker must send notification of exited tasks to the
pvmnd in an SM_TASKX message. Table 5 presents the
message format of the start task message.

The tasker interface is the result of collaboration
with the Paradyn group (Hollingsworth, Miller, and
Cargille, 1994). We hope that others will take advantage
of it as well to ensure cleaner integration of their
systerns.

3.5 IMPLEMENTATION

We will briefly describe implementation details of these

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

new features. For a more in-depth description see Geist
et al. (1994) and Manchek (1994).

We defined a new class of system messages
(8M_xxX)}, to be exchanged among pvmds, resource
managers, hosters, and taskers, as well as the client tasks
of a resource manager.

A new entry point in the pvmd, schentry(), serves
messages of the SM class for all three new interfaces.
The pvmd was modified so that it could receive mes-
sages from arbitrary tasks, not just other PVM daemons
and local user tasks. The pvmds do not usually commu-
nicate directly with tasks on other hosts. The pvmd has
message-reassembly buffers for each foreign pvmd and
for each task it manages. Reassembly buffers for for-
eign tasks would be too complicated. To free the reas-
sembly buffer for a foreign task if the task dies, the
pvmd would have to request notification from the task’s
pvmnd, causing extra communication. For the sake of
simplicity, the pvmd local to the sending task serves as a
message repeater. The message is reassembled by the
task’s local pvmd as if it were the receiver, then for-
warded at once to the destination pvmd, which reassem-
bles the message. The source address is preserved so as
to identify the sender. Libpvm maintains dynamic reas-
sembly buffers, so that messages from pvmd to the task
do not cause a problem.

The existing fault recovery mechanisms were
mostly adequate to serve the new system tasks. For ex-
ample, if pvm_addhosts() is called to add hosts to the
virtual machine and the hoster task fails while starting
the new pvmds, the master pvmd enters the normal
task-exit cleanup routine, which cancels the startup op-
eration and returns the error code PvmbDSysErr for each
host in the result vector. Likewise, if the tasker fails, the
pvmd can find and terminate the tasks for which it was
responsible. The resource manager operations are not

currently recovered as it is not clear what action should
be taken.

3.6 CAVEAT

The features presented in this section are geared to tool
developers rather than the casual PVM user. Collabo-
ration with other research groups and the addition of
these features has had a positive effect on PVM. The

protocols are now conceptually “cleaner” than betore.
We have shown that by making the system dynamically
extensible, it can be made more powerful and more
general without increasing the amount of code. The
result has been directly useful to all the projects in-
volved, and we hope it will have even more widespread
application as the interfaces become more stable and as
other researchers take advantage of them.

4 MPP and Shared Memory Support

PVM Version 3 1s designed so that the message-passing
calls of a specific system can be compiled into the
source. This allows the fast, native message passing typ-
ical of a particular system to be realized by the PVM
application. Messages between two nodes of a multipro-
cessor use its native message-passing routines, while
messages destined for an external host are routed via
the user's PVM daemon on the multiprocessor. The
MPP subsystemn of PVM consists of 2 daemon that man-
ages the allocation and deallocation of nodes on the
multiprocessor. This daemon is implemented using
PVM 3 core routines. The second part of the MPP port
is a specialized libpvm library for this architecture that
contains the fast routing calls between nodes of this
host. On shared-memory systems the data movement
can be implemented with a shared buffer pool and lock
primitives.

The shared-memory architecture provides a very
etficient medium for processes to exchange data. In our
implementation, each task owns a shared buffer created
with the shmget() system call. The task 1D is used as the
“key” to the shared segment. A task communicates with
other tasks by mapping their message buffers into its
OWN Memory space.

To enroll in PVM, the task first writes its UNIX
process ID into pvmd’s incoming box. It then looks tor
the assigned task ID in pvmd's pid—tid table. The mes-
sage buffer is divided into pages, each holding a part of
the message (Figure 4); PVM’s page size can be a mul-
tiple of the system page size. Each page has a header
containing the lock and the reference count. The first
tew pages are used as the incoming box, while the rest
of the pages hold outgoing fragments (Figure 5). To
send a message, the task first packs the message body

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

into its buffer and then delivers the message header,
which contains the sender’s TID and the location of the
data, to the incoming box of the intended recipient.
When pvm_recv() is called, PVM checks the incoming
box, locates and unpacks the messages (if any), and de-
creases the reference count to allow the space to be
reused. If a task is not able to deliver the header directly
because of a full receiving box, it will block until the
other task is ready.

Inevitably some overhead will be incurred when a
message is packed into and unpacked from the bulffer,
as in all PVM implementations. If the buffer is full, the
data must first be copied into a temporary buffer in the
process’s private space and later transterred to the
shared buffer.

Memory contention is usually not a problem. Each
process has its own buffer and each page of the buffer
has its own lock. Only the page being written to is
locked, and no process should be trying to read from
this page because the header has not been sent out.
Different processes can read from the same page with-
out interfering with each other, so that multicasting is
efficient (tasks do have to decrease the counter after-
wards, resulting in some contention). Contention occurs
only when two or more processes try to deliver the mes-
sage header to the same process at the same time. But
since the header is very short (16 bytes), such contention
should not cause any signiticant delay.

5 New PVM Tracing Features

A new tracing feature in PVM directly supports the
tracing of PVM programs. In this section we describe
the tracing feature and present the XPVM tool for use
in displaying PVM trace information. Tracing is a pop-
ular way of debugging parallel programs. There have
been many systems that support program tracing for
debugging (McDowell and Helmbold, 1989). More re-
cently, systems such as Pablo (Reed et al., 1991), Para-
graph (Heath and Etheridge, 1991), PICL (Geist et al.,
1990), Bee (Bruegge, 1991), and Xab (Beguelin et al.,
1993 and Beguelin, 1993) have been developed to aid
the parallel programmer. Pablo, Paragraph, and Bee
are intended as general tools for displaying trace infor-
mation for parallel programs. PICL is a portable com-

Page Layout

lock

reference count

message
fragment

Fig. 4 Structure of a
PVM page.

pvid msg buffer

1nbox
pid-tid table

outgoing
pages

Fig. 5 Structures of
shared message buffers.

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

} page header

task msg buffer

mbox

outgoing
pages

http://hpc.sagepub.com/

munication library for multicomputers that generates
tracefiles. Xab is a specitic tool for tracing PVM pro-
grams. Xab will generate and display traces of PVYM
programs. XPVM and the new tracing feature of PVM
are based on previous work done on Xab.

5.1 HOW TO USE TRACING

When tracing is turned on, events are generated for
PVM calls that describe calls to the PVM library. For
instance, a call to pvm_send() generates two events, pvm-
_send0 and pvm_send1. The pvm_send0 event is gen-
erated upon entry into the pvm_send(} routine. The
pvm_sendO event contains a timestamp, the task, and
message type used when the pvm_send() routine was
called. The pvm_send1 event is generated at the end of
the pvm_send() call. It contains a timestamp and the
return value of the send call. Most events come in pairs.
This allows the user to determine the amount of time
spent within a call.

An easy way to trace a PVM program is to simply
start it from the PVM console with the trace option

pvm> spawn — (@ calc

This causes the calc program to be spawned with trac-
ing turned on. Trace events are sent to the PVM con-
sole and displayed there. Tracing of particular routines
can be turned on or off by the PVM console. For in-
stance, if only calls to pvm_barrier() are of interest, the
following commands in the console will activate tracing
for only the barrier calls:

pvm> trace — *

pvm> trace + pvm_barrier

The first command turns off tracing for all routines
while the second command turns tracing on for the
barrier routine,

Another way of using tracing is to activate it from
within a PVM program. When spawning a task, tracing
tor the spawned tasks can be activated using the
PvmTaskTrace flag in the pvm_spawn() call. This flag
tells PVM that the tasks created by the spawn call should
have tracing turned on. Each call to PVM in the newly
spawned task generates trace events.

Each trace event generates a PVM message. When
spawning from the console, these event messages are

sent to the console which displays their contents. Using
the pvm_setopt() routine, the destination for these trace
events can be set to any PVM task. Similarly, the
pvm_settmask() routine can be used to set a mask indi-
cating which PVM routines should generate trace
events. More details on how to control tracing can be
found in the PVM manual pages.

6.2 THE XPVM CONSOLE

Although PVM provides a level of flexibility that allows
the programmer to control which events are generated
and where event messages will be sent, most program-
mers do not need this much flexibility. A more pleasant
way of controlling and displaying events is through the
XPVM console. XPVM provides a graphical interface to
the functions of the PVM console (i.e., adding hosts,
etc.) as well as displaying PVM trace events. Figure 6
shows an example of the XPVM console in action.

5.3 TRACING OVERHEADS

Since PVM’s tracing facilities generate extra tratfic in
the network, it is important to realize that this traffic will
perturb the runtime characteristics of the program. In
a shared environment, other external factors such as
varying machine load and network traffic can be ex-
pected to also affect the computation from run to run.
To show how tracing may alter the runtime character-
istics of a PVM program, we replicated the bandwidth
experiment shown in Figure 1, this time, however,
showing the bandwidth versus message size with tracing
turned on for all PVM calls and without any tracing (see
Figure 7). In some sense this experiment shows the
worst-case tracing behavior, since the program is only
sending messages and doing no computation. In the
case of an actual PVM application we would expect trac-
ing to have a smaller effect.

In terms of bandwidth, tracing does not have an
extremely detrimental eftect, though Figure 8 shows,
the effect of tracing on latency is considerable. The
main reason for the increased latency is the extra pro-
cessing (message sending) PVM must do before and
after each PVM call. This effect will most likely be re-
duced when we add buffering of trace events to the
PVM trace facility. Currently, each trace event gener-
ates a separate PVM message. By buffering multiple

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

_—
8 xpum

XPVM 1000 (PVM 3.3.0003) [TID 0x40001)
XPVM Views Reset Done.

o

Network View

3] utilization

Utllization v3. Time

Al

IEM

bigbiuo

W XR WY 4 Z

Computing I

P

Active]

System[| o Tasks []

[[« B []

Time: 8.060432 & call_trace

Last Event Per Task:

pvmn_recvO(OxfI{ffre, 2)

pvm_send(¢\ to 4000c, msgtag=2
pvm_racvi () buf=4, 4 hytes from
pvm_recvl() buf=5, 4 bytes from
pvm_recvi{) buf=7, 4 bytes from
pvm_recv1() buf=5, 4 bytas from
pvm_recvi() buf=7, 4 bytes from

Trace File: [ftmp/xpvm.trace.kohl | [@ PayBack] [Overwrite| a
Space- Time: Tasks vs. Time " _slave

6 bighiu0:hitc [— T — j] cyan:hitc_slave
bighlu0:hitc_slave icarusnitc_slave
cyan:hitc_siave msr:hitc_siave
Icarus:hitc_slave rigelhitc_slave
msr:hitc_slave rios2:hitc_slave
rigel:hitc_slave
ros2:hitc_slave

7 \vi

d T
Computing e Overhead [Messags .-

Fig. 6 The XPVM
console.

events and sending them in a single message, the per-
event overhead should be reduced. We have shown this
to be the case in the Xab traang tool for PVM.

6 Future Research

The PVM project is an ongoing research effort aimed
at advancing the state of the art of heterogeneous con-

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

—— dirinp
—o— dir-inp-1r

Median Transfer Rate /7 10 trials (Mbyte/S)

u T T 1
10 100 1000 10000 100000 1000000 _
Message Length (bytes)

Fig. 7 Effects of tracing
on PVM message
bandwidth.

=]
1

—D— dir-inp
—0— dir-inp-tr

Median Latency / 10 trials (mS)
«
1

i T T T 1
2000 4000 6000 8000

Message Length (bytes)

Fig. 8 Effects of tracing
on PVM message
latency.

current computing through the design and develop-
ment of experimental software systems. The PVM sys-
tem is, therefore, constantly evolving and improving in
terms of both functionality and performance, while re-
taining a concise and manageable computing model
and programming interface. In this section, we briefly
describe two research initiatives that have been recently
undertaken as part of the PVM project.

6.1 GENERALIZED DISTRIBUTED COMPUTING
WITH PVM

In the evolution of the PVM system for cluster and
heterogeneous distributed computing, high-per-
formance scientific applications have thus far been the
main technical drivers. The computing model as well as
the specific software features have been influenced by
the requirements of scientific algorithms and their par-
allel implementations. We believe that by extending this
infrastructure along certain important dimensions, the
PVM system will be able to cater to a much larger class
of application categories. The goal, therefore, is to en-
able generalized distributed computing within hetero-
geneous networked frameworks, i.e., to evolve both a
conceptual model and a software infrastructure that in-
tegrally support high-performance scientific applica-
tions as well as other general-purpose applications, in-
cluding, but not limited to, distributed teleconferencing
and groupware systems, heterogeneous and multi-
databases, high-speed, on-line transaction processing
and geographically distributed information systems.
This enhancement to PVM, termed the General Dis-
tributed Computing (GDC) layer, has recently been un-
dertaken. GDC facilities will consist of infrastructural
support for the required operations and are briefly de-
scribed below.

® Parallel IO Facilities. The GDC layer extends PVM
functionality by providing support for distributed
and parallel input and output to disk files as well as
for terminal interaction. The standard Unix file se-
mantics are retained to the extent possible. In addi-
tion, facilities for shared but nonconflicting reading
and writing, using a variety of different interleaving
and consistency semantics, are provided. In essence,
exclusive, independent, interleaved, and serialized

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

access are supported by the parallel I/O subsystem. In
additon, support exists for data compression and en-
cryption as well as for file shadowing—a valuable fea-
ture for reliability.

Synchronization and Locking. The GDC subsystem
provides facilities for mutually exclusive access to re-
sources. The model permits these resources to be ap-
plication dependent in that the primitives that are
provided allow for locking an abstract resource iden-
tified by a string-valued identifier and an integer.
Thus, applications may establish a convention ac-
cording to the nature of their requirements and uti-
lize the GDC facilities without any loss of generality
or functionality, but with substantial tlexibility. For
example, to implement record-level file-locking, ap-
plications may request a lock on the abstraction iden-
tified by the filename and record number. In addi-
tion to efficient locks, the GDC subsystem also incor-
porates certain deadlock detection heuristics and,
based on option switches, will either attempt recovery
or return control to the user after setting locks to a
“safe” state.

Client-Server Support. The native PVM facilities are
geared toward asynchronous, communicating pro-
cesses, and do not provide sufficiently high-level ac-
cess to applications using the client-server paradigm.
The GDC subsystem alleviates this deficiency by per-
mitting server components of applications to export
services that are identified by symbolic names, and
for client components to invoke these services in a
location-transparent, heterogeneous, and efficient
manner. These features comprise a significant exten-
sion of the standard remote procedure call model in
that (1) PVM and GDC automatically locate remote
services; (2) support for load balancing, using mulu-
ple servers, is provided; (3) invocation semantics may
be either procedure-argument based or message
based; and (4) a certain level of failure resilience is
built into the system.

Transaction Processing. Design, initial implementa-
tion, and testing efforts are in progress for a distrib-
uted transaction facility in the GDC layer. This facil-
ity provides the normal transaction processing con-
structs, including beginning and ending transactions,

aborting transactions, and nested transactions. These
features are consistent with the usual atomicity, con-
sistency, isolation, and durability semantics of tradi-
tional database systerms. However, since the GDC
layer facilities may be used in conjunction with stan-
dard PVM message-passing features, certain enig-
matic situations arise. For example, if a transaction’s
scope includes the sending and receiving of mes-
sages, it is unclear what are the correct actions in the
case of an abort, restoration of the system to a previ-
ously valid state is a complex and possibly intractable
procedure. We are exploring several alternatives and
will proceed to incorporate these features into the
GDC layer as soon as the “correct” semantics have
been decided upon.

Our preliminary experiences with the GDC sub-
system indicate that enhancing the features of PVM to
support generalized distributed computing, with spe-
cific focus on commercial, business, and database appli-
cations, is a very valuable step and is being increasingly
accepted and adopted. Our performance measure-
ments have also been very encouraging: during testing,
overheads of a few to several tens of milliseconds were
observed for most of the facilities outlined here, such as
locking, synchronization, and parallel input and output
with shadowing.

6.2 THREADS-BASED PARALLEL COMPUTING

Thus far, cluster software systems have used a process-
based model of parallelism, as in distributed memory
multiprocessors. At the opposite end of the spectrum is
loop-level parallelism, a model that is common in vector
supercomputers. To enhance functionality as well as
performance, we are investigating a threads-based par-
allelism model within PVM that provides a compromise
between the large granularity of processes and the fine
granularity in loops. 'T'hreads, or lightweight processes,
are essentially multiple sequences of control within a
single process that share portions of a common address
space. A subroutine (or collection of subroutines) is as-
sociated with each thread, and these are multiplexed on
the basis of priorities and status, thus providing an ef-
fective means of context switching with minimal over-

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

-
i PVM Process PVM Process PVM Process

I
g

Sharee Address

[.
é é él‘hrcads

.. Latent

" thread

‘ Méssagg passing

‘ PVM System

/‘I/'hreads
Subsystem

4-CPU Hi-perf 2-CPU
Server WS Desktop

Interconnection Network

Fig- 9 PVM threads.

heads. Several stand-alone threads packages are avail-
able, and operating systems are incorporating native
threads into their repertoire. It is anticipated that
threads will be a standard feature of most software en-
vironments in the near future.

Figure 9 depicts the architecture of the PVM-
threads system under development. From a program-
development point of view, threads-based cluster com-
puting will differ minimally from the existing process-
oriented paradigm. In the PVM-threads system,
programs export threads, thereby establishing a map-
ping between a symbolic name and a subroutine ad-
dress. PVM processes are initiated as in the current sce-
nario, but subsequently spawn multiple threads, each of
which, when activated, 1s assigned a unique thread iden-
tifier. The runtime system spawns threads based on
user-supplied options as well as relative processing
speeds of machines in a cluster, the smaller granularity
of threads, when coupled with load-based placement,
allowing for more control in load balancing. Once
spawned, threads communicate via explicit message-
passing calls. In reality, however, messages are ex-
changed only when the communicating threads are sit-
uated in distinct processes (local communication trans-
parently takes place via shared memory).

From the functional viewpoint, such a threads-
based model offers two main advantages. First, data
decomposition based on smaller granularity can be im-
plemented without the loss of etficiency typical of a pro-
cess-based model. This is especially important in appli-
cations such as tree-search algorithms, integer compu-
tations, and database query systems, where the amount
of computation between communication phases tends
to be small. Second, such a paradigm is natural for cli-
ent-server computing. Services can be exported using
the thread-registration mechanism and invoked via
functions akin to remote procedure calls. This facility is
very useful for non-numeric computing applications,
especially those in the database and transaction-
processing domain.

In terms of performance enhancement, threads
provide a tremendously increased potential for overlap-
ping computation and communication. Within a pro-
cessor, the typical communication—computation—

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

communication cycle of parallel processing results in
idle periods when a process-based model is used. With
a threads-based model, however, one thread can be
productively utilizing the CPU while another is commu-
nication bound or blocked waiting for data to arrive. In
preliminary tests with the threads interface to PVM,
performance improvements of up to 35% were attained
on several standard algorithms without any other ex-
ternal optimizations. Sunderam (1994) discusses other
aspects of the threads-based implementation of PVM.

7 Summary

PVM is the mainstay of the heterogeneous concurrent
computing project which now involves over a dozen
researchers and four academic and research institu-
tions. A number of factors, including simplicity of de-
sign, the natural and general computing model sup-
ported, robustness of implementation, ease of use, high
degree of portability, and uncommon levels of support,
have contributed to the tremendous popularity of
PVM. It is estimated that over 10,000 individuals or
installations have retrieved the software, and about 20
to 25% are actively using PVM in their everyday com-
puting, both for experimentation as well as for produc-
tion quality work. In addition, PVM is increasingly be-
coming a platform for education and computer science
research, as witnessed by the scores of third-party ex-
tensions to PVM for load balancing, process migration,
profiling, performance optimization, etc.

The PVM system has evolved through three major
versions (and numerous patch-level releases) in the five
years it has been in existence, even though the original
basic design and computing model has been retained.
In this paper, we have described some of the major and
significant evolutionary features in PVM, as manifested
in version 3.3 of the system. These enhancements may
be categorized as those pertaining to performance,
functional enhancements, and auxiliary toolkits. In
terms of performance, communication rates—the most
critical aspect in network computing—have been signif-
icantly improved, to the extent of having approached
the achievable maxima for various networks. Further,
in response to the increasing prevalence of shared-
memory multiprocessors, communication optimizations

for such machines has resulted in performance levels
several times that of previous versions of the system.
Other performance improvements are less dramatic
though no less important, and represent the results of
code analysis and program tuning efforts.

PVM functionality has been greatly improved in
version 3.3. Most noteworthy are the new suite of col-
lective communication routines that are required by
many application algorithms. The design and imple-
mentation of a scheduling interface, as opposed to a
hardwired scheduling scheme, has enabled flexible and
optimal scheduling while achieving a clean separation
of mechanism and policy. In terms of auxiliary tools,
the latest version of PVM has both a significantly en-
hanced textual console as well as an integrated graphi-
cal interface toolkit. The latter, called XPVM, contains
an administrative interface for virtual machine and pro-
cess management, and also provides tracing and profil-
ing facilities appropriate for operation in a general-
purpose networked environment. Finally, ongoing ef-
forts of a more investigative and exploratory nature
seek to complement system capabilities by providing
multi-threading support, parallel I/O facilities, and fea-
tures to support generalized distributed computing
with a view to firmly establishing PVM as the de facto
standard for mainstream parallel and distributed
computing.

National Science Founda-
tion, under Award Nos.
CCR-9118787 and ASC-
9214149; and CNRIL
The views and conclu-
sions contained in this
document are those of
the authors and should
not be interpreted as rep-
resenting the official poli-
cles, either expressed or
implied, of the U.S. Gov-
ernment or of CNRI.

ACKNOWLEDGMENT

This research was spon-
sored in part by the De-
fense Advanced Research
Projects Agency, Informa-
tion Science and Technol-
ogy Office, under the tite
“Research on Parallel
Computing,” ARPA Or-
der No. 7330, issued by
DARPA/CMO under con-
tract MDA972-90-C-0055;
the Applied Mathematical
Sciences program, Office

of Basic Energy Sciences, BIOGRAPHIES

U.S. Department of En-
ergy, under grant no. DE-
FG05-91ER25105; the

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

Adam Beguelin joined the
faculty of Carnegie Mel-
lon University in the

http://hpc.sagepub.com/

spring of 1992. He holds
an appointment with the
School of Computer Sci-
ence and the Pittsburgh
Supercomputing Center.
He received his Ph.D. in
Computer Science from
the University of Colora-
do in 1990. His primary
research interests are in
the area of computer sys-
tems, specifically the de-
sign and development of
programming tools and
environments for high
performance parallel and
distributed computing.
He is currently working
on software tools to aid in
the programming and
performance tuning of
parallel and distributed
computer systems. The
Dome system, for one,
provides distributed ob-
jects for networks of com-
puters. Dome eases the
task of multicomputer
programming by support-
ing automatically distrib-
uted objects, dynamic
load balancing, and archi-
tecture independent
checkpoint/restart.

Jack Dongarra holds a joint
appointment as Distin-
guished Professor of
Computer Science in the
Computer Science De-
partment at the Univer-
sity of Tennessee (UT)
and as Distinguished Sci-
entist in the Mathematical
Sciences Section at Oak
Ridge National Labora-
tory (ORNL). He special-
izes in numerical algo-
rithms in linear algebra,
parallel computing. use of
advanced-computer archi-
tectures, programming

methodology, and tools
for parallel computers.
Other current research
also involves the develop-
ment, testing and docu-
mentation of high-quality
mathematical software.
He was involved in the
design and implementa-
tion of the software pack-
ages EISPACK,
LINPACK, the BLAS,
LAPACK, ScaLAPACK,
the BLACS, MPI, and
PVM/HeNCE, and is cur-
rently involved in the de-
sign of algorithms and
techniques for high per-
formance computer
architectures.

Al Geist is a computer sci-
entist in the Mathematical
Sciences Section of Qak
Ridge National Labora-
tory. His research inter-
ests are in the areas of
parallel and distributed
processing, scientific com-
puting, and high perfor-
mance numerical
software.

Robert Manchek is a Senior
Research Associate at the
University of Tennessee,
Knoxville. His research
interests include parallel
computing, networking,
and operating systems.
He received a B.S. in
Electrical and Computer
Engineering from the
University of Colorado,
Boulder in 1988 and is
currently pursuing a
Ph.D. in Computer Sci-
ence at the University of
Tennessee,

Vaidy S. Sunderam received
a Ph.D. in Computer Sci-

ence from the University
of Kent, U.K. in 1986,
and 15 currently Associate
Professor in the Depart-
ment of Math and Com-
puter Science at Emory
University, Atlanta, USA.
His research interests are
in parallel and distributed
processing, particularly
high performance concur-
rent computing in hetero-
geneous networked envi-
ronments. He is the prin-
cipal architect of the PVM
system, in use at several
thousand institutions
worldwide for heteroge-
neous concurrent com-
puting, and was awarded
the 1990 IBM supercom-
puting prize for his re-
search contributions in
this area. He is also co-
principal investigator of
the Eclipse research proj-
ect, a second-generation
system for high perfor-
mance distributed super-
computing, that won the
IEEE 1992 Gordon Bell
Prize. His other research
mterests include distrib-
uted and parallel 1/O and
data management, com-
munications protocols,
parallel processing tools,
and concurrent stochastic
simulation. He is the re-
cipient of several research
grants, has authored nu-
merous articles on parallel
and distributed comput-
ing, and is a member of
ACM and IEEE.

REFERENCES

Beguelin, A., Dongarra,
J., Geist, A., and
Sunderam, V. 1993. Visu-
alization and debugging
in a heterogeneous envi-

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

ronment. IEEE Comp.
26(6):88-95.

Beguelin, A. 1993. Xab:
A tool for monitoring
pvm programs. In: Work-
shop on Heterogeneous Pro-
cessing, 9297, Los
Alamitos, California:
IEEE Computer Society
Press.

Bruegge, B. 1991. A por-
table platform for distrib-
uted event environments.
Proc. ACM/ONR Work-
shop on Parallel and Dis-
tributed Debugging. ACM
SIGPLAN Notices, 26(12):
184-193.

Comer, D. 1991. Internet-
working with TCP/IP.
Prentice Hall, 2nd
edition.

Geist, A, Beguelin, A,
Dongarra, J. J., Jiang, W,
Manchek, R., and
Sunderam, V. S. 1993,
PVM 3 User’s Guide and
Reference Manual.
ORNL/TM-12187. Oak
Ridge National
Laboratory.

Geist, A., Beguelin, A,
Dongarra, J., Jiang, W.,
Manchek, R., and
Sunderam, V. 1994.
PVM_: Parallel Virtual Ma-
chine—A Users’ Guide and
Tutorial for Networked Par-
allel Computing. MIT
Press.

Geist, G. A., Heath,

M. T, Peyton, B. W_, and
Worley, P. H. 1990. A
machine-independent
communication library. In
The Proceedings of the
Fourth Conference on Hyper-
cubes, Concurrent Comput-
ers, and Applications, edited
by J. Gustafson, Los
Altos, CA: Golden Gate
Enterprises, pp. 565-568.

Heath, M. and Etheridge,
J. 1991, Visualizing the

http://hpc.sagepub.com/

performance of parallel
programs. IEEE Software
8(5):29-39.

Hollingsworth, J., Miller,
B., and Cargille, J. 1994.
Dynamic program instru-
mentation for scalable
performance tools. In
Proc. IEEE Scalable High
Performance Computing
Conference, Knoxville,

Tenn. pp. 841-891.

Litzkow, M., Livny, M.,
and Mutka, M. 1988.
Condor—A hunter of idle

workstations. In Proc.
Eighth Conference on Dis-
tributed Computing Systems.
San Jose, California.

Manchek, R. J. 1994. The
design and implementa-
tion of PVM version 3.
Master’s thesis. CS-94-
232. University of
Tennessee, Department
of Computer Science,
Knoxville.

McDowell, C. E. and
Helmbold, D. P. 1989.
Debugging concurrent

programs. ACM Comput-
ing Surveys 21(4):593—622.

Message Passing Interface
Forum. 1994. MPI: A
message-passing interface
standard. Internat. . Su-
percomput. Appl. 8(3/4).

Reed, D. A, Olson, R. D,
Aydt, R. A., Madhyastha,
T. M., Birkett, T., Jensen,
D. W., Nazief, B. A. A,
and Totty, B. K. 1991.
Scalable performance en-
vironments for parallel
systems. In The Sixth Dis-

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

tributed Memory Computing
Conference, edited by
Quentin Stout and
Michael Wolfe. IEEE
Computer Society Press,
pp. 562-569.

Sunderam, V. S. 1994.
Heterogeneous concur-
rent computing with ex-
portable services. In Envi-
ronments and Tools for Par-
allel Scientific Computing,
edited by Jack J.
Dongarra and Bernard
Tourancheau. SIAM
Press, pp. 142-151.

http://hpc.sagepub.com/

