
SIAM J. ScI. COMPUT.
Vol. 14, No. 3, pp. 542-569, May 1993

1993 Society for Industrial and Applied Mathematics
004

A PARALLEL ALGORITHM FOR THE NONSYMMETRIC
EIGENVALUE PROBLEM*
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Abstract. This paper describes a parallel algorithm for computing the eigenvalues and eigenvectors of
a nonsymmetric matrix. The algorithm is based on a divide-and-conquer procedure and uses an iterative
refinement technique.
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1. Introduction. The algebraic eigenvalue problem is one of the fundamental
problems in computational mathematics. It arises in many applications and therefore
represents an important area of algorithmic research. The problem has received con-
siderable attention, which has resulted in reliable methods [17]-[19]. However, it is
reasonable to expect that calculations might be accelerated through the use of parallel
algorithms. A fully parallel algorithm for the symmetric eigenvalue problem was recently
proposed in [7]. This algorithm is based on a divide-and-conquer procedure outlined
in [4]. The latter was based on work in 11] and [2]. The fundamental principle behind
this algorithm is that the partitioning by rank-one tearing interlaces the eigenvalues
of the modified problem with the eigenvalues of the original problem (the matrix is
first reduced to tridiagonal form). This approach in turn enables rapid and accurate
determination, in parallel, of the eigenvalues and the associated eigenvectors.

In this paper we propose a parallel algorithm for the solution of the nonsymmetric
eigenvalue problem. The approach uses some of the features of the divide-and-conquer
algorithm for the symmetric case mentioned earlier. In particular, the original problem
is divided into two smaller and independent subproblems by a rank-one modification
of the matrix. (We assume that the matrix has already been reduced to Hessenberg
form, and that the rank-one modification removes a subdiagonal element.) Once the
eigensystems of the smaller subproblems are known, it is possible to compute those
of the original matrix. In the nonsymmetric case, the eigenvalues of the modified matrix
do not interlace with those of the original matrix. Indeed, the eigenvalues can scatter
anywhere in the complex plane.

In our algorithm for the nonsymmetric case, the eigensystem of the subproblem
is used only to construct initial guesses for an iterative process which yields the desired
eigensystem of the original problem. Under suitable conditions, iterative refinement
or continuation can be used to find the eigenpairs of the original problem. We report
here on our application of an iterative refinement approach based on Newton’s method;
we shall not pursue the continuation method in this paper. Work on the continuation
approach has been reported by 14] and 15]. For other divide-and-conquer approaches,
see [1] and [12].
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In 2 we describe an algorithm that uses an iterative refinement procedure based
on Newton’s method. Section 3 covers the deflation step required to overcome multiple
convergence to a particular eigenvalue. In 5 the convergence behavior of the new
algorithm is discussed. In 4 we discuss the case when the matrix or its rank-one
modification has a defective system of eigenvectors. Section 7 estimates the amount
of work the parallel algorithm requires and compares this to the standard techniques.
Section 6 describes the parallel algorithm and the different parallel implementations
of the new algorithm, and gives numerical results. Section 9 describes how our ideas
extend to the generalized eigenvalue problem.

2. The algorithm. Given a matrix H, an eigenpair (Xo, A0) of H can be thought
of as a solution to the polynomial system

Hx Ax O,
(s)

L(x) 1,

where L(x) is a scalar equation. Here, we set L(x)= ex, where es is the sth unit
vector (in practice, we choose s so as to normalize a known approximation to an
eigenvector of H). Let

[HxFs(x,)=\e[x_ 1 ]"

Then, finding an eigenpair of H reduces to finding a zero of F. In what follows, unless
otherwise mentioned, H is assumed to be a real, unreduced (no zeros on the sub-
diagonal), upper-Hessenberg matrix of order n. This does not restrict the type of
problems we want to solve, since if H has a zero on the subdiagonal then finding its
eigenvalues reduces to finding those of the blocks on the diagonal. We note also by
our assumption that H is unreduced, an eigenvalue of H can only have geometric
multiplicity one" this is quite easy to see since the first n- 1 columns of H-AI are
linearly independent. We assume for now that H has a simple spectrum. We can write
H as

HllH _(--.,"(k)T
Ole e: k

where Hl and H22 are upper-Hessenberg of dimensions k x k and n-kx n-k,
respectively; a hk/l.k, and el k) is the ith unit vector of length k.

Let Ho H---’() ()r,k+e Then

and o-(Ho) o-(Hll _J 0"(H22

(where tr(M) is the spectrum of M). The algorithm can then be described as follows.
We first find the k eigenpairs of H and the n- k eigenpairs of H22 by some method.
These eigenpairs are then used to construct initial approximations to the eigenpairs
of H. If A is an eigenvalue of Hl and x is the corresponding eigenvector, then is
viewed as an approximate eigenvalue of H with the corresponding approximate
eigenvector taken to be (), where n- k zeros are appended to x. Note that () is an
exact eigenvector of Ho corresponding to A. On the other hand, if A is an eigenvalue
of H22 and x is the corresponding eigenvector, then (0), where k zeros are prefixed to
x, is taken as an approximate eigenvector of H corresponding to the approximate
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eigenvalue h. If h is not an eigenvalue of Hl then the last n-k components of an
exact eigenvector of Ho corresponding to A,

((H11- A)-1H12x)
are the components of x. However, if is an eigenvalue of Hll, and if its geometric
multiplicity is one as an eigenvalue of Ho, then no eigenvector of Ho will have the
components of x as its trailing components. We have chosen to take (x) as initial
eigenvector instead of

( (Hll-A)-lH12x)X
in order to avoid the additional computation involved in solving a linear system. The
choice proved adequate in practice, in that there was no significant difference in the
convergence behavior of the algorithm.

Newton’s method comes into this problem in a rather "natural" way. Indeed,
suppose that (x, ,) is an approximate eigenpair of H, Hx Ax. Let us find a way to
compute a correction (y,/x) to this approximate eigenpair. Clearly, (y,/x) should satisfy

H(x + y) (A + )(x + y).

Rearranging the latter equation yields

1 (H A)y txx Ax Hx + txy.

Now we ignore the second-order term/xy, and we impose a normalization condition
on x, say xs 1, where xs is the sth component of x. If we also assume that the desired
eigenvector should satisfy the same condition, then (y, tz) is the solution of

{H-hi(2) \e

with r hx- Hx. But, this is the same equation that we obtain when a Newton iteration
is applied to the function F to find a correction to (x, ). We note here a result from
[5], where the author studied an iterative refinement technique to compute the correc-
tion (y, x) to (x, ) from (1) (i.e., without ignoring the second-order term) and proved
that in exact arithmetic, that method and Newton’s method produce the same final
iteration.

So far we have not attempted to answer the question of which subdiagonal entry
will introduce the zero. We will use first-order perturbation theory in order to shed
some light on this issue. Let E =--OZek+le[, where as above, a hk+l,k (note that
H-+ E Ho, introduced above). Then given a simple eigenpair (x, A) of H, classical
results from function theory [13, V.2, pp. 119-134] allow us to state that in a small
neighborhood of zero, there exist differentiable (x(e), A(e)) that satisfy

(H + eE)x(e) A(e)x(e),

for all e in that neighborhood. Clearly, x(0)=x and A(0)= A. Let yH be the left
eigenvetor of H corresponding to A. Then differentiating both sides with respect to e

we have

HDx(e)+ Ex(e)+ eEDx(e)= DA(e)x(e)+ A(e)Dx(e),
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where De denotes the differentiation operator. Multiplying by yH and setting e 0 we
get

y"Ex D,,X O y l-lx,

and therefore

[y’-’F.x[ I Ily+lllx[
(3) [D;t(0)l-[yxl- ly’-’x[

The quantities that vary with k in this expression are in the numerator. However,
lY/ll, and Ixl are not really independent of one another; indeed, if a 0, then at least
one of Yg+l or xg is zero. Hence for a small, we can expect one of Yg+l and xg to be
correspondingly small, since the components of the eigenvectors vary continuously.
Therefore, we have found it sufficient in practice to look for the smallest subdiagonal
entry in a prespecified range, and accept it as the subdiagonal entry (in that range)
with respect to which the eigenvalues of the matrix are least sensitive, and set it equal
to zero.

An outline of the algorithm follows.
ALGORITHM 2.1. Given an unreduced upper-Hessenberg matrix H, the following

algorithm computes the eigensystems of two submatrices of H and uses them as initial
guesses for starting Newton iterations for determining the eigensystem of H.

Determine subdiagonal element a where

should be split; Determine initial guesses from eigensystems of the two
diagonal blocks Hll and H22; For each initial guess (Ai, xi) iterate until
convergence:

esr x

end;
Check for duplicates and deflate if necessary;

More will be said about the last step, deflation, in 3. In practice, the original
matrix will be dense and we will need to reduce it to upper-Hessenberg form as a first
step. This can be done in a stable fashion through a sequence of orthogonal similarity
transformations, although elementary transformations can also be used with confidence,
as in ELMHES [17].

A brief study of some sufficient conditions guaranteeing the convergence of our
method will be touched upon in 5. Now, assuming that the algorithm converges, it
could happen that the same eigenpair of H is obtained more than once, i.e., starting
from two (or more) distinct initial approximations, Newton’s method converges to the
same eigenpair of H. We have investigated methods to obtain further eigenpairs of H
should this happen (see 3).

We end this section with some implementational details. Our algorithm will accept
(x, A) as an eigenpair of H when IIH-xll/llxll IIHII < tol, where tol is some specified
tolerance of order e, the machine unit roundoff. Under these conditions [9], (x, A) is
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an exact eigenpair of a matrix obtained from H by a slight perturbation. Indeed,

rxH XxHx
where r Ax- Hx.

Starting from two complex conjugate initial approximations, Newton’s method
will converge to two complex conjugate zeros of Fs, or the same real zero. To prove
this, it suffices to look at one iteration and show that when the current approximations
are complex conjugate, Newton’s method yields two complex conjugate corrections,
or the same real correction. The system we must solve starting from (x, A) is (2). For
(., A) this becomes

8-21e-) (") ()
But this is the same linear system obtained when the conjugate of both sides in (2) is
taken, since H H. Therefore, y’-- 97 and/z’=/2. This will allow significant savings in
the computations.

Last, when starting from a real initial guess, only real corrections are computed.
Therefore, the imaginary part of the eigenvalue should be perturbed if convergence
ot a complex eigenpair is to be made possible. In practice, we have done this when
real arithmetic does not lead to convergence after a prespecified number of corrections.
A 2x2 real matrix whose eigenvalues are complex is a simple example of when
perturbing the imaginary part of the eigenvalue is necessary.

3. Deflation. When Newton’s method is applied to solve the eigensystem of a
matrix H, two distinct initial guesses may possibly converge to the same eigenpair of
H. In fact, a naive implementation ofthe algorithm in 2 may result in many eigenvalues
being found multiple times and, consequently, some eigenvalues not being found at
all. To avoid this unwanted situation, we included a deflation step in our algorithm
that is designed to obtain further zeros.

Assume that when Algorithm 2.1 is applied to the n x n matrix H (we will assume
for simplicity that it has no multiple eigenvalues) the eigenpair (x, A) of H is obtained
more than once, i.e., the algorithm converges to (x, A) from several distinct initial
guesses (Xoi, Aoi), i= 1 r, r > 1. There exist two classes of methods for finding
the additional eigenpairs of H. The methods of one class produce an (n- 1)x (n- 1)
matrix H’ such that r(H’)=tr(H)-{A}, and then Algorithm 2.1 is applied to H’
starting from r- of these initial guesses. In this case, if the algorithm converges, then
it will do so to eigenpairs different from (x, A) since A is no longer in the spectrum.
Methods of this type will be discussed in 3.1 and 3.3. The other class of methods
will reapply Algorithm 2.1 to the original matrix H starting from r-1 of the initial
guesses mentioned above, but will force convergence away from (x, A) by ensuring, at
all steps, that the current eigenvector forms a nonzero angle with x. A method of this
type will be discussed in 3.2.

A common drawback of all of these methods is that they tend to serialize the
computation. However, it has been our experience that the need to deflate arises
infrequently: less than 5 percent of the time in our tests.

3.1. Deflation using elementary transformations. We now describe one possible
deflating similarity transformation. We assume that H is an unreduced upper-
Hessenberg matrix, A is an eigenvalue of H, and x is the corresponding eigenvector.
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Since we are assuming H to be upper-Hessenberg with no zeros on the subdiagonal,
then x," 0, and the elementary transformation M --[ei,..., e,’_l, x] i.e.,

(4) M

1 X

1 x,’-i

0 x.
is nonsingular. The inverse of this matrix is

--X1/X," I(5) M-l=
1 -x,’_l/X,’"

1/x,, /
It is easy to see that M-ix e., Now we let

(6) /_it M-1HM.

It is.easy to verify that is unreduced and upper-Hessenberg, and that the last column
of H is Ae,’. Furthermore, the leading principal submatrix of order n- 1 of/, which
we will call H’, is upper-Hessenberg, has the property that

cr(H’) o’(H) {X},

and differs from the leading (n 1) x (n 1) principal submatrix of H in the last column
only. In fact, if we let h,’_l be the last column of the leading principal submatrix of
H of order n-1, then it is straightforward to verify that the last column of H’ is
h,’_l- h,’.,’_lx’, where

\Xn--1/Xn/
The strategy we have just described is given in [19] and applies regardless of whether
the eigenpair (x, A) is real or not. However, when (x, A) is real we get a real matrix
H’. In the case when (x, A) is not real, the last column of H’ alone is not real since,
as we remarked earlier, the other columns are those of a leading principal submatrix
of H. Hence the leading principal submatrix of H’ of order n- 2 is real. Also, in this
case the complex conjugate of (x, A), (2, A) is an eigenpair of H, and therefore A is
an eigenvalue of H; a corresponding eigenvector is

.,l--Xl(n/Xn)

M-I
,’-1

2,’/

Since o’(H’)= or(H)-{}, is an eigenvalue of H’, and a corresponding eigenvector
is the vector 2 of length n- 1, whose components are the first n- 1 components of a
scalar multiple of M-12
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where 2- -1. This is due to the special structure of/. Now recall that H’ has no
zeros on the subdiagonal, and so we know that the last component of is nonzero.
Note that : is real. We can carry out a deflation that produces a matrix H" of order
n- 2 with the property that

o-(H") o-(H’)-{X};

in the same way, we obtained H’ from H using the elementary transformation of order
n-l:

1 "1

Xn

From a previous remark about this deflation strategy, we know that H" differs from
the leading principal submatrix of H’ of order n- 2 (which is real) in the last column
only. The last column of H" is h’n_2 -hn_l,,_zX", where h’,_2 is the last column of the
leading principal submatrix of H’, and x" is the vector whose components are the first
n- 2 components of )7. Since all of the quantities involved are real, H" is real.

We remark here, as can be readily realized, that H’ (or H") is quite cheap to
obtain in practice once an eigenpair of H is available. It requires O(n) operations
consisting of a vector normalization, a scalar-vector multiplication, and a vector-vector
addition. However, the conditioning of the matrix M might raise concern. Indeed,

cond (M)= [[MII[[M-[[ max ([x[)max \[x.[,]’
which can be large if x, << xi. Having noted this, it is clear that the ill-conditioning of
M can be easily detected, and therefore one of the more stable (and costlier) methods
that we introduce next and in the following sections can be used.

It is possible to prevent the ill-conditioning of M from bearing on the algorithm
by avoiding a similarity transformation. More precisely, the eigenvalue problem we
want to solve can be thought of as a generalized eigenvalue problem, Hx ABx, with
B L We want to find tr(H)= o’(H, I). Now we know that given any nonsingular M
and N,

tr H, I) tr NHM, NM).

Given a particular eigenpair (x, A), we would like to choose M and N in a way that
solves the problem we set for ourselves at the beginning of this section, namely, we
want to reduce the problem to one where A is no longer in the spectrum. A closer look
at the similarity transformation (6) reveals that its deflating property is due to the fact
that M-ix e,. But then M-1 is not the only matrix that can be used to accomplish
this. In fact, the matrix N can be chosen to reduce x to a multiple of e, N DM-,
where D is the diagonal matrix with the entries

d, 1, if Ix, I/Ix, l<- 1,

d, =-x,,/xi iflxil/lx,l> 1,

i.e., D is chosen so that all the entries in N are less than or equal to one. Then we have

H’ 0
NM(7) NHM=

0 a y’
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with h A/6. Also, tr(H’, D’) tr(H, I) -{h}, and therefore, by this transformation, h
has been "removed" from the spectrum. Working on the solution of a generalized
eigenvalue problem from this point on will not generally cause any dramatic increase
in the cost of the algorithm, mainly because D’ is diagonal. A Newton step with this
problem involves the following computation:

(8) A Ai + ; X xi + y,e 0

where ri AiD’xi-Hxi Clearly, the previous computation involves an O(n) increase
in the cost of one step: this comes from the multiplications by D’. The details on how
(8) is derived are given in 9. If A is complex, then after deflating A and its conjugate, the resulting matrices H’ and D’ are generally complex. This is the major drawback
of this method.

Finally, we mention another approach that can be of interest when the similarity
transformation (6) involves a very ill conditioned M. This approach consists of inter-
changing two components of x and the corresponding columns and rows in H so that
the last component of x is large enough. More precisely, let Xs be the largest component
of x (in absolute value), and let P, be the matrix obtained from the identity matrix
by permuting the nth and sth columns. Then (P,x, A) is an eigenpair of the matrix
P,HP,, since

(P.HP.)(P.x)=AP.x.

Now scale the vector P.sx so that the last component is 1 and call that vector . Then,
as above, the elementary transformation

M:

0
can be used to deflate the matrix P.HP.. The fact that here P.HP. is not upper-
Hessenberg is of no consequence. In fact, we can make the following general statement:
Given any matrix A of order n, and any eigenpair (x, A) of A, then a matrix Q satisfying

Q-ix el or Q-ix en

can be used to deflate A, in the sense that

Q-1AQ [Ael, B1] or Q-1AQ [B2, Ae,],

respectively, where B1 and B2 are n (n- 1) matrices.
Having thus deflated the matrix P.sHP.s, the leading principal submatrix of order

n-1 of

(9) M-1P,,sHP,,sM

(call it H’) has all the eigenvalues of H except A (if A is simple). However, H’ is not
generally upper-Hessenberg, and therefore will be reduced back to Hessenberg form
before applying Newton’s iterations; this is meant to save on the cost of factorizing
the Jacobian when solving the linear systems arising at each step of Newton’s iteration.
Note that it is only the trailing diagonal submatrix of order (n s + 1) (n s + 1) of
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H’ that needs to be reduced and that if s n 1 or s n, then H’ is upper-Hessenberg.
Moreover, s need not be chosen so that xs is the largest component of x (in absolute
value). Indeed, since the size of the matrix to be reduced to upper-Hessenberg form
increases when s approaches 1, it is more advantageous to choose the largest s for
which the ratios xi/xs are moderate. We wish, therefore, to define a threshold for
the size of these ratios on the basis of which s will be determined.

Let H be the computed form of the matrix in (9). In [19, Chap. 9], Wilkinson
established that if Ilxll_-< 1, then the eigenvalues of H are the exact eigenvalues of a
matrix H’ satisfying

IIH-/’11 Ilrll+ (n 1)e,

where r is the residual Ax-Hx and e is the machine epsilon. With no assumptions
on the infinity norm of x, this inequality becomes

(10) H -/’I1 r + (n 1)11 x .
Since, in our algorithm, our computed eigenpairs have residuals on the order of
n HI1, we propose that H I1.

In addition to destroying the structure of the matrix, this last method of deflation
suffers from the fact that in the case when the eigenvalue to be deflated is nonreal,
the resulting matrix H’ is complex, and therefore will considerably increase the cost
offinding subsequent eigenpairs if a Newton process is restarted from a real initial guess.

3.2. Deflation with help from the left eigenvector. The method we introduce now
is different in spirit from the ones in the previous section, in that no attempt is made
to modify the matrix.

Assume that (x, A) is an exact eigenpair of H and that A is simple Hx Ax. No
assumption is made about the remaining eigenvalues of H.

Let (x, X) be such that

where the right-hand side is the Jordan canonical form of H. Now set

Then it is clear that y
that

H is a left eigenvector of H corresponding to A and furthermore

yHx =0.

This property can be used to modify Newton’s method to avoid convergence to the
eigenpair (x, A) a second time. Indeed, given A, we can compute the left eigenvector
y corresponding to it, and use it to confine the current eigenvector to the range R(X)
of X. Therefore, we can expect to converge to an eigenvector linearly independent of
x and hence corresponding to a different eigenpair (since (x, A) was assumed to be
simple). When (x, A) has already been computed once, our algorithm for avoiding it
then consists of the following major steps.
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Compute the left eigenvector yH corresponding to A, with Ilyll=--1; Given
the current eigenpair (z,/x) compute the Newton correction from Algorithm
2.1; Let z’ be the approximate eigenvector obtained after adding the Newton
correction to z; choose the next eigenvector z" as"

z"=(l-yyn)z’.

In the last step we are just projecting z’ onto R(X). We note that when this algorithm
is applied, it could happen (as with all the deflation methods we are describing) that
we obtain another eigenpair of H, (x’, A’), that was already computed. Then the process
must be restarted and z" will be obtained from z’ by a projection onto R(X’), where
X (x’, X’), in order to avoid both (x, ) and (x’, A’); this will require the computation
of the left eigenvector corresponding to A’ as well.

It is obvious why the known eigenpair must be simple for the algorithm just
outlined to work. If A is multiple, then left eigenvectors are no longer necessarily
orthogonal to X. In fact, the algorithm will be adversely affected if the eigenvalue A
is ill conditioned, i.e., if y"x is very small. Indeed, in this case, if the current eigenvector
z--ax + Xv, where v is a vector of length n- 1, then

(I-yy)z z-(yIz)y ax + Xv-(ayx)y z,

showing that z is hardly modified by the projection and therefore suggesting that the
algorithm will not necessarily prevent a second convergence to (x, ,).

The algorithm generalizes to the case when , is multiple in the following way.
Let V be a right invariant subspace corresponding to ,. Let (V, V) be such that

V, Vc)_IH( V, Ve) (Jx Oj)0

where the right-hand side is again the Jordan canonical form of H. Ja is the Jordan
block corresponding to A; since H is assumed to be unreduced, there can be only one
such block. If we set

then clearly U is a left invariant subspace corresponding to I, and furthermore,

U"V =0.
This last property will allow U" to be used in much the same way as the left eigenvector
was used earlier. However, the practical usefulness of this method is restricted to the
case when the eigenvalue , is simple. Indeed, the problem of determining the invariant
subspace associated with a multiple eigenvalue , is an extremely difficult one and can
be prohibitively expensive.

This method in its simplest form (using the left eigenvector) adds O(n2) work to
the cost of finding one eigenpair distinct from (x, ,). This is the cost of computing the
left eigenvector corresponding to ,; the cost of a single projection is O(n).

3.3. Deflation with orthogonal transformations. We present now a very stable
method for obtaining an upper-Hessenberg matrix H’ with the property that it has all
the eigenvalues of H except for , [19]. We assume for now that the eigenpair (x, A)
is exact.

The strategy consists of n-1 major steps, where at each step a new zero is
introduced in the last column of H-,I starting from the bottom. The configuration
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at the beginning of the rth step looks like

with zeros in the last r- 1 components of the last column. The rth step then consists
in a post-multiplication by Gr, where Gr is the (possibly complex) rotation in the
plane (n-r, n) designed to annihilate the (n-r, n) element

/1

Sr Cr

where IlCr]12+ ]]Sr]l 2= 1. This post-multiplication will affect columns n-r and n only,
and therefore will not disturb zeros previously introduced in the last column. At the
(n- 1) step, G,_, which is constructed to zero the (2, n) element, will also zero the
(1, n) element. Indeed, assume that after the (2, n) element has been zeroed we have
some value a in the (1, n) position; then we have

(H AI) G1 Gn-

Now if we develop the determinant of this matrix by the last column we get

det [(H AI)G, G,,_,] abl bn_l,

where br is the rth subdiagonal element of (H-AI)G... G,,_"

det[(H-AI)G,... G._,] det (H-AI) =0,

since (det (Gr) 1) for r 1,..., n 1. But br 0 for all r, since we have assumed that
H had no zeros on the subdiagonal and since post-multiplication by a Gr can only
increase the modulus of a subdiagonal element in H-hi. Thus we must have a 0,
and therefore, at the end of the n- 1 steps just described, the last column is zero. Let
us set G1... G,_ to simplify the notation. Then

-=n=Gn ...Gnn--1

and it is straightforward to verify that the zeros of the last column of (H-AI) will
be preserved when it is premultiplied by qd-1, because the successive premultiplications
by Gf, r- 1,..., n- 1, will preserve those zeros. Therefore, the last column of

I2I cH H AI) + AI
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is equal to Aen. The eigenvector of corresponding to A is en. Note, however, that
H is not upper-Hes.senberg in this case. Indeed, nonzero elements will be introduced
in the last row of H; in fact,

This is not disturbing since if H’ is the leading principal submatrix of of order
n-1, then H’ is upper-Hessenberg and tr(H’)--tr(H)-{A}.

If A is a multiple eigenvalue of H of (algebraic) multiplicity m, then A is an
eigenvalue of H’ of multiplicity m- 1.

So far we have assumed that the eigenpair (x, A) is exact.. In practice, (x, A) will
only be approximate, in the sense that Hx-Ax- r is of the order of the machine e.

In this case, roundoff errors will generally prevent G,_I from annihilating the (1, n)
entry. In fact, the accuracy of the computed eigenvalue A will come into play. If A
corresponds to an ill-conditioned eigenvalue of H, then it is possible that A will be a
rather poor approximation of the exact eigenvalue. As a consequence, the (1, n) entry
might not be negligible at all, and examples do exist where this is indeed the case 19].
A way around this difficulty is to construct the plane rotations G1,..., Gn_l in a way
to reduce the vector x to en and then apply the corresponding similarity transformation
to H. Inequality (10) from 3.1 holds when this is done (with obvious modification
in the definition of H’). However, this will generally result in introducing nonzero
entries below the subdiagonal of H and therefore H needs to be reduced to upper-
Hessenberg form again. We refer the reader to [3] for an example of such an algorithm;
the generalization of that algorithm to the case where the eigenvalue to be deflated is
complex is straightforward.

In addition to the difficulty just mentioned, the deflation with plane rotations
suffers from the fact that the deflated matrix will be complex if the eigenvalue to be
deflated is complex. Indeed, it is unfortunately not true that when an eigenvalue and
its complex conjugate are deflated by this method, the resulting matrix is real.

Example 3.1. When the two complex eigenvalues of the 4 x 4 upper-Hessenberg
matrix

0.2190 -0.0756 0.6787 -0.6391
-0.9615 0.9032 -0.4571 0.8804

0 -0.3822 0.4526 -0.0641

0 0 -0.1069 -0.0252

are deflated using plane rotations as just described, we obtain

1.1593-0.0000i 0.0000/ 1.0129i 0.0000/0.0000i 0.0000/0.0000i

0.0000-0.3053i 0.1740-0.0000i 0.0000/0.0000i 0.0000/0.0000i

-0.1534-0.3540i 0.5717/0.0112i 0.1082-0.4681i 0.0000/0.0000i

-0.4640+0.1988i 0.2187-0.3465i 0.3964/0.0611i 0.1082+0.4681i

After the deflation, we will be working with the upper 2 x 2 block of H’ which is clearly
complex.
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3.4. Remarks on identifying duplicate eigenvalues. We have already remarked that
the computed eigenpairs from our algorithm are the exact eigenpairs of a nearby
matrix. Under those conditions [9],

IA Ael <--IIEIIIIs(,e)l,
where E is the error in the matrix, and IS(Ae)I is the condition number of the exact
eigenvalue he of the original matrix H. When he is ill conditioned, we can expect
unpredictably large errors (compared to the tolerated size of the residual) in the
computed approximations to he and therefore in the duplicates, if any. Identifying
these duplicates becomes a rather daunting task: in particular, they will not be detected
if their difference is compared to tol introduced earlier. Conversely, it can happen that
under certain conditions the tolerated size of the residual will be much larger than the
distance between certain exact eigenvalues and therefore between certain computed
eigenvalues. In this case, it could happen that distinct computed eigenvalues will be
declared as duplicates if their difference is compared to tol.

Example 3.2. We illustrate this last case with the following matrix:

H 2 10-7

0 2 101

The tolerated size of the residuals for this matrix as chosen in our algorithm is
tol IIHIle > 10 -6. Therefore, if we decide to declare as duplicates those eigenvalues
whose difference is less than tol, then the first two distinct eigenvalues of H will be
declared as duplicates.

The problems we have just raised do not have easy solutions [10], and indeed,
more research is needed here.

3.5. Conclusion regarding deflation techniques. As we pointed out earlier, the need
to deflate arises less than 5 percent of the time in our tests. Our method of choice has
been the method of deflation using elementary transformations introduced in 3.1.
This method is indeed the least expensive among all those we have discussed. Also,
the resulting deflated matrix is in upper-Hessenberg form and is real when a pair of
complex conjugate eigenvalues has been deflated.

4. Defective case. Our being a nonstationary iteration (the iterating map is not
fixed), it is not easy to analyze the behavior of the successive approximations. We try,
however, to address this problem in this section with a particular emphasis on the case
when either the matrix H or the modified matrix Ho is defective, i.e., when either one
of these matrices does not have a complete set of eigenvectors. As we remarked earlier,
an eigenvalue of H (with no zeros on the subdiagonal) can only have geometric
multiplicity one, and there H is defective whenever it has a multiple eigenvalue. An
eigenvalue of Ho, on the other hand, can have geometric multiplicity one or two. In
what follows, n is the order of H.

The connection between Newton’s method and inverse iteration is well known
[16]. We derive this relationship in a way that motivates the subsequent analysis: We
let J be the Jacobian of the map Fs at (x, A) defined in 2,

J= er
and we assume that xs 1. The order of the Jacobian is n 4-1. Then

TJ Jo 4- en+ V
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with

and

V es en+l

Assume that Jo is not singular; this is true if and only if A is not an eigenvalue. Assume
also that J is not singular. The correction to (x, A) is computed in the following manner:

where r Ax-Hx. Using the Sherman-Morrison formula [9], we can write j-1 as

j-l (Jo + e,,+, v)-’ Jl
1 + vTj-len+l

Therefore, letting b(), we have,

(11) (Y)=J-b=J-b
It can be easily checked that

and that

jlen+lV Tj-l.

1 + vTjlen+I
j-l en+l

Jie,,+i=
1

where (H-AI):=x. Now, if we let (xl, A) be the next eigenpair, we have from (11)
and the subsequent equalities:

Furthermore,

1 + vTJ- e,+

vTj-lb -1

1 +vTJ- en+l s
and so finally we see that our scheme reduces to the following: Given (x, A), compute
the next iterate (xl, A1) via

1 1
(12) (H-AI)=x, Xl=-Z-x,

Xs
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4.1. Case when H is defective. When the algorithm is expressed as in (12), we can
readily see some of the difficulties that arise when the matrix H is defective or almost
defective, which is generally more likely due to roundoff errors. These problems are
similar to the kind of problems that we face with the application of inverse iteration.
More precisely, assume that H is almost defective with xl,..., xn as a complete set
of eigenvectors. Let A1,...,/l be a cluster of eigenvalues of H and suppose that the
initial approximate eigenvalue A corresponds to one ofthese. The eigenvectors Xl,. Xl
corresponding to these eigenvalues are then almost linearly dependent. In general, the
eigenvector corresponding to A can be expected to converge to the space generated
by xl,..., x. As the eigenvalue A approaches the cluster, however, continued correc-
tions to the eigenvector cannot be expected to refine it. We refer the reader to the
particularly lucid account in 16] for a justification of these claims. Solving as in inverse
iteration (see INVIT [17]) is a possible way around this problem. Computing the
residual with extended precision arithmetic is also an obvious approach, and has been
successful in practice.

When approaching a singular solution, Newton’s method loses its quadratic
convergence rate. We will prove later (Theorem 5.1) that the Jacobian is singular at
multiple eigenpairs. Therefore, we can expect slower convergence when multiple
eigenpairs or almost multiple eigenpairs are the target: this is indicated in Fig. 1 by
the large number of iterates separating the initial guesses from the converged values
for an almost-defective matrix.

Recall the rate of change of A that we derived in 2:

We wish to caution against hastily drawing conclusions about the sensitivity of the
eigenvalues of a defective matrix to our dividing process from this expression. Indeed,
as an extreme case which will help to illustrate our point, the eigenvalues of a defective

0.6

0.4

0.2

-0.2

-0.6

".0 .. ".. ......

-0.4 -0.2 0 0.2 0.4 0.6

real part

FIG. 1. The behavior ofthe algorithmfor an almost defective 25 x 25 matrix. The crosses are the eigenvalues

of the original matrix; the stars are the initial guesses; the circles are the eigenvalues computed by our algorithm"
the dots are the iterates arising in Newton’s iterations.
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matrix can remain virtually unchanged after a zero has been introduced in the sub-
diagonal. An example is the 2 x 2 matrix

After the dividing process we have

The starting eigenpairs are then ((), 1) and ((o), 1). The second of these is, of course,
the exact eigenpair. Now, even though the first starting eigenvector is orthogonal to
the desired one, the equations arising during the first of Newton’s iterations can be
solved in such a way that the desired eigenvector is produced from the first step: zero
pivots must be replaced by small numbers on the order of the machine unit roundoff
(as is done in inverse iteration; see INVIT [17]).

Finally, we mention that the deflation process can contribute to the improvement
of the condition of the eigenvalues. Indeed, if A and A’ are pathologically close (and
fairly distant from the rest of the eigenvalues), then by deflating A, A’ will have a better
condition number as an eigenvalue of the resulting matrix. Indeed, A’ is no longer part
of a cluster.

4.2. Case when Ho is defective. It can happen in this case (e.g., if H is nondefective)
that the initial dividing process would leave us with a number of initial approximations
that is smaller than n. In this case, random eigenvectors are used to complete the set
of initial eigenvectors. Furthermore, whatever eigenpairs we have can be extremely
poor approximations to the desired ones. An extreme situation is illustrated by the
matrix

0 0 0 1

1 0 0 0
H=

0 1 0 0

0 0 1 0

No matter where the zero is introduced on the subdiagonal, the resulting matrix
has zero as its only eigenvalue, and we only have two initial approximations to the
four distinct eigenpairs of H, namely,

0 0

1 0

0 0

0 1

if the zero is introduced in the (3, 2) position.
Furthermore, the Jacobian is exactly singular at each of these initial approxima-

tions. Indeed, the Jacobian at

0

1

0

0
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0 0 0 1 0

1 0 0 0 -1
0 1 0 0 0

0 0 1 0 0

0 1 0 0 0

which is clearly of rank four, since the first and the last columns are linearly dependent.
Similarly, it can be seen that the Jacobian at

0

0

0

1

is also singular. A remedy to this situation is to perturb the initial guess zero by a
small amount, thereby making the Jacobian nonsingular. Indeed, this has been success-
ful in practice. The problem in this case, as in most other similar cases, results from
the particular structure of the matrix. In order to obtain further eigenvalues, we need
to deflate the matrix each time a new eigenpair is computed which makes the algorithm
almost serial.

4.3. Known failures. Some matrices of the structure mentioned at the end of 4.2
(companion-like matrices), provided us with the only cases where the algorithm failed
in practice to converge to the desired eigenpairs, i.e., failed to produce eigenpairs with
small residuals after a fixed number of iterations. When these matrices were subjected
to random orthogonal similarity transformations, however, and then reduced back to
upper-Hessenberg form, the dividing process provided us with much better initial
approximations and, indeed, the algorithm converged for all initial approximations.
We are certainly not advocating this as a general viable scheme: we want to emphasize
the fact that it is the structure of the matrix that caused the poor approximations and
the failures, and not some inherent difficulty with the spectrum of these matrices.

5. Convergence. In 2, we mentioned that computing an eigenpair of H reduces
to computing a zero of

The Jacobian of Fs at (x, A) is

Hx AxFs(x, A)= ex-1]"

{D,(Hx-Ax)D(,,F(x, A) \ Dx(er 1) D,(eT -1) =\ eT

where Dx(F) denotes the derivative with respect to x of the function F. In this section,
we give sufficient conditions for the convergence of our procedure. The result is a
version of the Kantorovich theorem as it applies to our case.

THEOREM 5.1 (Wilkinson). Assume that (x, A) is an exact zero of Fs. Then

is singular if and only if A is multiple.
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Proof. Let us assume first that A is a multiple eigenvalue of H and that x is the
corresponding (exact) eigenvector. Then there exists a nonzero vector y such that

yH(H-AI)=O and ynx=o;
y is simply a left eigenvector of H corresponding to A. Thus (yHO) is a nonzero vector
and

er
=0.

This proves that the Jacobian is singular.
Now, conversely, if

is singular then there exists a nonzero vector () such that

But then v=0 and (H-II)v=x. If =0, then v is nonzero since (,) 0, and so
v is an eigenvector that is linearly independent of x, since x 1 and
is a multiple eigenvalue in this case. If 0, then v is also nonzero; if it were zero
then we would have

x=(g-av=(-aO=O,
and hence x 0, contradicting our assumption on x. But (H- II)v (H- II)x 0,
and thus v is a nonzero vector that has grade 2. Therefore, I is multiple in this case
as well.

Remark. Since we are assuming that H is upper-Hessenberg and unreduced, an
eigenvalue can only be nonderogatory, i.e., the associated eigenspace has dimension
one.

The previous result applies to the Jacobian at a zero of F. We wish to know more
about the Jacobian at those approximations arising during Newton’s iteration before
convergence to an eigenpair.
ToM 5.2. Assume that (x, ) is not a zero of F. en

is singular if and only if at least one of the following is true:
(1) is an eigenvalue ofH and has an eigenvector whose sth component is zero.
(2) x belongs to the space generated by (c,..., Cs_, c+,..., c), where c is the

ich column ofH-II ( may or may not be an eigenvalue).
Proo Assume first that (1) is true and let y be an eigenvector, y 0. Then ()

is clearly in the null space of the Jacobian. If (2) holds and x=(H-II)y with y=0,
then () is in the null space of the Jacobian.

Conversely, if the Jacobian is singular then there exists a vector () such that,
H-II

This implies that

(N-I x, e2y =0,
and clearly y 0. We now consider two cases according to whether is zero or not.
If is zero, then I is an eigenvalue with corresponding eigenvector y; therefore, we
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are in case (1). If/ is not zero, then/x and hence x is in the range of H AI; therefore
we are in case (2) since Ys 0. Note that A may or may not be an eigenvalue in this
last case. D

Remarks. The theorem tells us that more often than not, a singular Jacobian is
an indication that the current eigenvalue has already converged, and this has been our
experience indeed. The singularity of the Jacobian is also an indication of an ill-
conditioned eigensystem. In fact, if we accept that the current eigenvector was moving
in the "right" direction, then if it satisfies condition (2) of Theorem 5.2, we can say
that the eigenvalue is acting like a multiple one since the eigenvector is also in the
range of (H-hi). In practice, we have not encountered a situation where condition
(1) applied. If we accept again that the eigenvector was moving in the right direction,
then condition (1) implies that the eigenvalue is acting like an eigenvalue of geometric
multiplicity more than one (since xs 1), which is impossible since the matrix is
unreduced.

The second derivative of Fs is a constant bilinear operator with norm equal to 2.
In fact,

F(x, )=
0 0 0

Suppose now that our procedure is started with initial guess (Xo, ho). We now give
sufficient conditions for the convergence of our procedure with the given initial guess.
Let us first introduce

K--llF’-l(xo, Ao)ll
and

where (Xl, A1) is the first iterate, i.e.,

(x,, A1)T= (Xo, Ao)T_ F,s-1 (Xo, Ao)F(xo, Ao).
We call (Xo, ho),. (Xk, hk) the sequence of iterates produced by the algorithm. Now
the classical Kantorovich theorem [6] gives the following result.

THEOREM 5.3. If flo--Kc, then the sequence (Xk, hk) converges quadratically
starting from (Xo, ho).

The process can be regarded as starting from any of the iterates (xi, hi), and in
fact it will often converge even when the conditions of the theorem are not satisfied
at (Xo, ho). These conditions will then be met for some (xk, Ak) at which stage conver-
gence becomes quadratic.

6. Parallel algorithms: Details and performance. It is fairly straightforward to see
from 2 how to obtain a parallel algorithm. We discuss here certain details. The given,
generally dense, matrix is first reduced to upper-Hessenberg form using a parallel
blocked algorithm. Next comes the partitioning phase or "divide." This phase amounts
to constructing a binary tree with each node representing a partition into two subprob-
lems. It has been our practice to partition the matrix into a number of subproblems
(at the lowest level) equal to the number of processors available on the target machine.
Each of these problems may be spawned independently without fear of data conflicts;
the computation at this level (the lowest) consists of calls to the EISPACK routine
HQR2. The tree is then traversed in reverse order with Newton’s method applied at
each node, using the results from the children as initial approximations. Note here
that the computation at a node does not have to wait for both children to complete
in order to start: as a matter of fact, it can start as soon as one child has computed
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one eigenpair of a subproblem. In order to stress this point, we mention here that this
is quite different from the situation in the symmetric case [7], where information from
both children is needed before computations can start at the node. However, in practice,
we have allowed computations to start at a node only after at least one child has
completed; the need to check for duplicate eigenvalues and deflate if necessary has
imposed further synchronization.

The algorithm has been implemented on computers with a shared memory and
computers with distributed memory architectures.

6.1. Shared memory implementation. So far we have used SCHEDULE [8] to
implement the algorithm on shared memory computers. SCHEDULE is a package of
FORTRAN and C subroutines designed to aid in programming explicitly parallel
algorithms for numerical calculations. An important part ofthis package is the provision
of a mechanism for dynamically spawning processes even when such a capability is
not present within the parallel language extensions provided for a given machine.

6.2. Distributed memory implementation. The current implementation on dis-
tributed memory machines requires that the matrix be stored on each processor. This
obviously puts rather severe constraints on the size of problems that can be solved.
With this implementation however, communication is needed only during the deflation
phase. This implementation is best described through the contribution of a particular
processor. Suppose that we have four processors at our disposal, Po,..., P3, and that
accordingly the matrix H has been divided into four subproblems, Ho,..., H3, that
their common size is n/4, and that they occur in this order on the diagonal of the
matrix. We describe now the contribution of P2 by steps"

1. Call HQR2 to solve for the eigensystem of the matrix H2.
2. Refine the output from step 1 to get 1/2 the number of (i.e., n/4) eigenpairs of

the matrix H1/2

where H1/2 is a submatrix of H.
3. Refine the output from step 2 to get z the number of eigenpairs (i.e., n/4) of

the matrix H.
As can be readily realized, no communication between processors is ne’eded except

for checking for eigenpairs to which convergence occurred from more than one initial
approximation. For example, the eigenpairs of HI/2 are generated on P2 and P3, and
therefore we need to check for duplicate eigenpairs (on each processor separately,
which requires no communication, and across both, which requires communication).

We are currently developing another implementation where blocks of columns of
the matrix are stored on different processors. This storage scheme has been dictated
to us by the need to call HQR2 at the lowest level. Indeed, to call the serial HQR2
requires that contiguous columns of the matrix reside on the same processor. Therefore,
storage schemes more advantageous for linear system solving, such as wrap mapping
of columns or rows, could not be used. The communication between processors for
this second implementation is more intensive. Communication is needed when solving
the linear systems arising in Newton’s iterations as well as for the deflation phase.
Also because ofthe storage scheme, we can expect the processors to become successively
idle during the factorization of the Jacobian and the back solve for the correction.
However, we have implemented an efficient scheme where the Jacobian is repartitioned
by rows before the back solve takes place: the "reshuffling" of the submatrices takes
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place between processors that became idle after doing their part of the Gaussian
elimination.

7. Work estimates. We assume in this section that we are given a real dense matrix
A. Then, the first task in our algorithm is to reduce A to an upper-Hessenberg matrix
H. This requires 10n3/3 operations (plus lower-order terms) if elementary transforma-
tions are used, since these matrices are to be accumulated.

The dividing process is now applied to H. Assume that n 2"r for some m >_-1,
where r is not necessarily relatively prime to 2. In order to simplify the subsequent
analysis we will assume that the dividing process produces submatrices of equal size,
namely half the order of the original matrix. If we repeat the dividing process rn times,
we end up with 2" matrices of size r, each of which is upper-Hessenberg. A submatrix
of size n/2 obtained in the dividing process will be referred to as a matrix at the level
i. The matrix H itself is at the level 0, and the r matrices referred to above are at the
level m. Thus we have m + 1 levels in total. Let p’= 2" be the number of submatrices
at the lowest level, and p the number of processors; we will assume that p 2q, q <_- m.
The cost of finding the eigenpairs of a (Hessenberg) matrix at the lowest level (by the
QR algorithm) is roughly 18 (nip’)3. This figure is very approximate and assumes,
among other things, that two QR steps are needed before a real or two complex
conjugate eigenvalues are identified, and that the matrix has an equal number of real
and complex eigenvalues [9]. Let sl n/2 be the size of one matrix at the level I. Let
kl be the average number of iterations needed to get one eigenpair of a matrix at the
level I. kl depends on the matrix and on its size, of course. We will make the following
simplifying assumption, however: kl k, 0,..., m, i.e., we assume that the average
number of steps required for convergence is the same at all levels. Our experience
with the algorithm suggests that this is a realistic assumption as long as the size of the
submatrices remains moderate. If the number of levels is increased to the point where
we are left with small submatrices (less than 20 20, say), then kl becomes significantly
larger as increases (for very small matrices it can be more than 10 on the average).

The cost of computing one correction at the level is roughly 6s/. Indeed, one
Newton iteration involves the solution of a linear system that is upper-Hessenberg,
but for possible nonzeros in the last row, the order of this linear system is Sl+ 1.
Therefore, two multipliers at most must be computed per column and, when updating
the matrix, each of these will be used in 2(Sl d- 1--i) multiplications and additions,
where is the index of the column. The factorization of the Jacobian requires 2s
operations in addition to O(s) operations (including divisions and comparisons). The
forward solve is O(Sl) work and is negligible. The backsolve requires s operations
and computing the residual requires another s operations. Therefore, for a real current
approximation, one correction comes at the cost of4s. For a complex current eigenpair,
this becomes 16s since the dominant operations are a roughly equal number of
multiplications and additions. Since, as we indicated in 2, only one of a conjugate
pair of complex eigenpairs must be corrected, we can assume that 8s operations are
required for correcting a complex eigenpair. Assuming again that the matrix has an
equal number of real and complex eigenvalues, our estimate for the amount of work
required for computing one correction at the level becomes 6s/2 operations.

We shall use nip initial guesses to start nip Newton processes on each processor.
We now have the following work estimate on one processor, assuming that all processors
share equally the cost of all the stages of the algorithm

Wp-
3p

+ 18 + 6 ks+2--,
/=0 p
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where lOn3/3p is the processor’s contribution to the reduction of the original matrix
to upper-Hessenberg form; 18 (p’/p’)(n/p’) is the cost of applying the QR algorithm
to p’/p matrices of size nip" m-1 6(n/p)ks is the cost of solving k linear systems1=0

with matrices of size Sl, repeating this for nip initial guesses and for l=
0,..., rn 1; 2n3/p is the processor’s contribution to the computation of the eigenvec-
tors ofthe original dense matrix A once those ofH have been computed. The expression
for the work can be rewritten as

Wp -- + -;5+--1-
But p’--2" and therefore p,2= 4,, and hence

(13) Wp=--- --+8k+(18-8k) 4--
where for ease of reference we redefine the various parameters: n is the order of the
matrix, p is the number of processors, k is the average number of Newton iterations
needed before an eigenpair is accepted, and rn is the number of zeros introduced on
the subdiagonal.

The cost of getting the eigenvalues and eigenvectors by the QR algorithm is 15n
[9]. A reasonable value for k is 3; however, there are cases when k is 2 or less. There
are also cases where k is larger than 3, mostly with matrices of small order or defective
matrices.

It is easy to verify that for k 2 and for rn 1 (one split) the model for the cost
of the algorithm predicts that a sequential implementation of our algorithm is faster
than EISPACK’s Real General (RG). Our model predicts that a sequential implementa-
tion of our algorithm is slower than RG for problems where k equals or exceeds 2
(see Fig. 2). Here are some sample values of Wp, assuming that k 3 and p p’= 2’,
which means that the original problem is subdivided into a number of problems equal
to the number of available processors.

p= 128-> Wp 0.2291n3; p= 1024-> Wp 0.0286n 3.
Here we have assumed that the problem is large enough to allow the efficient use of
that many processors. Note that the ratio of the work estimate from our model to the

10

FIG. 2. Variation of the coefficient of n in work estimate model in terms of the number of steps k, with
m and p (see expression for work).
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work estimate of QR is independent of n. This is due to the simplifying assumption
on k made at the beginning of this section. That assumption has in effect "hidden"
the dependency on n of the coefficient of n in our model. Figures 2, 3, 4, and 5 show
plots of the work estimate for various values of the parameters involved.

We note, finally, that the cost of our algorithm will increase when the matrix or
the subproblems obtained in the divide process are ill conditioned (see 4 and [12]).
Furthermore, repeated deflations will also contribute to an increase in the cost.

8. Numerical results and performance. In this section we present the results of the
implementation of the algorithm on a number of machines. The serial version of the
code is available through NETLIB where it is called "nonsymdc."

The same algorithm has been run on the IBM RS/6000-550, the Alliant FX/8,
the Intel iPSC/2, and the Intel iPSC/860. We compared our results to those of HQR2
from the EISPACK collection. We have used randomly generated upper-Hessenberg
matrices in these tests, with entries uniformly distributed between -1 and 1; deflation
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FIG. 3. Variation of the coefficient of n in work estimate model in terms of the number of splits m, with
k 3 and p (see expression for work).

FIG. 4. Predicted speedup over QR in terms of number of splits m, with p 2 and k 3 (see expression

for work).
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FIG. 5. Predicted speedup over QR in terms of the number ofprocessors p, with m log2p and k 3 (see
expression for work).

was not performed. The storage requirement for our algorithm in a serial implementa-
tion is 4n2+ O(n), which is twice the storage requirement for a serial implementation
of HQR [17].

Table 1 provides the results from the IBM RS/6000-550 implementation. The IBM
RS/6000-550 is a single-processor computer with a RISC-based architecture. In the
last column we have given the number of distinct eigenvalues that was computed by
our algorithm (the test matrices had no multiple eigenvalues); some eigenvalues were
found multiple times. Each matrix was divided into two subproblems, i.e., only one
zero was introduced on the subdiagonal.

In an implementation on a shared memory machine, the storage allocated to the
Jacobian (in serial mode) is multiplied by the number of processors used; this is meant
to prevent concurrent write to the same memory locations. Table 2 provides some
results from the Alliant FX/8 implementation. The Alliant FX!8 is a parallel machine
with eight vector processors.

TABLE
Results on IBM RS/6000-550.

Order HQR2 D&C Ratio HQR2/D&C Distinct

100 1.04 1.12 0.93 99
200 9.31 9.18 1.01 196
300 34.1 28.1 1.2 293
400 94.0 65.3 1.4 395
500 196 136 1.4 490
1000 1741 992 1.7 1000

TABLE 2
Results on Alliant FX/8.

Order No. of procs. Levels Ratio HQR2/D&C

100 2 1.7
4 2 2.4
8 3 4.0
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The results on the Alliant were generally disappointing. The storage scheme for
the Jacobian that we used on that machine seems to have inhibited the compiler’s
vector optimizations. HQR2, running on a single processor, was vector optimized.

Table 3 provides some results from the Intel iPSC/2 implementation. The largest
size used was dictated by the memory capacity of a single node.

Table 4 provides some results from the Intel iPSC/860 implementation. We observe
here that the speedups realized by our algorithm over the QR algorithm do not remain
linear for a large number of processors. This is due to the fact that our algorithm is
much less efficient on small matrices, and we had to work with small matrices when
the number of processors became large. For example, with a matrix of order 600 and
using 64 processors, matrices of average size 20 had to be solved on each node at level 5.

TABLE 3
Results on iPSC/2.

Order No. of procs. Levels Ratio HQR2/D&C

100

200

300

1.22
2 2.2
4 2 3.7
8 3 6.0

16 4 8.2
1.16

2 2.2
4 2 3.5
8 3 5.2

16 4 9.1
1.25

2 2.2
4 2 3.2
8 3 6.3

16 4 9.8
32 5 13.2
64 6 21.3

Order

TABLE 4
Results on iPSC/860.

No. of procs. Levels Ratio HQR2/D&C

100 1.15
2 1.9
4 2 3.3
8 3 5.1

400 1.24
2 2.4
4 2 3.2
8 3 6.0

16 4 8.4
600 8 3 7.5

16 4 13.5
32 5 23
64 6 32
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9. The generalized eigenvalue problem. We show here how the ideas behind our
algorithm can be used to solve the generalized eigenvalue problem.

9.1. Basic algorithm. Given an upper-Hessenberg matrix H and an upper-
triangular matrix U,

0
v=

0
we want to solve the generalized eigenvalue problem

(14) Hx )t Ux.

Without loss of generality, we can assume H to be unreduced and U to be nonsingular
since otherwise the problem reduces to a smaller problem. Then our algorithm general-
izes easily. Indeed, set

Ho= H- e+e[,
and consider solutions of (or approximations oD
(15) Hox A Ux,

as initial approximations to the sought eigenpairs. More precisely, solving (15) reduces
to solving

Hx A UlX and H22x A U22x.
Let us denote these solutions by (, A1),..., (,, A,) (we have n solutions because
of our assumption that U is nonsingular). These can be used to construct initial
approximations (x,A),..., (x,,A) to the eigenpairs of the original generalized
eigenproblem in much the same way we did in the case U I. More precisely, we take

if i E tr(Hll, Ull), and

if )tie 0"(H22 U22 (appropriate number of zeros in each case).
Finally, solving the generalized eigenvalue problem (14) above is the same as

solving the problem

Hx A Ux O, L(x) l,

where L(x) is a scalar equation, which we take to be a normalizing condition: erx 1.
Then for each initial eigenpair (xi, Ii), successive corrections can be computed via

e
a - a "JI- X X + y,

where

t’i A Ux Hx

A possible stopping criterion for this scheme is the condition

Hxi li Uxi =<f(  )11H U
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where f(n) is a modest function of n. It is easy to see that starting from two complex
conjugate initial guesses the algorithm will compute complex conjugate corrections,
therefore allowing savings similar to those in the case U--L

9.2. Deflation in the generalized case. The method of deflation presented in 3.1
generalizes to this case in the following manner. Let Hx ,,X Ux (of course, in practice,
we only have an approximate eigenpair). Then it is true that if w Ux then wn 0.
Indeed, if w, 0, then it can be shown that w is zero using the fact that H is unreduced.
U being nonsingular implies that x is zero, which is not true.

Let

and

We know that or(H, U) is the same as o-(NHM, NUM) for any nonsingular M and
N. For our purposes, we take

M=[el,...,e,,_l,X]

and

N--[el,... en-1, U].

Then it is easy to verify that we have

(16) NHM NUM
ce "Y 0

where H’ is upper-Hessenberg, U’ is upper-triangular, and

(17) / =;.

In fact, in this particular case we have 3’ A and 6 1. Clearly,

(H’, C’) (H, U)-{X}.

Therefore, having "removed" A from the spectrum we can get further eigenpairs. We
note that, just as in the case U =/, H’ and U’ are very cheap to obtain once N has
been determined. Indeed, H’ differs from the n- 1 n- 1 principal submatrix of H
in the last column only, whereas U’ is the n- n- 1 principal submatrix of U. The
computation of N requires a matrix-vector multiply.

It is also easy to verify that deflating two consecutive complex conjugate eigenpairs
results in real H’ and U’.

The condition number of N might raise concern. We have

cond (N) max (Iw, I)
It is therefore easy to detect an ill-conditioned N. We propose to handle this situation
in the generalized case in the following manner. Let D be a diagonal matrix with its
diagonal elements di defined by

di 1, if =< 1,

di
w,,

if
Iw,



PARALLEL ALGORITHM FOR NONSYMMETRIC EIGENVALUE PROBLEM 569

Then, clearly,

tr(DNHM, DNUM) or(H, U),

since D is nonsingular. The multiplication by D cancels all the large entries in the
last column of N. It is easy to see that (16) and (17) are satisfied when the premultiplica-
tion is done with DN instead of N. The disadvantage of having to premultiply by D
is that after the deflation of two complex conjugate eigenpairs, the resulting H’ and
U’ might still be complex.
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