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I this pager, we desenbe a parallel mplementation for the redoction of general and symmeiric mairices o
Flessenberg and tridiaganzal form, respectively, The methods are based on LAPACK sequentzal codes and use
a panel-wropped mapping of matnices 10 nodes, Besalts from experiments on the Intel Touchstone Delta are
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1. Introduction

In this paper, we are concerned with the parallel mplementation on distribuled memory
MIMD parallel computers of the LAPACK routines for performing the reduction to Hessen-
berg form and the redugtion oo fridiagonal form, These reductions are an important [rst slep
in the computation of the eigenvalues of matrices.

The LAPACK project is an effort to update the classical linear alaebra sofiware packages
LIMPFACE and EISPACK w0 allow more efficient use of shared memory or traditional
supercomputers. Efficiency s attained by writing these routines as mich as possible in Level 2
and 3 BLAS [5, 6], reducing the ratio of memory accesses 1o floating point operations
executed and allowing for encapsulation of paralle]l operations on shared memory architec-
tures.

While parallel implementations of algorithms for solving linear systems have been widely
studied [4, 9], the reduction to condensed form has not enjoved the same attention. A parallel
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unblocked Hessenberg reduction algorithm based on column wrapped storage is given in
(1, 11]. Tm [#], 2 reduction bascd on Gaussian transtormations = reported. The reduction of
svmmelric malrices assuming row wrapped and grid wrapped storage is addressed in [2, 3]
Chir spproach s different in that we start with highly efficient sequential code [7]. Efficiency
on each node s attained by use of Lewel 1, 2, and 3 BLAS, Communication 15 through a
proposed communication library, the Basic Linear Algebra Communication Subprograms
(BLACS] [1], which makes the code portable.

The paper i= crganized as [ellows: Assumptions and notation are given in Section 2, As an
introduction to the paralle]l implementation of blocked algorithms, unblocked alponthms and
their paralle]l implementation are given in Section 3. Blocked versions are discussed in Section
4. Besults from experiments on the Intel Touchstone Delta system can be found in Section 5.
Concluding remarks are given in the final section.

2. Assumptions and notadien

We will assume that our multicomputer consigts of p nodes, labeled Fy,.... £, _, which
are connected by some communication network that allows broadeasting of messages and
combining of global data Cin the loom of glebal summation),

For cur formulac, we adopt the following notation: Scalars, vectors, and matrices are
denoted by lower case Greek, lower ¢ase, and upper case arabic letters, respectively. The ith
clement of a vector is denoted by a corresponding greek letter with subzcnipl ¢y, 1. 1y, and
v, [or vectors x, v, » and o, respectively) Given a wector x, the vector consisting of its
clements £ .., 7 15 denoted by x . Given matrix A, the submatris consisting of elements of
rows i,....J and colemns k,....! is denoted by [ A, g I 2l rows are invalved, the
notation [A], .. will be used. Superscripls are gpenerally reserved for ileration indices,

We will use the following mapping of matrices to nodes; Given 4 € 8% and panel width
i = 1, assume for simplicity that = =r = and partition

__ql..l..l - [AIIU ‘,-!I.EJ-.I ..._I,-II:J-'J]
where AV e R"™™ is a panel of width s The panel-wrapped storage scheme assigns A 1o
node B jymod e 1AL 38 Ay Ay are assigned o P If mo=1, the result is the
familar coltmr-wrapped storage scheme [9). For notational conventence, we defline j £ 2 1o
be true i and only il column § of the matrix is assigned o node P

The basic operations utilized by the reduction algorithms are the computation and
applicatien of Householder transformations:

Theorem 1, Sieen & vecior x £ BT, one can fied a vectar w S R and sealar § 5.1
(F=fuu )=y, ... ¥ £1,0,.. T

witere o = || 2. ol 3

Indeed, & =10,....0, ¥s,00 F Keyareroaxo) and = :',_l.-"rrfr: will give the desired result,
The sign is chosen to correspond to the sign of y. . |, thereby minimizing roundofl error in the
computation of .

The transformation = Bueu’ will subsequently be denoted by %00, where here the
superscript indicates that elements x,..., ¥, are not affected. This notation is consistent with
the previous use of superscripts since in the reduction alporthms the Flouzeholder transfor-
mation computed during the Eeh iteration has this property. We will also vse the pair Ca, &)
to denote the transformation, e (u, §)=H*"x) will denote the veetor u and scaler B st
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H* N xy=(F— Buu") Since & and B are not uniquely defined, we will always take u to he

normaleed s that ot kas 2 unit Lth element,

J. Unblocked algorithms

In this =ection, we explan how simple alponthms for the reductions 10 Hessenberg and
tridiagonal forms for the cigenvalue computation can be implemented on sequential and
paralle]l architectures,

A0 Seguennal pmplemeniation; Hessenberg redieiion

The reduction of matrix 4" = 4 to Hessenberg form can be written as A" " where
VR R quR g CAY gkt = 0 L pp Uy L L ik g iE)
Here A < HUNLARY L L) Letting (e, 8) = H™)
ARTD = Rl gty o g8 = T — BT
where
pT=a"d'% and  w =A% — B du) e (1}

This yiclds the following algorithms for reducing & matrix (o Hessenberg form:

Algorithm 2z Hesvenberg reduction.
do k=1,..., 0 —2

compute {n, Bl = HENT A ],.__.'.]

ol =5l

w=_An — Bln e

update 4 = A = Gup” = Gwu’
enddo

2.2 Bequential fmpdementation: Tridagonal reduciion

If A4 iz symmetric, then Equations (1) can be replaced by y = 834w and o =w =y —
A2 8 T, and the matrix is being reduced o cridiagonal Torm, In this case, it is only
necessary (o update the lower triangular part of matrix A at cach iteration.

2.3 Parailel implemeniation: Hessenberp reduction

Given p processing nodes £y, P, our parallel implementation will assume that the

columns of A have been assigned o the nodes in column-wrapped tashion.
Thiz choice of assignment allows us o parallelize Algorithm 2 as follows:

L. For all k, updating of column j of matrix 4 is performed by node F,

2, Dwring the &th iteration, the computation of (x, B is performed by Fosuch that K= R,
L B e e After which it is distributed to all nodes.

3. Subtracting the jth column of Bue” from column § requires only jth element of o, vy, 10
be known to the node that owns column J. This is convenient, since », = u'[A], ;, which
can be formed by this node once w has been received. This means o can be computed in
parallel, leaving the different elemenis of v on the nodes that compuied them.
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4. Subtracting the jth column of gwu” from column § requires bath vy and w=Au o be
known to node By, Yector we R i computed as [ollows: Let B, equal the
wolumps of A that are assigned w node PoIF the corresponding elements of & are
appropriately packed into a vector &, then Au =Y . v, where v, = B.u®, Hence Au
can e formed by ficst computing partial results y, in parallel on all nodes, followed by a
plobal summation of the partial results, leaving A on all nodes, Mext, A =1 y and w
can be formed, Motice that there i 2ome Onsignilicant) redundant compultation in this last
step, since all nodes perform the same computation.

The resulting parallel implementation of Algerithm 2 5 given by the [ollowing pseudo-code

that drives each node P

Alporithm 32 Pargllel Hessenberg redvciion,

I=index of nade i)
do k=1,...,.n=2 izl
itk =P then i)
canputel i, ﬁ']'—Hl'.‘:l:[.--l]H_k'] [4)
proadeast (o, @) to all nodes i3l

alsa iz
receive (i, ) (7)

¥, =10 i&)
deoj=k, i (2
itjEP, (1)

J':_:-I-I'T.-q {§4)
yi=y;+uldl,; (12)

enddo {13

gsun ¥ = ¥ {14)
w=y—3u"yh {13)
dej=k,n, {1a)
itiEF, then update [A], =[Al, - Beu-Buw 7

enddo {1a)
cnddao {1

Statement {74) indicates that v is the result the global summation of vectors ¥ A minor
redundancy exists since all processors compute w once v has been computed. This can be
avercame by replacing statements (14) and (13) by
vy=¥,— Blu"yh {part of length = (1 — j)/p) {14)
GEUR W =, {15
=0 Lthat all processors participate in subtracting ,Bf.'.:T_l.-“.l.'r before the global summation.

LA Parallel fmplementarion: Tridiagonal reduction

Parallel implementation of the reduction (o tridiagenal focm for a svinmetne A procesds
similacly, with one major difference: Since only the lower trizngular part of matriz A contains
useful information, we compute ¥ as follows: Let A =1 + 8, where L and R equal the lower
triangular and strictly upper triangular parts of A, respectively. Notice that BT equals the
slrictly lower triangular portion of L, and hence both are assigned to nodes in column-wrapped
fashion. Mow v =i = Lue + e can be computed b
v, =0
doj=k, #

1fjel then
=+ u L],
¥ =¥k "-'_.[-R]:!.:-.:I:= ¥, ik 1-'_.[-{-] )
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enddo
¥i= ¥~ BTy (part of length = (n — /) /p)

gaun ¥ = Ly,

4. Blocked algorithms

[n [7] 31 iz shown how recreanizing portions of the above algorithms in terms of Level 3
BLAS viclds algorithms that perform considerably better on computers with veclor processors
and Sor hierarchical memories. In this section we discuss sequential blocked algorithms for
reduction to Hessenberg and tridiagonal form as well as their parallel implementation,

4.1 Requential inplesentadion: Blocked Hessenberg reduciion

We first consider how the application of s Houscholder transformations can be combined:

.Ir_lr|i'-|-|||| s lr_‘rl'.l.':-_.ll:.'c'l.lr_élrkj tint lﬁ'lv-ﬂu] —__ulflk:'— Llll__.r'l'_ ) 'I':‘ {2]

whers
LD ) b ;| et
(U] 0 gsrs 8) = HEB([A50], )

!'l‘_,.-]* g1 ="'1“_'”1[U] & g4l

= (AR =[] (MR [H"']1-_|:_-[L.']-r‘.l'.-:l.l[ul*-.'*'
1|.-'=.-"]':v_"|['£"-]+__,-n
_{AIH_[UIF [ .I[P]?’l 115 [H"r]* M .l[['I *.1: -':I[“]H'“']

(W] e yra=w—B{wT U] e e Uk par:

The peneral strategy Tor reccganizing Algorithm 2 now becomes:

Fartitton the matrix into panels of width m.

For k=1, compute matrices UL F, and W by computing the seccessive Houschelder

transformations. (Motice that for given J, in order o compute w, only the (& + 7 1h column

af A" needs to he formed.)

3, Update A"+ = 4" — T — BT (Note: only columns &k +m,...,n need 1o be up-
dated, since columns &, ..., & &+ o — | were npdated during the computation of L) 1, and
M)

4. Repeat for K=mr -+ 1, 2 -F 1,

Matice that the third step can now bu: writien a8 two matrix-matrix operations, The bualk of the

formation of the matrices reguires @ Malrix-veclor operalions.

b —

£ 2 Neguensial impleseeniaeion: Hlocked inidiagonal reduciion

The blocked algorithm for the reduection to ridiagonal form for the symmetric problem is
reorgantzed similarly, except that in this case W= I, so Equation 2 becomes

hr-:i—---] s A ”U-::_.-!U-:IHIZ%:' e ”-:-"n"'"l] —..-"[”':'— L.'I_.-'T_ |,.-',l__rT

and only the lower iriangular portion of A is updated.
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4.3 Preallel implementarion: Blocked Hessenberg reduciion

We now describe the parallel implementation of the blocked reduction to Hessenberg
form. We will use panel-wrapped storage, where the panel width corresponds to m, the width
of the pancl used for the sequental blocked algorithm.

Understanding how to perform the computation in parallel iz closely related o how
matrices LV, F,oand B must be distributed in order o be able to perform the update in
Equation 2. Partition 7 like 4%

I__.-T_ {[_,-IT V]T e, I"':T}.

If we update A on node B, ... then U, B and I, must be known (o this node, Hence
wi must compute these matrices in such a way that U5 and B eventually reside on all nodes,
while 1T is pancl-wrapped distributed among the nodes,

Finally, we examine how the computation of £/, ¥, and W can be distributed among the
nodes. Assume the computation has progressed 1o where panel 5 s being reduced, ie
k=15 — 1m + 1, Assume the first j columns of U, 14, and B have been computed and are
distributed as desired. The computation of the (f + 1381 column of these matrices proceeds as
ol loows:

L On node F,_ o, form the (4 st column of the current panel of A"

(A e = DAL
=4 JJ\ T [{"']'.1.;EF]I'.+.-.I:.- o [w]:.l:_.'[u ]Ilr'.:l'f
Since
L PRI N I A PR

all information for this operation is available on this node,
2,00 P \ynod o compute (0], 0, B) and distribute to all nodes.
3. Mexrt, we musl [orm three intermediate resulis,

L= [F]T‘.I..:[U]ll-.fll
y=[UTL U ) 54
&= [;'F]:-:.J:jEU]Lfl i

The first requires partial sums of vectors to be accumulated on each processor, followed by
# global summation of the resulis, leaving the cesults on all processors. The latier fwo can
either be computed in the same way or they can be computed separately on each
processor, leading to redundant computation, but less communication overhead.

4, Assuming x, v, and z have been computed,

[F]H,,:rl_""jlﬂ-r[f-"l]h_lu _[F]t_l:,n-r_[u]f.l:_.'z

can be computed, leaving the resulting column distributed among the nodes.
5. Computing Wy ;4\ requines

'I-'-'—.-‘II.":'[{-'.]'__,HI I.{".JH.]..F'E_[HF]*'I':".}.

]

o be computed, Just like the computation of w in Algorithm 3, this proceeds in two stages:
columns of A*' on ecach of the processors are summed afler being multiplicd by
appropriate clements of [U'], ;. Next, each of the vectors [L7], | x and [W], | ¥ is
partitioned inte p approximately equal subvectors and computation of each subvector s
assigned W a node. After cach node computes its seclion of these two vectors, and
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subtracts them from the partial sum of columnsg, a global summation compuies the desired
w, leaving the result on all nodes,
f, Finally,

[w]4._|a| =“'_||3[""'l[{"l]q:._--I}[U]m.fl|
i= formed on all nodes.

4.4 Parallel fmplementation: Biocked tridiagonal reduction

The parallel implementation of the redouction to tridiagonal form for symmetric A
proceeds similarly, Consider the steps given in Section &.3: In Step 1, [W], ., =[V], ,.; In
Step 3, z=x, which can be either formed separately on all nodes or distributed among the
nades, which requires a global summation; Steps 4-6 are merged, where [W], . =[V], ;.
15 computed by

.!'"=.|H|:_-""Ir"l'.][{"l] # j+l T [Flt.l:_.-’-'_ [L'I]a.r.--"']

[[":]:-cl_i—l —— I-":?-ﬁl:[{'l-]l":i-l}ljl[u]*.\_l'fﬁ.
where .HA'*J[u]HJI p Is computed using the same trick as in Section 3.4,

5. Experiments

[ this section, we report the performance of the parallel reduction algorithms on the Lzl
Touchstone Delta svstem wsing the Portland Group compiler and assembly coded single
precizion BLAS routings by Kuck and Associates, Portability is enhanced by use of the
BLACS, as mentioned in the introduction ',

The Intel Touchstone [Delta svstem is a distributed-memory, message-passing multicom-
puter of the Multiple Instruction Multiple Data (MIMD) class developed jointly by the
Defense Advanced Rescarch Projects Agency (DARPAY and the Intel Corporation [12]. 1t is
comprised of 20 i860-based nodes, each having 16 Megabytes (Mbytes) of memory, intercon-
nected via a communications network having the topology of a two-dimensional rectangular
grid, (Scaling is not restricted to a power-of-two increment typical of hypercube topologies.) It
has a peak performance of = 32 Gigaflops double precision, = 440 Gigallops single precision,
and an ageregate system memory of = 8 Crigabytes. The interconnection network employs &
Mesh Fouting Chip (MEC), developed at the California Institute of Technology, al each
gyatem node. Each MEC provides five channels, one for its associated node and four for its
adjacent neighbors in the two-dimensional mesh, The channels are comprised of two,
unidirectional buses: one for data flow into the MEC, one for data flow out of the MR, The
peak interprocessor communications bandwidth is = 30 Mbytes /s in each direction. The
system supports explicit message-passing, with a latency of = 75 microseconds via worm-hole
routing wsing & packet-based protocol. Imterconnect blocking is minimized by interleaving
packets associated with distinet messages which need o raverse the same interconnect path.

5.1 Reduction to Hessenberg form

Fignre I shows the performanse of the parallel reduction to Hessenberg [orm as a funclion
of the problem size noand the block size nb for p= 128 Performance s most influenced by

UL ol ths BLACS increass commuanicaiion semewhal since an exira memory 10 memory copy |5 pequired 10 lead
communication bullers for the brogdeas! opesilsn.
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Fig. 1. Tolal compulatian time for 128 rodes when 2 = 2000 and the blck size 2y, is varted. The space hetwesn twa

carves cquals the tme spent in the indicated operation, The fimes Tor the global sum (CESUIMY and broadeass
TBCASTY include some idle time that = due 10 load imbalance.

the performance of the Level 2 and 3 BLAS, From this graph, it can be concluded that sh = 3
vields reasonable performance. We will use this block size in subsequent discussions,
Communication overhead is the main contributor o the reduction in performance, as can
be seen from Figs £ and 2. In particular, the global summation and broadcast operalions are
major contributors to the total execution time. This is not supprising, considering a broadeast
of a vector of length (M) and global summation of vectors of length n is required for each
column of W that = formed (n addition to the summation of at least one smaller vector.)
The performance attained as a functicn of prablem size is clear from Fig. 2. In this graph,
ab =3 and performance 15 given for varous numbers of nodes. The overall performance s
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Fig., & Allocation of execution time when p= 138 and the problem size o 05 varsed. Apain, 1he space Beiween Do
curvied eqquals the tome spent an Lthe indicated opesatim. The bkck size equals 2b = 3 and mb = 12 for the Flessenberg
and tridingonal reduction, respecively.
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reduction, b = 3, for U ridiagonal reduction, i = 12,

somewhat disappointing: The LAPACE reduction routine on a single processor altains about
45 Mflops.

5.2 Reduction vo tridingowal form

Figure 1 also shows the execution time for the parallel reduction to tridiagonal form. From
thiz graph, it can be concluded that large block sizes yield better performance. This is due to
the fact that during the update given by Equation 2 the submatrix must be updated one panel
al a time, since the lower triangular part of the matrix A 5 wrapped onfo the processors, For
the same reason, the performance of the matris-vector product {BLASZ) 15 affected. Mear
aptimal performance is attained for blocksize b = 12,

The overall performance of the reduction to tridiagonal form s worse than that of the
reduction to Hessenberg form (Fig. 3 This can be explained as follows: The number of
floating point operations is reduced by a factor 25 as compared to the reduction to
Hessenberg form. The time spent in the broadcast iz unchanged. The time spent in the global
summalion is approximately halved. As a result, the ratio of communication o computation is
higher than for the reduction to Hessenberg form. Sill, by taking advantage of symmetry, the
execulion tme g reduced from about 800 seconds to about 330 seconds for a B000 = 2000
problem on 128 nodes,

G. Conclusion

We have demonstrated that the LAPACK code for reducing a malrix (0 Hessenberg or
tridiagonal form can be rewritten for current gencration MIMIDD distributed memory compul-
ers inoa relatively straight forsard manner.

On the Intel Touchstone Delta, efficiency is hampercd to & large degree by the cost of
communication and the synchronous nature of the algorithm, IC larger problems are solved,
this becomes less significant, Although the Intel Touchstone Delta system has sufficient
memory [0 store matrices of order 25000, we limited curselves o problems that required less
than 30 minutes o complete.
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W have started to investigate different methods for mapping matrices o nodes, In [13], we
show that wrapping onto logical torl greatly improves the performance of the LU factorization
on the [ntel Touchsione Delia, Future work will include the investigation of using this storage
method for the reduction algorithms,
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