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Absirger: In this paper we desenbe block algonthms for the reduction of a real 5._1.l|:'nn're;:|:ri|:. Malrix Lo :rid;i:@n:.nal farm
ond for the reduction of a general real matrix to cither bidiagonal or Hessenberg lorm wsng Householder
transformations, The approach 15 1o aggregae the wransformations and w apply them in o hlocked Toshion, thes
achieving algorithms that are rich in matrix—mairix operations, These reductions (o condensed form wypically comprse
a preliminary step in the compuration of cigenvalues or singular valoes, With this i mancd, we also demonsirate how
the mial redwction 1 teidhagonal or hudiagonal form may be pipelined with the divide and conguer technigues for
computing the sigensvsiem of a symmstric mainix or the singular value decomposation of a general matnx o achiave
algorithms which are load balanced and rich m matrix—matrix operstions.
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1. Introduction

The key to using a high-performance computer effectively 15 to avold unnecessary memory
references. In most computers, data flows from memory into and out of registers and from
registers into and out of functional umits, which perform the given instructions on the data.
Algorithm performance can be dominated by the amount of memery traffic rather than by the
number of floating-point operations involved. The movement of data between memory and
registers can be as costly as arithmetic operations on the data. This provides considerable
motivation Lo restructure existing algorithms and to devise new algorithms that minimire data
MICVvETEnt,

Along these lines thers has been much activity in the past few vears involving redesign of some
of the basic routines in linear algebra [7.9,10]. A number of researchers have demonstrated the
effectiveness of block alzorithms on a variety of modern computer architectures with vector-
processing or parallel-processing capahilities, on which potentially high performance can easily
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be degraded by excessive transfer of data between different levels of MEMmory (Vector registers,
cache, local memory, main memory, or solid-state disks) [1-4.8,10,1 2]. The redesign has led to
the development of algorithms that are based on matrix-vector and matrix—matrix techniques
[2.,14].

Thiz approach to software construction is well suited o computers with a hierarchy of
memory and true parallel-processing computers. A survey that provides a description of many
advanced-computer architectures may be found in [6). For those architcctures it is often
preferable to partition the matrix or matrices into blocks and to perform the computation by
matrix—matrix operations on the blocks. By organizing the computation in this fashion we
provide for full reuse of data while the block is held in cache or local memory. This approach
avoids excessive movement of data to and lrom memory and gives a surface-ro-volume effect for
the ratio of arithmetic operations o data movement. Le., O{n") arithmetic operations to Ofn?)
data movement. In addition, on architectures that provide for parallel processing, parallelism can
be exploited in two ways:

(1) operations on distinct blocks may be performed in parallel: and

(2) within the operations on each block, scalar or vector operations may be performed in
parallel.

For a description of blocked implementation for Cholesky factorization, LU decomposition, and
matrix multiply and the specifications for a set of building blocks o aid the development of
block algorithms, see [3].

Many of the most successful algorithms lor computing eigenvalues or singular values of
matrices require an initial reduction to condensed form. Typically, this condensed form is well
suited Lo the implementation of an underlying iterative process used o compute the eigenvalues
or singular values. We present block algorithms suitable for computing three different condensed
forms. These are the reduction of a symmetric matnx (o tridiagonal form, and the reduction of a
(real) general matrix to either upper Hessenberg form or bidiagonal form. The reduction of a
symmetric matrix to tridiagenal form dominates the computation of eigenvalues if no eigenvec-
tors are required and represents about half the work if both eigenvalues and eigenvectors are
sought. A similar remark is appropriate for the reduction of a general matrix to bidiagonal form
in preparation for the computation of singular values. When the full cigensystem or singular
vilue decomposition is desired, divide and conquer technigues are appropriate for both of these
computations, and we shall discuss how to pipeline the reduction to condensed form with a
divide and conguer scheme,

2. The algorithm: reduction to tridiagonal form

We usually think of applying a sequence of Householder transformations to reduce the
original symmetric matrix to symmetric tridiagonal form. We apply the transformations as
similarity transformations 1o preserve the eigenvalues of the original matrix. The process can be
dezcribed as Tollows;

Pl —uu, belee, =2,
T= .Ir:_: J J'EP]J"LI”].P} -k .In_,:_z.
Each transformation P, is designed to introduce zeros in the ith column {and row) of the matrix
telow the subdiagonal (and above the superdiagonal) so as to leave the upper part of the matrix
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mn tridiagonal form and the lower part full and symmetric. At the ith step of the process, the
matrix 15 of the form

f ¥ X
N
el
A L I
L R e P e |
R S
R L R T el
T LR e e T

To describe the algorithmic details of this reduction. we uze the notation A1 55w denole
the (2 — i+ 1) = (n —j+ 1) submatrix of A beginning at the (7, /) location of 4; we denote the
subvector of a veclor & beginning at the ith position by &' ", and the ith component of a
vector @ by a''’, The vector w, is constructed from the ith column of the reduced matrix so that

a;= —sign(af*V)[af* V), wl* = sqni(l - af*V/a,),
I = et LS L ult =0,
In practice u, is constructed and applied to the martrix as [ollows:
w=un,, oo =3 — H vl )y, A=A, —u,v] — o). (2.1)

In the process A i repeatedly modified by a symmetric rank two update. This requires updates
tor half the (# — i) % {n — i} elements of the symmetric matrix at each stage of the process. (There
are numerous ways o eomstruct Houscholder vectors [14]) we have chosen this approach for
simplicity and numerical properties.)

Te achieve betler memory utilization we can consider aggrezaling a sequence of transforma-
tions, say p of them, so that the matrix will be updated by a rank 2 p symmetric matrix. Such an
implementation would be as follows: instead of explicitly updating the matrix with the rank two
change, we form only the second column (row) of 4, say a,. We then update a, by applying
(2.1} in the following way:

(23

3
ﬂ]ﬁfl'_;._[ﬂ I

Ay
oy — 4Dy

From this we can compute w5, and y, would be formed as v, = A,u,. However, we have not
explicitly formed A,. We can construct v, as follows:

V= A,
= {4, — o] = oy Y,
= Aytey — (o 0y Jury — o] 0y ) 1y
We could then explicitly form 4, as a symmetric rank four update as follows;
.-"i:‘ﬁ..-"!_;.—i-r;[-'.{—{-‘zn';
= Ay — gt = D] — Uty — byl
We could have continued the process and in general found for a rank 2 p update
A=A — 0 A
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whers
it Sl W SR R Y
U= (g, Ugyeney 8,00 Vo= {2y, U308, ) 8, =¥, — ¥ wou, Ju,,
"
3 Al T T {p+1: 8} e+liH e+ 1 [E+13,,
Your = (A = UVT = U u, . alfili ot mglidtom = 57 (pletly, 4 yle+thy, ),

Thus, A,., can be formed by a rank 2p symmetric update that is rich in matrix-—matrix
Operalions.

Algorithm 1
L and V are temporary » X p arrays, which are reused for each iteration of the & loop
n 15 the order of the malrix
P iz the blocking
N=(n—2)/p
for k=1, &
s={k—-1p+1
for j=s5,54p=1
=1
a,=a,— ¥ (v Ve, +ul* )
a,= —signialft Uy alit i),
up "M =sqryfl — al Y sa)
J‘I.:E_n_-,:_;.q] e ITI'J_:E:"];I[&'H.EJ:TI:I}
¥=(4, 5 b_’,_r_,ij'[, — ¥, UL
=y 2Ly )y
U= (U, )
V= (¥ 0)
el
L= '[-'L-,u--h Ml
perform symmelne rank 2 p update on subwmairix
.-_..t-:s+.:-:.-.-.s+;~:.-:-_|__[“1 ath .[_,.']-"'T l_.-{.ln'i'.:ll_n-_n'-:-i.s—.'-:.-:]

end

MNote that for the following algorithms we assume that if in the construction of the House-
holder transformation, which takes x to (o, 0,...,0)', if the max,_, | x;| = &|x;|, where £ is
the maching precision, then the transformation 15 skipped.

L' iz a lower trapezoidal matrix with the first column having its first non-zero clement in
position s + 1 and the pth column having its first non-zero element in pogition 5 + p. Nolce that
to aggrezate the Houscholder transformations during the construction of the vector p, we
perform a matrix—vector multiplication with the submatnx A, in the § loop. :

Algorithm 1 constructs & block transformations and applies them to the matrix. We will call
this a righi-foaking algoricthm. Notice that at each of the & stages we are updating a submatnx of
size (n—s+ 1) (n—s+1) We can further reduce the amount of data referenced by the
following algorithm.
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Algorithm 2

for k=1, ¥
s={k—1)p+1
Apply the previous k — 1 block transformations to A= "5 s2r=1
Compute U, and ¥,

end

At each stage of this slgorithm we arc only modifying an (n — 5 + 1) % p matrix. We will call
this algorithm the feff-looking wlgorithm. This algorithm will require an access to the submatrix

A, in the loop; however, it avoids an update of the matrix at the end of the & loop.

3. Reduction to Hessenberg form

Mot surprisingly, the same approach can be used in the reduction to Hessenberg form. Here
we have

H=P" '\-"'P}PH"IP]P}"'P_,, )

£

where H 15 upper Hessenberg, The idea of using a rank two or higher update in this conlext was
discussed in [9]. Here it is convenient to use shghtly modified formulas to those in [9] given by
ik e L e oA 1 T
.]':‘J-AJ u.:'l "3.:-"‘].:r"lr"' ['II .]'.I_.:lql"'l ”r_.lur'- W, =2, — E[.H H.]Hf'
el o el Pl e o )
A=A, — e —wu, .
When A is symmetric, y, =z, and v, = w, and these equations are as in the tridiagonal case. The
vector i, is computed from the same equations as for the tridiagonal caze. Here A is updated as

Ay =4, — UVT — WU,

where
U=, tp,..., i,), V=0, 03....,0,), W= {w,, wy,...,w ),
.-"':Fi-l = I:."'r];r = '[,.-'{_er == 'I‘-"IW'}H,D-I-]I 'Tr.-1-l o [‘4-1 T 'L'rl‘f.r AH ”rbr.[ }HJ‘ 1=

U, F, and ¥ are trapezoidal, but £ and M are not.

4, Beduction (o bidiagonal form

A problem that 12 closely associated with the eigenvalue problem is to compute the Singular
Value Decomposition (SVD) of a real m x n matrix. A. This decomposition is directly related o
the symmetric eigénvalue problem in that the singular values of 4 are the sguare roots of the
cigenvalues of the symmetric positive semidefinite matrix A4, It is numerically preferable 1o
avoid formation of 474, and the algorithm of choice involves an initial reduction of A to upper
bidiagonal form & through a sequence of Householder transformations 1o obtain

A=UBpT
with & and V¥ v_:n:rth-::rgcvnﬂl and & upper hidiagonal.
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This initial reduction may be treated with an algorithm similar to those already presented. In
this case

£5 - PJ..I.  pae P;'IP;'}] Qg -2 Oanas

Uiz an m » m Houscholder transformation and each @ =I—u el is an

where cach P, =1 — e,
i ¥ n Householder transformation. Again we may achieve efficient r::u_:rnnr:.r utilization hy
aggregating a sequence of transformations, say p of them, so that the matrix will be updated by a
matrix of rank 2p. Howewver, there are data dependencies within this reduction that require
additional aftention.

Let ws suppose for the moment that the sequences {w,} and { &, } can be computed at will. In

general,

(F— " Y A(T—m" ) = A — aw’ — yT,
where

y=ude, r=A"w and w=zr- [u"}‘}lu:

sge [9] for more details. Thus, a straightforward extension of the tridiagionalization scheme
presented in Section 2 gives the following algorithms:

Alrarithm 3

U and ¥ are temporary s % poarrays, which are reused for each iteration of the & loop
I and W are temporary n x p arrays, which are reused for cach iteration of the & loop
n is the number of columns in the matrix

mo1s the number of rows i the matrix

P is the blocking

N=(n—-2)/p
for k=1, N
s={k—1)p+1

for feg s+p=1
compule
'CDmFI'IJt': lf'
':"!_E*',—lu" =R —|}'5*

n-m A A L;’,}u.f

i
;=h, —{z: )J,jnu
J'.a""*f{.-’.l, r-'J
F—rl’_,,:]
W= (W,_y, w;)
}‘l_i}._r—la _,II
cnd
'Lfr=L's+,v—| il
P gy FE W

,.':e'.l;n"r.a-.'m .la.lz.i. 2 o wpdade on submatrix
_I.I'I:S'i',"': REtpIR) [f] Ler_r'l' i }.r[__-"l':ll:.\'l'll.l. sitping
end
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Unfortunately, it is not so straightforward 1o compute u, and v, at will. At step § of the usual
bidiagonalization process, the vector u, 15 non-zero in the jth entrv. Hence application on the
left by the corresponding Householder transformation alters the Jth row of the reduced matrix
A; and knowledge of this row is required to compute the vectlor u#; which is non-zera in the
S+ 1st entry. The dependencies now become even more complicated because it would appear
that the transformation corresponding to v, must be applied from the right belore Myyq can be
computed and so on. However, we note that the above algorithm will be valid il there is an
independent formula for computing the v, since the w, may be computed as in the previous
algorithms by knowing the jth column of the reduced matrix, Indeed, there is an independent
formula for computing the &, which may be found by noting that

VATV = B"B=T
where V= 0h¢}, --- @, _, is precisely the sequence of transformations that would be computed

i Algorithm 1 to reduce the matrix A4 1o tridiagenal form 7= B'H. This leads to the
following procedure for computing the o ;

Procedure compute ¢
i=1
-

» =“r:ﬂ(s:.r—.1—1;-_ l. |:l-',.3'-'f’.l'”—'.:-.'I.rj::"H]]

J ]
r=gz

i e 1 (a1
f_,— —.*\Lgnl_.??,“'r ',|||-}‘l ik 3
A1 [1 _ L+ 1) !
v} sqrif1 — 2 ML)
At ral — i+ 2rm) o i1
z".-"'r S "J'J . -"'lilll.i.-'r’fJ 'I

(= |: A A= e

L . .
] X_-'—l.["::]ll‘-'n _l_.!r=__qi'=.-'r|..-'..-r'|
V1T
Xy El_ r.-"!'l.':"!{.-

"Tnl o f'll:. 15 -:l'._l.::l

Computation of the u, only depends upon the jth column of the reduced matrix being in
place before the fth step. Therefore, the column-oriented formula given in Algorithm 1 may be
adapted to give

Procedure compute i
_l:. 'I
o ] {5+ 1} Y
'ﬂ_,l -'H_I o L I:_‘I"rlill"ll +.]'."!"n: P }

re=g
o= —signlaf” | al |
«f = sqre{1 - al?/a,
u,:;_l'-l-'l:r.u| = _HEJ-L.I:IWI.I'I.[“_IH_.IH:I]
If these two procedures are substituted for “compute #” and “compute v in Algorithm 3,

then it be well defined. In all of these we do not explicitly form the indicated matrix products.
Instead, the matrix—vector products are accumulated.
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5. Relationship to the WY-factorization

The algorithm presented here for aggregating Householder transformations is closely related
to the WY -representation for the product of Householder matrices presented by Bischof and Van
Loan [2]. The relationship is most clearly seen in the contexts of the QR-factorization of a
general rectangular matrix. The WY -representation has the following form:

QR-Factorization {Bischof and Van Loan)
i 15 the number of columns in the matrix
P iz the blocking

N=n/p
for k=1 &
s={k—1)p+1

for j=s s+p—1
£=1
a;=a,— 2, zu; where z; = Au,
[
cowpite Householder pector u,
NED§Y _ pyrlar i=T) Tarinti1} )
et (1P i T e g i i
end
perform rank 2 p wpdate on sebmairix
.."1“_": REspin) AI:S'F,"': REs+pIR] L.lj-"l'{{i'l-p..ll.: +EinAl

enid

If one implements the reduction along the lines of the algorithm described in Section 2, the
factorization can be described as follows:

QRE-Factorization (Alternative Algoritho)
it 15 the order of the matrix

P iz the blocking

N=n/p
for k=1, N
s={k-11p+1

for =5, 864+p—1
i=1

ey Ty
a;=a;= }, oy,

[l ]
compute Howseholder vector u
'!::I: — |;_.-'t,: s F.kl:j."l_h{"TL =111 ]H‘.
e
perform rank 2 p updare on submaleix
‘-_[{'r Fpimadpin] — [ = L;I_;Tmlls—p: LR 1]

end

The two differences between the block algorithms are in the formation of v, and ¥, and also in
the update of the matrix 4. For the Alternative Algorithm the vector ¢, is updated using the
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submatrix A, and the Bischol and Van Loan algorithm uses information from u, and ¥;*/ Ly
Thus the Bischof and Van Loan algorithm will have fewer accesses 1o the data. In the update of
the matrix A for the Bischof and Van Loan factorization, the update is of the form

._4"!.:4-_[! HE-FIR] .._dl:.'\.—.'.':ﬂ.'\. tBZa} L."}.I'TA[.:-JT:.: rI_|1'||:|;
and for the alternative factorization, the update is of the form

._4"!54-,": n,F+pIH] l-_,II:.‘i—ﬁ':n.'\.'I-ll.l..n."l s LIrI_.rT.

The Alternative Algorithm incorporates the information aboul the matrix A in the matrix P,
We can describe the reduction to tridiagonal form for the symmetric eigenvalue problem using
the Bischof and Van Loan approach as

Ay = (1= USUT) A, (1 - USUT).

If we multiply out and combine terms, we can reduce the expression o
A=A, — ZUT = [FZT

whire
W=AUST and Z=W-=3050TW

which is of the form described in Section 2.

With the WY -representation it is simple to apply the set of transformations to another matrix,
as is required in back substitution for the eigenvector computation; one simply applies {(f — WY
to the matrix. To apply the transformation using the formulation in Section 2, one can use the
Houscholder vectors to construct the matrix § such that f— USEUT can be used to apply the
transformations o the eigenvectors of the symmetric tridiagonal matrix, back transforming them
to the cigenvectors of the original problem. The matrix S i a p % p upper triangular matrix
whose & th column s Tormead as follows:

(F— USUTWI — ™) = = up" — USUT + USU Tae”

! |'T_ fT 'I' o o ro T
-"!I_['L'IIHHRL .T.-I'..- i |=f—[.!'_.r:_z.:]|‘5 — &L |:4'H|L'“ |
~ ) sl
S0 the new column of & is
|'. —8SUTy .'l
'. 1 _|I

6. Pipelining reduction to condensed form with determination of eigenvalues

Recently. algorithms have been developed based upon divide and conguer strategies for the
determination of eigenvalues and singular values for a matrix in condensed form [11,13), These
methods are also rich in matrix—matrix operations and mesh very well with the block reductions
presented here, This is accomplished through pipelining the initial phase with the computation of
eigenvalues and back transformation of eigenvectors. These considerations are of little conse-
quence on serial computers but have significant performance advantages on parallel-vector
PrOCEssOrs.
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Fig. 1. Partitioned matrix.

We use the bleck reduction algorithm as described above to introduce zeros in a block of the
matrix; zay we are at the & th stage and have just intredeced seros into the & th block, As we start
the next block reduction, on the & + 1st block, we can start in parallel the eigenvalue computa-
ticn on that part of the ridiagonal matrix generated from the &b block reduection of the matrix,
When we have completed eigenvalue computations from two tridiagonal segments, we can use
the technique applied in the divide and congquer algorithm as described by Dongarra and
sorensen [11] to determine the eigenvalues and eigenvectors of a pair of tridiagonal matrices.
Then the eigenvalues of successive pairs of blocks can be [ound, then pairs of pairs, etc,, until the
full set is determined. When the reduction to condensed form and the divide and conguer
strategy are used in this pipelined fashion, a highly efficient parallel algorithm can be con-
structed.

This discussion i85 made more explicit in the following example. We consider a symmetric
matrix that is to be partitioned into four block columns as shown in Fig. 1.

Let us associate A, with the process of reducing the kth block A, of the partitioned matrix to
tridiagonal form using Houvscholder transformations. Thus H, executes a block step of Al-
gorithm 1 (see the & loop) on the block A, In this algorithm we have the possibility of spawning
paralle]l processes, Processes may cooperate in applving the resulting transformation shown in

frdprm rbpin) [s4piR.a+p0a) T T
A =4 UV = v

in parallel. Let us denote these parallel processes by M, so that process M, |, is responsible for a
portion of the work in the matrix multiply in the performance of Algorithm 1 by process H,.
On completion of process A the tridiagonal matrix Ty, is exposed and the algorithm TQL2
may be applied to compute the eigensystemn of T, alter the rank one tearing has been computed.,
Let us denote this process by E,.
Omce processes £, and £, have completed, then the sigensystem of

T R R T e i R P . LSRR |
(D A lo 5|*# }'[“"]"3'-"]|| TR (6.1)
. R 21{ el e o of

may be computed wsing the rank one updating scheme. Similarly, once processes £ and ¥, have

completed, the eigensvstern of diag( Ty, T,) may be computed. Finally the entire eigensystem may
ke obtained through rank one updating of these two eigensysiems. Let us denote these processes
as Uy, UL and U, respectively. With the proper storage arrangements these processes obey the
large-grain control flow graph of Fig. 2. In this control flow graph a node denotes a process, for
example, a subroutine name together with the pointers to the data which the subroutine is to
operate upon. A process P becomes schedulable or ready (o executle when there are no incoming
arcs to the node representing process . This signifies that all of the data dependencies for
process £ have been satisfied through the completion of the processes that it was dependent
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E5
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___.-I' \H"'-\.
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o -{'. P Il.-:l '\-.\.
L
Fiz. 2. Large-grain contred (low graph.

upon. This graph indicates that processes M, can execute immediately. Once they have
completed, H; may report o iy and this process may execute and spawn processes M, . Al the
same lime | reports o process £, and it may begin exccution, When E; and E; have both
completed, process U] may start and so on.

To accumulate a matrix of eigenvectors, the successive Householder transformations must be
multiplied from left to right in the order they are apphed:

&= h (1—2eu) (6.2)

r=]

and we observe that when accumulated this way, successive applications of 7 — w,u/ affect only

the last # — i + 1 columns of £ Thus, application of the Givens transformations associated with
E, may be applied as soon as the products of the Householder transformations associated with
H, have been multiplied out. These iransformations may be applied independently of the
computation of H, for k = 1 because these matrices affect columns that are independent of the
columns affected by £,

When we do not wish 1o find eigenvectors, there is ne reason to store the product @ of these
Houscholder transformanons. Nor 13 10 pecessary o accumulate the product of the successive
gigenvector transformations resulting from the updating problem. That 15, we do not need to
overwrite ) with

et R
'L*—_.|II o Q:!IQ

where (2, and ¢}, are the matrices appearing in equation (6.1), {Z" is the matrix of cigenvectors
for the mierior matrix m (6.1, and £ iz the matrix appem'}ng in (6.2) above, Instead, we may
simply discard @. Then the vector g, may be formed as 1) is transformed to £ in (2.2) by
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accumulating the products of the transformations constructed in TQL2 that make up ¢, against
the vector ep. I there iz more than one division, then & will have been calculated with the
updating scheme. In this case we do not calculate all of ) but instead vse the component-wise
formula for the eigenvectors to pick off the appropriate components needed o form g, (for
details see [11,13]).

7. Operations counts and storage

An analysis of the number of floating-point operations (counting additions and multiplica-
tions} for the reduction 1o tridiagonal form of the standard algorithm reveals an operation count
af

Int + int + In— 25 flops.

[n aggregating the transformations to perform the block reduction, additional work is required in
the formulation of v, in Algorithm 1. The additonal work for a block size p amounts o

(2p— '+ f—{%lﬁl—1p+ %:In+ [—-?;p"‘—-#p]-

floating-point additions and multiplications being performed.

The algorithm can be crganized so that the vectors &, overwrite the lower part of the matrix
(as we do in the standard wersion of the software), but additional workspace of size n = p is
required (o store the current block of V.

8, Experimental results

The results in Table 1 were generated on an Alliant FX /8 computer using eight processors.
The Alliant FX /8 12 a parallel processor where each of the processors has veclor resisters and
can perform vector operations. The results in Table 2 were generated on the CRAY X-MP using
SF [ B e T ]

Tahle 1
Ratio of exeoution times (specdups) borween the EISPACK routine and the blecked verston on the Alliant FX 8
{Blocksiee =100

DOipder Ratio Fatio
TREIN ATEEL CHETHES AORTHSE
100 1.54 250
20D 1.4 .01
A0 240 321
ArH1 134 3,33

S0 1.1 46
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Table 2
Pato of execntion umes (speedups) berween the EISPACK routine and the Blocked wversion on the CRAY X-MP
{ Blocksize = 11

{ircler Fanno Ratio
TEER S TRELDE OETHES AORTHSE
100 1405 TR
20D 1.10 1.52
K 1.1 1.63
AH 1.23 1.79
S04 128 1.92
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