A Proposal [or an Extended Sct of Forlran
Basic Linear Algebra Subprograms

Jack J. Dongarra!t

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, lllinois 60439°

Jeremy Du Croz

Numerical Algorithms Group Ltd.
NAG Central Otfice, Mayfield House
256 Banbury Road, Oxford OX2 7DE

Sven Hammarling

Numerical Algorithms Group Ltd.
NAG Central Office, Mayfield House
1258 Banbury Road, Oxford OX2 7DE

Richard J. Hanson

Applied Math 2648
Sandia National Laboratory
Albuquerque, New Mexico 87185

Abstract —This paper describes an extension to the set of Basic Linear Algebra Subpro-
grams. The extensions proposed are targeted at matrix vector operations which should
provide for more efficient and portable implementations ol algorithms for high perfor-
mance computers.

Part 1: The Proposal

1. Introduction

In 1973 Hanson, Krogh, and Lawson wrote an article in the SIGNUM Newsletter
(Vol. 8, no. 4, page 16) describing the advantages of adopting a set of basic routines
for problems in linear algebra. The original basic linear algebra subprograms, now
commonly referred to as the BLAS and fully described in Lawson, Hanson, Kincaid,
and Krogh [7.8], have been very successful and have been used in a wide range of
software including LINPACK [4] and many of the algorithms published by the ACM
Transactions on Mathematical Software. In particular they are an aid to clarity, porta-
bility, modularity and maintenance of soltware and they have become a de facto

TWork supported in part by the Applled Mathematical Sciences subprogram of the
Office of Energy Research, U. S. Department of Energy, under Contract W-31-109-
Eng-38.

standard for the elementary vector operations.

Special versions of the BLAS, in some cases machine code versions, have been
implemented on a number of computers, thus improving the efficiency of the BLAS.
However, with some of the modern machine architectures, the use of the BLAS is not
the best way to improve the efficiency of higher level codes. On vector machines, for
example, one needs to optimize at least at the level of matrix-vector operations in
order to approach the potential efficiency of the machine (see [2 and 3]); and the use
of the BLAS inhibits this optimization because they hide the matrix-vector nature of
the operations from the compiler.

We believe that the time is right to propose the specifications of an additional set
of BLAS designed for matrix-vector operations. It has been our experience that a
small set of matrix-vector operations occur frequently in the implementation of many
of the most common algorithms in linear algebra. We define here the basic operations
for that set, together with the naming conventions and the calling sequences. Rou-
tines at this level should provide a reasonable compromise between the sometimes
conflicting aims of efficiency and modulerity and it is our hope that efficient imple-
mentations will become available on a wide range of computer architectures.

We encourage readers interested in such a standardization effort to contact us
with their thoughts on the subject. Indeed we wish to solicit alternative ideas and
encourage discussion.

In this paper we shall refer to the existing BLAS of Lawson et al. as ‘“‘Level 1
BLAS"” or “Existing BLAS", and the proposed new set as '‘Level 2 BLAS" or “'Extended
BLAS”. The Level 2 BLAS involve O(mn) scalar operations where m and n are the
dimensions of the vector involved. These could be programmed by a series of calls to
the Level 1 BLAS, though we do not recommend that they be implemented in that
way. Hence, in a natural sense, the Level 2 BLAS are performing basic operations at
one level higher than the Level 1 BLAS.

We plan to make available a complete set of Level 2 BLAS in Fortran 77 so that
software developers without access to specific implementations can make use of
them. We also plan to develop a test program so that implementations of the
extended BLAS can be thoroughly tested before being distributed. We intend eventu-
ally to submit the test program and the Fortran 77 version of the routines for publica-
tion as an ACM algorithm.

2. Scope of the Extended BLAS

We propose that the following three types of basic operation be performed by the
extended BLAS:

a) Matrix-vector products of the form
yvadr +y, y ~adTz +y, and y*-aA”z +y
where a is a scalar, z and y are vectors and 4 is a matrix, and
ze Tz, z+«TTz, and z « THz,

where z is a vector and T is an upper or lower triangular matrix.

b) Rank-one and rank-two updates of the form
AvazyT+ A, Avazy? + A4, H ~ azz¥ + H, and H « azy? + ayz? + H,

where H is a Hermitian matrix.

¢) Solution of triangular equations of the form
z e« T2,z TTz, and z « T4z,
where T is an upper or lower non-singular triangular matrix.

We propose that, where appropriale, the operations be applied to general, general
band, Hermitian, Hermitian band, triangular, and triangular band matrices in both
real and complex arithmetic, and in single and double precision.

See Part 2 of this report for examples to illustrate the uses and advantages of the
proposed routines, and an example to illustrate the implementation of the routines is
given in Appendix A.

d Naming Conventions

The proposed name of a Level 2 BLAS is in the LINPACK style and consists of five
characters (except for four routine names with six characters). The fourth and fifth
characters in the name denote the type of operation, as follows:

MV - Matrix-vector product
R1 - Rank-one update
R2 - Rank-two update
IV - Inverse matrix-vector product
(i.e., solution of a set of linear equations)

Characters two and three in the name denote the kind of matrix involved, as follows:

GE - General matrix

- Geheral band matrix

- Hermitian matrix

- Symmetric matrix

Hermitian matrix stored in packed form
- Symmetric matrix stored in packed form
- Hermitian band matrix

- Symmetric band matrix

TR - Triangular matrix

TP - Triangular matrix in packed form

TB - Triangular band matrix

CESSAES

The first character in the name denotes the Fortran data type of the matrix, as fol-
lows:

- REAL

DOUBLE PRECISION

COMPLEX

COMPLEX*16 or DOUBLE COMPLEX (if available)

NOOwWm
'

The proposed available combinations are indicated in the table below. In the first
column, under complexz, the initial C may be replaced by Z. In the second column,
under real, the initial S may be replaced by D. See Appendix C for the full subroutine
calling sequences.

The proposed collection of routines can be thought of as being divided into four
separate parts, complez, real, double precision, and complez*16.., Each part will
include a separate testing program. The routines proposed are written in the ANSI
Fortran 77 standard with the exception of the routines that use COMPLEX*16 vari-
ables. These routines are included for completeness and, because the Fortran stan-
dard does not provide for this variable type, may not be available on all machines.

Table 3.1
complezx real MV R1 R2 IV

CGE SGE *+ *t

CGB SGB *

CHE SsYy ¢+ * *

CHP Ssp ¢ * *

CHB SsB *

CTR STR * *
CTP STP * *
CTB STB * *

We do not propose routines for rank-one and rank-two updates applied to band
matrices because these can be obtained by calls to the rank-one and rank-two full
matrix routines. This is illustrated in Appendix B.

4. Parameter Conventions

We propose a similar convention for the parameter lists to that for the existing
BLAS, but with extensions where comparable parameters are not present in the exist-
ing BLAS. The proposed order of parameters is as follows:

a) Parameters specifying options.

b) Parameters defining the size of the matrix.
¢) Input scalar.

d) Description of the input matrix.

e) Description of input vector(s).

f) Description of the input-output vector.

g) Description of the input-output matrix.

h) Error indicator.

Note that not each category is present in each of the routines.

The parameters that specify options are character parameters with the names
TRANS, UPLO, and DIAG. TRANS is used by the matrix vector product routines as fol-
lows:

¥ For the general rank-1 update (GER1) we propose two complex routines: CGER1C
for A «azy¥ + A and CGER1U for 4 + azy” + 4. This is the only exception to the
one to one correspondence between real and complex routines and the only ex-
ception tc the five-character naming conventions. See section 7 for further dis-
cussion.

Value Meaning

* 'or'N' Operate with the matrix.
T Operate with the transpose of the matrix.
'c Operate with the conjugate transpose of the matrix.

In the real case the values 'T' and ‘C' have the same meaning.

UPLO is used by the Hermitian, symmetric, and triangular matrix routines to
specify whether the upper or lower triangle is being referenced as follows:

Value Meaning

‘g Upper triangle
‘L Lower triangle

DIAG is used by the triangular matrix routines to specify whether or not the
matrix is unit triangular, as follows:

Value Meaning

RON Unit triangular
‘N’ Non-unit triangular

When DIAG is supplied as ‘U’ the diagonal elements are not referenced.

It is worth noting that in Fortran actual character arguments may be longer than
the corresponding dummy argument. So that, for example, the value ‘T’ for TRANS
may be passed as 'TRANSPOSE'.

The size of the matrix is determined by the two parameters M and N for an m by
n rectangular matrix; by the parameters M, N, KL, and KU for an m by n band matrix
with &l sub-diagonals and ku super-diagonals; and by the parameters N and K for ann
by » symmetric or Hermitian or triangular band matrix with & super- and/or sub-
diagonals.

The description of the matrix consists either of the array name (A) followed by
the leading dimension of the array as declared in the calling (sub) program (LDA),
when the matrix is being stored in a two- dimensional array; or the Fortran array
name (AP) alone when the matrix is being stored as a (packed) vector. When A is not
band, then in the former case the actual array must contain at least (m + d(n-1))
elements, where d is the leading dimension of the array and m =n for a square
matrix; and in the latter case the actual array must contain at least n(n +1)/2 ele-
ments.

The scalar always has the dumnmy argument name ALPHA. As with the existing
BLAS the description of a vector consists of the name of the array (X or Y) followed by

the storage spacing (increment) in the array of the vector elements (INCX or INCY).
The increment is allowed to be negative, zero, or positive. When the vector z consists
of & elements, then the corresponding actual array argument X must be of length at
least (1 + (k-1)]INCX]).

The final parameter of each routine is an error indicator INFO which is set to:

0 if the operation is successfully completed.

i>0 if the i® parameter has an illegal value on entry.

-i <0 if an attempt is made to compute z « T"z, z « T-Tz,
orz + THz, and the it* diagonal element
of T is exactly zero.

The following values of parameters are assumed to be illegal:

Any value of the character parameters DIAG, TRANS, or UPLO
whose meaning is not specified.

M < 0 for GE and GB routines.

N < 0 for all routines.

KL<OorKL<M-N orKL>M-1 for the GB routines

KU<OorKU<KN-M or KU>N-1 for the GB routines

K< OorK>N-1 for the HB, SB, and TB routines.

LDA < M for the GE routines.

LDA < KL + KU + 1 for the GB routines.

LDA < N for the HE, SY, and TR routines.

LDA < K + 1 for the HB, SB, and TB routines.

Note that it is permissible to call the routines with M or N = 0, in which case the rou-
tines exit immediately without referencing their vector or matrix arguments.

§. Storage Conventions

Unless otherwise stated it is assumed that matrices are stored conventionally in
a 2-dimensional array with matrix-element a;; stored in array-element A(LJ).

The routines for real symmetric and complex Hermitian matrices allow for the
matrix to be stored in either the upper (UPLO = ‘U’) or lower triangle (UPLO = 'L’) of
a two dimensional array, or to be packed in a one dimensional array. In the latter
case the upper triangle may be packed sequentially column by column (UPLO = ‘U’),
or the lower triangle may be packed sequentially column by column (UPLO = ‘L').
Note that for real symmetric matrices packing the upper triangle by column is
equivalent to packing the lower triangle by rows, and packing the lower triangle by

columns is equivalent to packing the upper triangle by rows. (For complex Hermitian
matrices the only difference is that the off-diagonal elements are conjugated.)

For triangular matrices the parameter UPLO serves to define whether the matrix
is upper (UPLO = ‘U') or lower (UPLO = ‘L') triangular. In the packed storage the tri-
angle has to be packed by column.

The band matrix routines allow storage in the same style as with LINPACK, so that
the 7 column of the matrix is stored in the % column of the Fortran array. For a
general band matrix the leading dimension of the matrix is stored in the ku+1% row
of the array. For a Hermitian or symmetric matrix either the upper triangle (UPLO =
‘U’) may be stored in which case the leading diagonal is in the k+1% row of the array,
or the lower triangle (UPLO = ‘L’) may be stored in which case the leading diagonal is
in the first row of the array. For an upper triangular band matrix (UPLO = ‘U’) the
leading diagonal is in the k+1% row of the array and for a lower triangular band
matrix (UPLO ='L') the leading diagonal is in the first row.

For a hermitian matrix the imaginary parts of the diagonal elements are of
course zero and thus the imaginary parts of the corresponding Fortran array ele-
ments need not be set, but are assumed to be zero. In the R1 and R2 routines these
imaginary parts will be set to zero on return.

For packed triangular matrices the same storage layout is used whether or not
DIAG = ‘U’ (diagonal elements are assumed to have the value 1), i.e. space is left for
the diagonal elements even if those array elements are not referenced.

6. Specification of the Extended BLAS

(This section has been deleted for space reasons. Consult the full proposal for
details.)

7. Rationale

The three basic matrix-vector operations chosen (Section 2) were obvious candi-
dates because they occur in a wide range of linear algebra applications, and they
occur at the innermost level of many algorithms. The hard decision was to restrict the
scope only to these operations, since there are many other potential candidates, such
as matrix scaling and sequences of plane rotations. Similarly, we could have extended
the scope by applying the operations to other types of matrices such as complex sym-
metric or augmented band matrices. We have aimed at a reasonable compromise
between a much larger number of routines each performing one type of operation
(e.g. £ « L Tz), and a smaller number of routines with a more complicated set of
options. There are in fact, in each precision, 16 real routines performing altogether 43

different operations, and 17 complex routines performing 58 different operations.

We feel that to extend the scope further would significantly reduce the chances of
having the routines implemented efficiently over a wide range of machines, because it
would place too heavy a burden on implementors. On the other hand, to restrict the
scope further would place too narrow a limit on the potential applications of the level
2 BLAS.

The parameter a is included in the non-triangular routines to give extra flexibil-
ity, but we recommend that implementors consider special code for the cases where
a = 1.0 and a = —1.0. Similarly, as with the level 1 BLAS, we have included an incre-
ment parameter with the vectors so that a vector could, for example, be a row of a
matrix. But again we recommend that implementors consider special code for the
case where the increments are unity.

As noted earlier, corresponding to the real routine SGER1 we propose two com-
plex routines CGERIC (for 4 « azy® + 4) and CGER1U (for 4 « azyT + 4). Both are
frequently required. An alternative would be to provide a single complex routine
CGER1 with an option parameter; however this parameter would have become redun-
dant in the real routine SGER1. Rather than have redundant parameters, or different
parameter lists for the real and complex routines, we have chosen two distinct com-
plex routines; they are analogous to the level 1 BLAS CDOTC (¢ « ¢ + z¥y) and CDOTU
(c «c +zTy).

We have included an error parameter INFO in each of the routines. This is a
departure from the conventions of the level 1 BLAS, but is prompted by the increased
possibilities for error (incorrect dimensioning of 2-dimensional arrays, division by
zero in the solution of triangular sets of equations), and the decrease in the relative
cost of checking for errors.

The CHARACTER parameters UPLO, TRANS, DIAG, are to be comprised of text in
the Fortran character set. This convention will be adhered to in the testing programs
and the portable Fortran version of the Level 2 BLAS. On certain machines, which do
not use the ASCII sequence on all of their Fortran systems, lower case characters may
not exist. So that the innocent looking argument '¢’, passed through the parameter
TRANS for designating a transposed matrix, is not in the Fortran character set. Some
UNIVAC systems do not have a lower case representation using the ‘field data’ charac-
ter set. On the CDC NOS-2 system, a mechanism is provided for a full 128 ASCII char-
acters by using pairs of 6-bit host characters for certain 7-bit ASCII characters. This
means that there is a '2 for 1’ physical extension of the logical records that contain
lower case letters. This fact can hamper portability of codes written on ASCII
machines that are later moved to CDC systems. The only safe way to proceed is to
convert the transported text entirely into the Fortran character set. On the other
hand we believe that users on ASCI character set systems may wish to develop

10

special versions of the Extended BLAS package that treat upper and lower case
letters as equivalent in meaning. If this is done, it means that text that will be tran-
sported to machines of unknown types must have the ASCII set mapped into the For-
tran character set before the text is moved.

The band storage scheme used by the GB, HB, SB, and TB routines has columns of
the matrix stored in columns of the array, and diagonals of the matrix stored in rows
of the array. This is the storage scheme used by LINPACK. An alternative scheme
(used in some EISPACK [6,9] routines) has rows of the matrix stored in rows of the
array, and diagonals of the matrix stored in columns of the array. The latter scheme
has the advantage that a band matrix-vector product of the form y « adx + y can be
computed using long vectors (the diagonals of the matrix) stored in contiguous ele-
ments, and hence is much more efficient on some machines (e.g. CDC Cyber 205) than
the first scheme. However other computations involving band matrices, such as
£+« Tz, z « Tz and LU and UTU factorization, cannot be organized ‘by diagonals’;
instead the computation sweeps along the band, and the LINPACK storage scheme has
the advantage of reducing the number of page swaps and allowing contiguous vectors
(the columns of the matrix) to be used.

Although not discussed here, we plan to provide a portable testing package for
each of the four parts of this extended BLAS package. The test package will be self-
contained; generating test data and checking for conformity with this proposal in a
portable fashion.

We considered the possibility of generalizing the rank-1 and rank-2 updates to
rank-k updates. Rank-k updates with & > 1 (but k¥ << n) can achieve significantly
better periormance on some machines than rank-1. But to take advantage of this usu-
ally requires complicating the calling algorithm; and moreover rank-k updates with
k = n would allow an even higher level operation such as matrix multiplication ‘in by
the back door’. We prefer to keep to a clean concept of genuine matrix-vector opera-
tions. ,

In this section we have tried to explain some of the design decisions which we
have taken. We welcome comment from people who feel that we have overlooked
important considerations, or at least have not attached enough weight to them.

11

Part 2:

8. Applicability of a Set of Level 2 BLAS

The purpose of Part 2 is to demonstrate the wide applicability of the set of Level 2
BLAS proposed in Part 1. LINPACK and EISPACK are taken as well-known examples of
heavily used software which could, with hindsight, have made extensive use of such a
set of BLAS; tuture versions may do just that. The most straightforward way to use the
Level 2 BLAS is as components in the development of new software; working out how
to fit them into existing soitware can be more complicated, but may still be very
worthwhile if it leads to substantial improvements in performance; a similar exercise
has already been undertaken on selected NAG Library routines to improve their per-
formance on vector processors [1].

Sections 10 and 11 demonstrate in some detail how calls to individual Level 2
BLAS can be used to perform the bulk of the computation in the CPO-, CPP- and CPB-
sets of LINPACK routines. Section 12 surveys the broad applicability of the entire set
of Level 2 BLAS in LINPACK and EISPACK.

9. Example: the CPO- Routines in LINPACK

(This section has been deleted for space reasons. Consull the full proposal for
details.) '

10. Extensions: the CPP- and CPB- Routines in LINPACK

(This section has been deleted for space reasons. Consult the full proposal for
details.)

11. Scope of Application in LINPACK and EISPACK

Table 1 shows, without any claim to completeness, where calls to the proposed set
of Level 2 BLAS might be incorporated into LINPACK or EISPACK routines (only the
real single precision set have been considered, and EISPACK routines which operate
on complex matrices have been omitted). Many of the calls to SGEMV and SGER! arise
in the application of a Householder transformation to a matrix. The computation

Xe(-oauuDX =X - au(XTu)?

can be performed by the following operations using the Level 2 BLAS in conjunction
with a work vector w:

w«0
weXTu +w (SGEMYV)
X e —auwT + X (SGER1)

Some latitude has been allowed in drawing up Table 1, in that a suitable work vector
may not be available in the existing code. Similarly, to make use of STRIV in SGESL
would require the interchanges to be handled differently by the SGE- set of LINPACK
routines.

Furthermore, many of the algorithms listed in Table 1 can be organized in
different ways, as was pointed out by Dongarra, Gustavson and Karp [5] for matrix
multiplication and LU-factorization. Following their convention, in which the basic
operation in the innermost loop is something like a;; « ay + Qe ay;:

- with i as the outermost loop index, the result is computed
row by row;

-with j as the outermost loop index, the result is computed
column by column;

-with k& as the outermost loop index, the computation proceeds by

updating a large submatrix and (in most algorithms) reducing the
dimension of the problern by one at each stage.

13

Table 1
BLAS LINPACK EISPACK | BLAS LINPACK EISPACK

SGEMV SGEDI ORTHES | SSPMV - TRED3
SQRDC ORTBAK
SSVDC ORTRAN | SSPR1 SPPDI -

ELMHES SSPFA
QZHES
TREDZ2 SSPRR - TRED3
TRBAK1
TRBAK3 | STRMV - ELMBAK
REDUC

STPMV SPPDI -

SGER1 SPODI ORTHES
SGEFA ORTBAK | STRIV SGESL ELMHES

SGEDI ORTRAN SPOFA REDUC
SGBFA QZHES SPBFA REBAK

SQRDC TREDZ2 SPOSL
SSVDC TRBAK1 |
TRBAK3 | STPIV SPPSL -

SPPFA
SSYMV - TRED1
: TRED2 STBIV SGBSL -
SPBSL
SSYR1 SCHDC -
SPODI
SSIFA
SSYRR? - TRED1

TRED2

In Fortran code, in order to avoid paging problems, the j-form is usually pre-
ferred to the i-form, but the i-form would be preferred if matrices were stored by
rows. The i-form and j-form can often permit GAXPY operations [5] in their inner-
most loops, so are likely to be favorable on a CRAY-1, whereas the k£-form (which can
work either by row or column) would be preferable on machines which allowed the
individual AXPY operations of a rank-1 update to be performed in parallel. Each of the

14

three methods of organizing an algorithm can involve calls to different Level 2 BLAS.
For example, for LU-factorization,

- the i-form requires STRIV (z « U~ Tz) and SGEMV (y « adlz +y)
- the j-form requires STRIV (z « L™!z) and SGEMV (y « adz + y)

- the k-form requires SGER1 (4 « azyT + 4)

In all the algorithms studied which involve symmetric matrices, it has proved
possible to find a form which permits the use of packed storage in conjunction with
the Level 2 BLAS. Consider as an example the computation of L7AL™T for symmetric
A using packed storage (i.e. a "packed" version of the EISPACK routine REDUC). If the
lower triangles of 4 and L are packed by columns, the computation can be imple-
mented by calls to SSPR2 (4 « azyT + ayzT + 4) and STPIV (z « L™z); if the lower
triangles are packed by rows, this is equivalent to computing U-TAU-! with the upper
triangles of 4 and U packed by columns, and can be implemented by calls to STPIV
(z « UT'z) and SSPMV (y + adz+y for symmetric A).

A further degree of variation is introduced if for any reason we wish to perform
the basic triangular factorizations 'backwards’ (i.e. as UL, LTL or UUT).

Allowing for all these possibilities within a small set of fundamental algorithms,
yields applications for each of the proposed Level 2 BLAS, except the banded matrix
vector products. We consider it important that the set of extended BLAS be
sufficiently wide to permit this degree of variation and not to constrain the freedom
of software developers.

These remarks have concentrated on algorithms for dense matrices with a simple
structure. It is hoped that the Level 2 BLAS may also prove useful when dealing with
matrices with more complicated structures, if this can be done by splitting them into
dense sub-matrices.

12. Acknowledgements

An earlier draft of this proposal was discussed at the Parvec IV Workshop organ-
ized by John Rice at Purdue University on October 29-30, 1984. We wish to thank all
the participants at that workshop for their comments, discussions, and encourage-
ment.

15

13. References

[1]

(2]

(]

(4]

(5]

6]

[7]

(el

)

C. Daly and J.J. Du Croz. "Performance of a Subroutine Library on Vector- Pro-
cessing Machines"”. To be published in Computer Physics Communicalions.

J.J. Dongarra and S.C. Eisenstat, '‘Squeezing the Most out of an Algorithm in CRAY
Fortran,” ACM Transactions on Mathernotical Software, Vol. 10, No. 3, (1984),
221-230.

J.J. Dongarra, Increasing the Performance of Mathemalical Software through
High-Level Modularily. Proceedings of the Sixth International Symposium on
Computing Methods in Engineering and Applied Sciences. (Versailles, France).
North-Holland (1984), pp 239-248.

J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users' Guide,
SIAM Publications, Philadelphia, 197S.

J.J. Dongarra, F.G. Gustavson, and A. Karp. "Implementing Linear Algebra Algo-
rithms for Dense Matrices on a Vector Pipeline Machine". SIAM Review, 26, 91-112
(1984).

B.S. Garbow, J.M. Boyle, J.J. Dongarra, C.B. Moler, Matriz Figensystemn Koutines -
EISPACK Guide Extension, Lecture Notes in Computer Science, Vol. 51,
Springer-Verlag, Berlin, 1977.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, ‘‘Basic Linear Algebra Subpro-
grams for Fortran Usage,” ACM Transactions on Mathematicol Software 5 (1979),
308-323.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, "‘Algorithm 539: Basic Linear Alge-
bra Subprograms for Fortran Usage,”” ACM Transactions on Mathematical
Software 5 (1979), 324-325.

B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B.
Moler, Matriz Eigensystem Routines - EISPACK Guide, Lecture Notes in Com-
puter Science, Vol. 6, 2nd edition, Springer-Verlag, Berlin, 1976.

16

Appendix A
(This section has been ‘deleted for space reasons. Consull the full proposal for
details.)

Appendix B

(This section has been deleted for space reasons. Consult the full proposal for
details.)

Appendix C
This appendix contains the calling sequences for all the proposed level 2 BLAS.

name options dim b-width scalar metrix x-vector y-vector info
~GEMV(TRANS, M, N, ALPHA, A, LDA, X, INCX, Y, INCY, INFO)
_GBMV(TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, Y, INCY, INFO)
~HEMV(UPLO, N, ALPHA, A, LDA, X, INCX, Y, INCY, INFO)
HBMV(UPLO, N, K, ALPHA, A, LDA, X, INCX, Y, INCY, INFO)
HPUV(UPLO, N, ALPHA, AP, X, INCX, Y, INCY, INFO)
SYMV(UPLO, N. ALPHA, A, LDA, X, INCX, Y, INCY, INFO)
-SBMV(UPLO, N, K, ALPHA, A, LDA, X, INCX, Y, INCY, INFO)
~SPMV(UPLO, N, ALPHA, AP, X, INCX, Y, INCY, INFO)
~TRMV(UPLO, TRANS, DIAG, N, A, LDA, X, INCX, INFO)
~TBMV(UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX, INFO)
~IPMV(UPLO, TRANS, DIAG, N, AP, X, INCX, INFO)
~IRIV(UPLO, TRANS, DIAG, N, A, LDA, X, INCX, INFO)
~IBIV(UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX, INFO)
~IPIV(UPLO, TRANS, DIAG, N, AP, X, INCX, INFO)
name options dim scalar x-vector y-vector matrix info

—GER1.(M, N, ALFHA, X, INCX, Y, INCY, A LDA, INFO)
-HER1(UPLO, N, ALPHA, X, INCX, A, LDA, INFO)
HPR1(UPLO, N, ALPHA, X, INCX, AF, INFO)
HER2(UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA, INFO)
~HPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, AP, [NFO)
SYR1(UPLO, N, ALPHA, X, INCX, A, LDA, INFO)
~SPR1{ UPLO, N, ALPHA, X, INCX, AP, INFO)

17

~SYR2(UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA, INFO)
-SPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, AP, INFO)

