**************************************************************************** * variably dimensioned function * more, garbow, and hillstrom, acm toms vol. 7 no. 1 (march 1981) 17-41 **************************************************************************** subroutine getfun( x, n, f, m, ftf, fj, lfj, g, mode) implicit double precision (a-h,o-z) integer n, m, lfj, mode double precision x(n), f(m), ftf, fj(lfj,n), g(n) integer nprob, nprobs, nstart, nstrts common /PROBLM/ nprob, nprobs, nstart, nstrts integer nout common /IOUNIT/ nout logical lf, lj integer na, nb, nc, nd, nt, nh integer i, j double precision dn, dj, sum, xim1, xjm1 double precision ddot intrinsic dble double precision zero, one, two parameter (zero = 0.d0, one = 1.d0, two = 2.d0) *======================================================================= if (mode .eq. 0) goto 20 if (mode .eq. -1) goto 10 if (mode .eq. -2) goto 30 na = mode / 1000 nt = mode - na*1000 nb = nt / 100 nh = nt - nb*100 nc = nh / 10 nd = nh - nc*10 lf = (na .ne. 0) .or. (nb .ne. 0) .or. (nd .ne. 0) lj = (nc .ne. 0) .or. (nd .ne. 0) if (lf .and. lj) goto 300 if (lf) goto 100 if (lj) goto 200 *----------------------------------------------------------------------- 10 continue nprobs = 1 nstrts = 1 n = 10 m = n + 2 if (nout .gt. 0) write( nout, 9999) n, m return *----------------------------------------------------------------------- 20 continue dn = dble(n) do 21 j = 1, n x(j) = one - (dble(j)/dn) 21 continue return *----------------------------------------------------------------------- 30 continue do 31 i = 1, n x(i) = one 31 continue ftf = zero return *----------------------------------------------------------------------- 100 continue sum = zero do 110 i = 1, n xim1 = x(i) - one sum = sum + dble(i)*xim1 f(i) = xim1 110 continue f(n+1) = sum f(n+2) = sum*sum if (nb .ne. 0) ftf = ddot( m, f, 1, f, 1) return 200 continue sum = zero do 210 j = 1, n sum = sum + dble(j)*(x(j) - one) call dcopy( m, zero, 0, fj( 1, j), 1) 210 continue do 220 j = 1, n dj = dble(j) fj(j ,j) = one fj(n+1,j) = dj fj(n+2,j) = two*sum*dj 220 continue return 300 continue sum = zero do 310 j = 1, n xjm1 = x(j) - one sum = sum + dble(j)*xjm1 call dcopy( m, zero, 0, fj( 1, j), 1) f(j) = xjm1 310 continue f(n+1) = sum f(n+2) = sum*sum do 320 j = 1, n dj = dble(j) fj(j ,j) = one fj(n+1,j) = dj fj(n+2,j) = two*sum*dj 320 continue if (nb .ne. 0) ftf = ddot( m, f, 1, f, 1) if (nd .eq. 0) return do 400 j = 1, n g(j) = ddot( m, fj( 1, j), 1, f, 1) 400 continue return 9999 format(/'1',70('=')//, *' variably dimensioned function (more et al.) '//, *' number of variables =', i4, ' (variable)'/, *' number of functions =', i4, ' ( = n+2 )'//, * ' ',70('=')/) end ************************************************************************ ************************************************************************ subroutine dfjdxk ( k, x, n, dfj, ldfj, m, nonzro) implicit double precision (a-h,o-z) integer k, n, ldfj, m, nonzro(n) double precision x(n), dfj(ldfj,n) integer n1, j double precision tk intrinsic dble double precision zero, two parameter (zero = 0.d0, two = 2.d0) *======================================================================= n1 = n+1 do 100 j = 1, n nonzro(j) = 1 call dcopy( n1, zero, 0, dfj(1, j), n1, 1) 100 continue tk = two*dble(k) do 200 j = 1, n dfj(n+2,j) = tk*dble(j) 200 continue return end ************************************************************************ ************************************************************************ subroutine dfkdij ( k, x, n, hess, lhess, linear) implicit double precision (a-h,o-z) logical linear integer k, n, lhess double precision x(n), hess(lhess,n) integer i, im1, j double precision di, ti intrinsic dble double precision zero, two parameter (zero = 0.d0, two = 2.d0) *======================================================================= do 100 j = 1, n call dcopy( n, zero, 0, hess( 1, j), 1) 100 continue linear = .true. if (k .ne. n+2) return linear = .false. hess(1,1) = two do 200 i = 2, n im1 = i - 1 di = dble(i) ti = two*dfi hess(i,i) = ti*di do 200 j = 1, im1 hess(i,j) = ti*dble(j) hess(j,i) = hess(i,j) 200 continue return end