****************************************************************************** * linear function - rank one with zero rows and columns * more, garbow, and hillstrom, acm toms vol. 7 no. 1 (march 1981) 17-41 ****************************************************************************** subroutine getfun( x, n, f, m, ftf, fj, lfj, g, mode) implicit double precision (a-h,o-z) integer n, m, lfj, mode double precision x(n), f(m), ftf, fj(lfj,n), g(n) integer nprob, nprobs, nstart, nstrts common /PROBLM/ nprob, nprobs, nstart, nstrts integer nout common /IOUNIT/ nout logical lf, lj integer na, nb, nc, nd, nt, nh double precision zero, one parameter (zero = 0.d0, one = 1.d0) *======================================================================= if (mode .eq. 0) goto 20 if (mode .eq. -1) goto 10 if (mode .eq. -2) goto 30 na = mode / 1000 nt = mode - na*1000 nb = nt / 100 nh = nt - nb*100 nc = nh / 10 nd = nh - nc*10 lf = (na .ne. 0) .or. (nb .ne. 0) .or. (nd .ne. 0) lj = (nc .ne. 0) .or. (nd .ne. 0) if (lf .and. lj) goto 300 if (lf) goto 100 if (lj) goto 200 *----------------------------------------------------------------------- 10 continue nprobs = 1 nstrts = 1 n = 10 m = 20 nxm1 = n - 1 nfm1 = m - 1 if (nout .gt. 0) write( nout, 9999) n, m return *----------------------------------------------------------------------- 20 continue call dcopy( n, one, 0, x, 1) return *----------------------------------------------------------------------- 30 continue c ftf = (dble(m*m+3*m-6)/dble(2*(2*m-3))) ftf = 6.13513d0 return *----------------------------------------------------------------------- 100 continue sum = zero do 110 j = 2, nxm1 sum = sum + x(j)*dble(j) 110 continue f(1) = -one do 120 i = 2, nfm1 f(i) = dble(i-1)*sum - one 120 continue f(m) = -one if (nb .ne. 0) ftf = ddot( m, f, 1, f, 1) return 200 continue do 210 j = 1, n call dcopy( m, zero, 0, fj( 1 , j), 1) 210 continue do 220 i = 2, nfm1 di = dble(i-1) do 220 j = 2, nxm1 fj(i,j) = di*dble(j) 220 continue return 300 continue sum = zero do 310 j = 1, n call dcopy( m, zero, 0, fj( 1 , j), 1) if (j .gt. 1 .and. j .lt. n) sum = sum + x(j)*dble(j) 310 continue f(1) = -one do 320 i = 2, nfm1 di = dble(i-1) f(i) = di*sum - one do 320 j = 2, nxm1 fj(i,j) = di*dble(j) 320 continue f(m) = -one if (nb .ne. 0) ftf = ddot( m, f, 1, f, 1) if (nd .eq. 0) return do 400 j = 1, n g(j) = ddot( m, fj( 1, j), 1, f, 1) 400 continue return 9999 format(/'1',70('=')//, *' linear function - rank one with zero rows and columns', *' (more et al.)'//, *' number of variables =', i4,' (variable)'/, *' number of functions =', i4,' ( >= n )'//, * ' ',70('=')/) end ************************************************************************ ************************************************************************ subroutine dfjdxk ( k, x, n, dfj, ldfj, m, nonzro) implicit double precision (a-h,o-z) integer k, n, ldfj, m, nonzro(n) double precision x(n), dfj(ldfj,n) integer j double precision zero parameter (zero = 0.d0) *======================================================================= do 100 j = 1, n nonzro(j) = 0 call dcopy( m, zero, 0, dfj( 1, j), 1) 100 continue return end ************************************************************************ ************************************************************************ subroutine dfkdij( k, x, n, hess, lhess, linear) implicit double precision (a-h,o-z) logical linear integer k, n, lhess double precision x(n), hess(lhess,n) integer j double precision zero parameter (zero = 0.d0) *======================================================================= do 100 j = 1, n call dcopy( n, zero, 0, hess( 1, j), 1) 100 continue linear = .true. return end