************************************************************************** * powell badly scaled function * more, garbow, and hillstrom, acm toms vol. 7 no. 1 (march 1981) 17-41 ************************************************************************** subroutine getfun( x, n, f, m, ftf, fj, lfj, g, mode) implicit double precision (a-h,o-z) integer n, m, lfj, mode double precision x(n), f(m), ftf, fj(lfj,n), g(n) integer nprob, nprobs, nstart, nstrts common /PROBLM/ nprob, nprobs, nstart, nstrts integer nout common /IOUNIT/ nout logical lf, lj integer na, nb, nc, nd, nt, nh double precision e1, e2, x1, x2 double precision ddot intrinsic exp double precision zero, two, ten4th parameter (zero = 0.d0, two = 2.d0, ten4th = 1.d4) *======================================================================= if (mode .eq. 0) goto 20 if (mode .eq. -1) goto 10 if (mode .eq. -2) goto 30 x1 = x(1) x2 = x(2) e1 = exp(-x1) e2 = exp(-x2) na = mode / 1000 nt = mode - na*1000 nb = nt / 100 nh = nt - nb*100 nc = nh / 10 nd = nh - nc*10 lf = (na .ne. 0) .or. (nb .ne. 0) .or. (nd .ne. 0) lj = (nc .ne. 0) .or. (nd .ne. 0) if (lf .and. lj) goto 300 if (lf) goto 100 if (lj) goto 200 *----------------------------------------------------------------------- 10 continue nprobs = 1 nstrts = 1 n = 2 m = 2 if (nout .gt. 0) write( nout, 9999) n, m return *----------------------------------------------------------------------- 20 continue x(1) = 0.d0 x(2) = 1.d0 return *----------------------------------------------------------------------- 30 continue x(1) = 1.098d-5 x(2) = 9.106d0 ftf = zero return *----------------------------------------------------------------------- 100 continue f(1) = ten4th*x1*x2 - one f(2) = e1 + e2 - 1.0001d0 if (nb .ne. 0) ftf = ddot( m, f, 1, f, 1) return 200 continue fj( 1, 1) = ten4th*x2 fj( 2, 1) = -e1 fj( 1, 2) = ten4th*x1 fj( 2, 2) = -e2 return 300 continue f(1) = ten4th*x1*x2 - one f(2) = e1 + e2 - 1.0001d0 if (nb .ne. 0) ftf = ddot( m, f, 1, f, 1) fj( 1, 1) = ten4th*x2 fj( 2, 1) = -e1 fj( 1, 2) = ten4th*x1 fj( 2, 2) = -e2 if (nd .eq. 0) return do 400 j = 1, n g(j) = ddot( m, fj( 1, j), 1, f, 1) 400 continue return 9999 format(/'1',70('=')//, *' powell badly scaled function (more et al.)'//, *' number of variables =', i4, ' (2)'/, *' number of functions =', i4, ' (2)'//, * ' ',70('=')/) end ************************************************************************ ************************************************************************ subroutine dfjdxk ( k, x, n, dfj, ldfj, m, nonzro) implicit double precision (a-h,o-z) integer k, n, ldfj, m, nonzro(n) double precision x(n), dfj(ldfj,n) integer j intrinsic exp double precision zero, ten4th parameter (zero = 0.d0, ten4th = 1.d4) *======================================================================= do 100 j = 1, n nonzro(j) = 1 call dcopy( m, zero, 0, dfj( 1, j), 1) 100 continue goto ( 210, 220), k 210 continue dfj( 1, 2) = ten4th dfj( 2, 1) = exp(-x(1)) return 220 continue dfj( 1, 1) = ten4th dfj( 2, 2) = exp(-x(2)) return end ************************************************************************ ************************************************************************ subroutine dfkdij ( k, x, n, hess, lhess, linear) implicit double precision (a-h,o-z) logical linear integer k, n, lhess double precision x(n), hess(lhess,n) integer j double precision zero, ten4th parameter (zero = 0.d0, ten4th = 1.d4) *======================================================================= do 100 j = 1, n call dcopy( n, zero, 0, hess( 1, j), 1) 100 continue linear = .false. goto ( 210, 220), k 210 continue hess( 1, 2) = ten4th hess( 2, 1) = ten4th return 220 continue hess( 1, 1) = exp(-x(1)) hess( 2, 2) = exp(-x(2)) return end