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1 Introduction

PDHSEQR is a parallel ScaLAPACK-style library for solving nonsymmetric standard eigenvalue
problems. The library is written in Fortran 90 and targets distributed memory HPC systems.
Using the small-bulge multishift QR algorithm with aggressive early deflation, it computes the
real Schur decomposition H = ZTZT of an upper Hessenberg matrix H ∈ Rn×n, such that Z is
orthogonal and T is quasi-upper triangular. This document concerns the usage of PDHSEQR and
is a supplement to the article [11]. For the description of the algorithm and implementation, we
refer to [11] and the references therein (especially, [7, 8, 9, 10, 12]).

2 Installation

In the following, an installation guide is provided. It is assumed that the user is working in a
Unix-like system.

2.1 Prerequisites

To build the library, the following software is required.

• A Fortran 90/95 compiler.

• The MPI library, e.g., OpenMPI or MPICH.

• An optimized BLAS library, e.g., ATLAS or OpenBLAS.

• The LAPACK library.

• The ScaLAPACK library (including BLACS and PBLAS).
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2.2 How to compile the library

Download location.
The software version published by ACM TOMS can be downloaded from CALGO [2]. The latest
version of the source code (with bug fixes) as well as the associated documents are available on the
PDHSEQR homepage [3].

Files in the tar-ball.
The following command unpacks the tar-ball and creates a directory pdhseqr/, which is the root
directory of the library.

tar xzfv pdhseqr.tar.gz

Inside the root directory, there are several files and directories:

EXAMPLES/ MAKE INC/ Makefile make.inc README SRC/ TESTING/ TOOLS/ TUNING/ ug.pdf

Below is an overview of these items.

• EXAMPLES/ This directory contains two simple drivers.

• MAKE INC/ This directory contains several templates of make.inc for GNU, Intel, and Path-
Scale compilers.

• Makefile The Makefile for building the library. This file does not need to be modified.

• make.inc This is the only file which requires modifications when building the library. It con-
tains compiler settings and external libraries for the Makefile. The user is required to modify
this file according to the target computational environment before compiling the library. Sev-
eral templates of this file are provided in the directory MAKE INC.

• README A shorter version of this document containing a quick installation guide.

• SRC/ This directory contains source code for all computational routines of the library.

• TESTING/ This directory contains testing examples.

• TOOLS/ This directory contains several auxiliary routines (e.g., random number/matrix gen-
erators, input/output routines).

• TUNING/ This directory contains auto-tuning scripts.

• ug.pdf The User’s Guide of PDHSEQR (i.e., this document).

Build the library.
Once make.inc is properly modified according to the computational environment, the library can
be built by

make all

in the root directory of PDHSEQR. This generates the library archive libpdhseqr.a in the root

directory, two examples in EXAMPLES/, and test programs in TESTING/. The script quicktest.sh
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Figure 1: The 2D block-cyclic data layout across a 2 × 3 processor grid. For example, processor
(0, 0) owns all highlighted blocks. Picture from [11].

in TESTING, which performs twelve quick tests, needs to be run after the compilation. Hopefully
the following result will be displayed on the screen:

% 7 out of 7 tests passed!

% 5 out of 5 tests passed!

This means that the Schur decomposition has been successfully computed for seven random matrices
and five benchmark matrices, indicating that the compilation has been successful. We recommend
that the script runquick.sh in TESTING is also run once to make sure that the parallel code works
properly. You may need to modify the MPI execution command in this script according to your
system (e.g., mpirun, mpiexec, etc.). If everything works out, 20 lines of information summarizing
the 120 tests will be displayed and written to the file summary.txt. We also provide runall.sh

with many large test cases in the same directory. (Running this set of tests may take very long !)

3 Using the package

3.1 ScaLAPACK data layout convention

In ScaLAPACK, the p = prpc processors are usually arranged into a pr × pc grid. Matrices are
distributed across the rectangular processor grid in a 2D block-cyclic layout with block size mb×nb

(see Figure 1 for an example). The information regarding the data layout is stored in an array
descriptor so that the mapping between the entries of the global matrix and their corresponding
locations in the memory hierarchy can be established. We adopt ScaLAPACK’s data layout con-
vention and require that the n× n input matrices H and Z have identical data layout with square
data blocks (i.e., mb = nb). The processor grid, however, does not need to be square. A distributed
matrix H is referenced by two arrays H (local matrix entries) and DESCH (array descriptor). A
typical setting of DESCH is listed below.

• DESCH(1): Type of the matrix. In our case, DESCH(1) = 1 since H is stored as a dense
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matrix.

• DESCH(2): The handle of the BLACS context.

• DESCH(3), DESCH(4): The size of H, i.e., DESCH(5) = DESCH(6) = n.

• DESCH(5), DESCH(6): Blocking factors mb and nb. We require that DESCH(5) = DESCH(6).

• DESCH(7), DESCH(8): The process row and column that contain h11. Usually, DESCH(7) =

DESCH(8) = 0.

• DESCH(9): Leading dimension of the local part of H on the current processor. This value
needs to be at least one, even if the local part is empty.

3.2 Calling sequence

The main functionality of this package is to compute the real Schur decomposition of an upper
Hessenberg matrix using the routine PDHSEQR. The ScaLAPACK routine PDGEHRD can be used to
transform a general square matrix to Hessenberg form, see the test programs in TESTING/ for exam-
ples. The interface of PDHSEQR displayed below follows the convention of LAPACK/ScaLAPACK
routines [4, 6].

SUBROUTINE PDHSEQR( JOB, COMPZ, N, ILO, IHI, H, DESCH, WR, WI, Z,

$ DESCZ, WORK, LWORK, IWORK, LIWORK, INFO )

*

* .. Scalar Arguments ..

INTEGER IHI, ILO, INFO, LWORK, LIWORK, N

CHARACTER COMPZ, JOB

* ..

* .. Array Arguments ..

INTEGER DESCH( * ) , DESCZ( * ), IWORK( * )

DOUBLE PRECISION H( * ), WI( N ), WORK( * ), WR( N ), Z( * )

For comparison, the (nearly identical) interface of the LAPACK routine DHSEQR.

SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,

$ LDZ, WORK, LWORK, INFO )

Also, the interface of the ScaLAPACK auxiliary routine PDLAHQR is similar.

SUBROUTINE PDLAHQR( WANTT, WANTZ, N, ILO, IHI, A, DESCA, WR, WI,

$ ILOZ, IHIZ, Z, DESCZ, WORK, LWORK, IWORK,

$ ILWORK, INFO )

Therefore, it may not require much effort to switch existing code calling PDLAHQR to PDHSEQR.

An example for calling PDHSEQR is provided in the test program (TESTING/driver.f). We advice
that PDHSEQR is called twice—the first call for performing a workspace query (by setting LWORK =

-1) and the second call for actually performing the computation.
Below is a detailed list of the arguments.
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• JOB: (global input) CHARACTER*1.
JOB = ’E’: Compute eigenvalues only;
JOB = ’S’: Compute eigenvalues and the Schur form T .

• COMPZ (global input) CHARACTER*1.
COMPZ = ’N’: Schur vectors (i.e., Z) are not computed;
COMPZ = ’I’: Z is initialized to the identity matrix and both H and Z are returned;
COMPZ = ’V’: Z must contain an orthogonal matrix Q on entry, and the product QZ is
returned.

• N: (global input) INTEGER.
The order of the Hessenberg matrix H (and Z).

• ILO, IHI: (global input) INTEGER.
It is assumed thatH is already upper triangular in rows and columns (1:ILO-1) and (IHI+1:N).
They are normally set by a previous call to PDGEBAL, and then passed to PDGEHRD when the
matrix output by PDGEBAL is reduced to Hessenberg form. Otherwise ILO = 1 and IHI = N

should be used, which guarantees that Z is orthogonal on exit of PDHSEQR.

• H: (global input/output) DOUBLE PRECISION array of dimension (DESCH(9),*).
DESCH: (global and local input) INTEGER array descriptor of dimension 9.
H and DESCH define the distributed matrix H.
On entry, H contains the upper Hessenberg matrix H.
On exit, if JOB = ’S’, H is quasi-upper triangular in rows and columns (ILO:IHI), with
1 × 1 and 2 × 2 blocks on the main diagonal. The 2 × 2 diagonal blocks (corresponding to
complex conjugate pairs of eigenvalues) are returned in standard form, with hii = hi+1,i+1

and hi+1,ihi,i+1 < 0. If INFO = 0 and JOB = ’E’, the contents of H are unspecified on exit.

• WR, WI: (global output) DOUBLE PRECISION array of dimension N.
The eigenvalues of H(ILO:IHI,IHO:IHI) are stored in WR(ILO:IHI) and WI(ILO:IHI) where
WR contains the real parts and WI contains the imaginary parts, respectively.
If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)-th, with WI(i) > 0 and WI(i+1) < 0.
If JOB = ’S’, the eigenvalues are stored in the same order as on the diagonal of the Schur
form returned in H.

• Z: (global input/output) DOUBLE PRECISION array of dimension (DESCZ(9),*).
DESCZ: (global and local input) INTEGER array descriptor of dimension 9.
Z and DESCZ define the distributed matrix Z.
If COMPZ = ’V’, on entry Zmust contain the current matrix Z of accumulated transformations
from, e.g., PDGEHRD, and on exit Z has been updated.
If COMPZ = ’N’, Z is not referenced.
If COMPZ = ’I’, on entry Z does not need be set and on exit, if INFO = 0, Z contains the
orthogonal matrix Z of the Schur vectors of H.

• WORK: (local workspace) DOUBLE PRECISION array of dimension LWORK.
LWORK: (local input) INTEGER.
In case LWORK = -1, a workspace query will be performed and on exit, WORK(1) is set to the
required length of the double precision workspace. No computation is performed in this case.
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• IWORK: (local workspace) INTEGER array of dimension LIWORK.
LIWORK: (local input) INTEGER.
In case LIWORK = -1, a workspace query will be performed and on exit, IWORK(1) is set to
the required length of the integer workspace. No computation is performed in this case.

• INFO: (global output) INTEGER.
If INFO = 0, PDHSEQR returns successfully.
If INFO < 0, let i = −INFO, then the i-th argument had an illegal value.
(See below for exceptions with i = 7777 or i = 8888.)
If INFO > 0, then PDHSEQR failed to compute all of the eigenvalues. (This is a rare case.)
Elements (1:ILO-1) and (INFO+1:N) of WR and WI contain the eigenvalues which have been
successfully computed. Let U be the orthogonal matrix logically produced in the computation
(regardless of COMPZ, i.e., no matter whether it is explicitly formulated or not). Then on exit,{

HinU = UTHout, Z = U, if INFO > 0, COMPZ = ’I’,

HinU = UTHout, Zout = ZinU, if INFO > 0, COMPZ = ’V’.

If INFO = 7777 or INFO = 8888, please send a bug report to the authors.

3.3 Example programs

We provide two simple examples in the directory EXAMPLES/. The program example1.f generates
a 500 × 500 random matrix and computes its Schur decomposition, while example2.f reads the
benchmark matrix OLM5001 in the Matrix Market format [5].

To compute eigenvalues of other matrices, the following lines of the example program need to
be adjusted:

• Line 40: Matrix size and the block factor.

• Lines 50–51: Make sure to provide sufficient memory.

• Line 222: Replace the matrix generator PDMATGEN2/PQRRMMM by your own matrix.

4 Tuning of parameters⋆

The instructions below are intended for experienced users. Other users may want to skip reading
this section.

In SRC/pilaenvx.f and SRC/piparmq.f, there are several machine-dependent parameters, see [11]
for details. On contemporary architectures, we expect that most of the default values provided in
the source code yield reasonable performance. However, for PILAENVX(ISPEC=12, 14, 23) some
fine tuning might be helpful. The package offers two scripts in the directory TUNING/ that aim at
tuning these three parameters.

Before starting the tuning procedure, you first need to choose a frequently used block factor (nb)
and modify the corresponding value in tune1.in, tune2 1.in, tune2 2.in, and tune2 3.in. You
also need to adjust the MPI execution command according to your system in the scripts tune1.sh
and tune2.sh.

1Downloaded from ftp://math.nist.gov/pub/MatrixMarket2/NEP/olmstead/olm500.mtx.gz.
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• The first script tune1.sh searches suitable settings for PILAENVX(ISPEC=12, 23). It performs
the tests described in tune1.in on 1 × 1, 2 × 2, 4 × 4, 8 × 8 processor grids, and analyzes
the collected data by the code tune1.f. This procedure usually takes 1–4 hours. When
completed, it reports suggestions on the parameters in the file suggestion1.txt. You should
then modify the constants NMIN (Line 193 in SRC/piparmq.f) and NTHRESH (Line 648 in
SRC/pilaenvx.f) in accordance with these suggestions.

• The second script tune2.sh searches suitable settings for PILAENVX(ISPEC=14). This set of
tests should only be done after running tune1.sh and modifying the parameters in SRC/pilaenvx.f,
SRC/piparmq.f, and TUNING/piparmq.f correspondingly. Then the library should be com-
piled again with the new settings:

make clean; make all; make tuning

Finally, the script tune2.sh is executed. This set of tests takes a long time (up to 1–2 days).
If all tests are completed successfully, tune2.f computes and reports the suggested settings
for the parameters in suggestions2.txt. You should then update SRC/piparmq.f (Line 197)
and rebuild the library. This completes the tuning procedure.

If some of the tests are interrupted, due to an error, it may not be necessary to rerun the whole
set of tests. You can also manually collect the execution times for each test into summary2.txt
and apply tune2.f to determine the parameter suggestions.

It is possible to run both tuning scripts on other processor grids (besides the default 2 × 2,
4×4, 8×8). This, however, requires to not only adjust the scripts tune*.sh but also the programs
tune*.f correspondingly.

5 Terms of Usage

Use of the ACM Algorithm is subject to the ACM Software Copyright and License Agreement [1].
Furthermore, any use of the PDHSEQR library should be acknowledged by citing the corresponding
paper [11]. Depending on the context, the citation of the papers [9, 10, 12] is also encouraged.

6 Summary

The use of the software library PDHSEQR is presented in this document. Currently only the
double precision version is provided; a complex version of the software (PZHSEQR) is planned for
future releases. Comments, suggestions, and bug reports from users are welcome. The latest version
of the software and documents are always available from the website of PDHSEQR [3].
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