
A

Messy Documentation

Prepared for ACM TOMS, January, 2013 Fred T. Krogh1

1. SETUP

To use this software,

use messy m, only : messy, messy ty, rk
type(messy ty) :: e ! Your name could be different.
<Declare other types that you need, and/or change public components of messy ty.>
· · ·
call messy(e,“The text that defines what you want.”, other arguments as needed)

The real kind rk is defined in precision m.f90 and defines the type of real and complex variables passed to
messy. The standard default for the number of digits to print for real and complex number is defined at the
start of messy m.f90 with “integer, parameter :: numdig = ceiling(−log10(epsilon(1.0 rk)))”.
The type messy ty has the following public components.

integer :: fpprec = numdig ! Default for floating point precision
integer :: kdf = numdig ! Current default real precision.
integer :: line len = 128 ! Default line length
integer :: munit = OUTPUT UNIT ! Message unit number
integer :: eunit = OUTPUT UNIT ! ERROR UNIT mixes up output with piping
integer :: maxerr = 0 ! Max value of 1000 * (10*stop + print) + |index|
integer :: lstop = 3 ! Stop indexes ≤ this don’t stop
integer :: lprint = 3 ! Print indexes ≤ this don’t print
integer :: errcnt = 0 ! Count of the number of error messages
integer :: dblev = 3 ! See item K below for a full description.
character (len=32) :: ename = ’?’ ! Package name to print with error messages
character (len=2) :: echars = ’$8’! First character is the error message separator.
! ’0’ give no separator, ’ ’ gives a blank line. Second character is the stop level for
! errors in the use of messy.

The parameters that can be passed into messy are as follows:

subroutine messy(e, text, idat, rdat, imat, rmat, zdat, zmat, ix, ptext)
type(messy_ty), intent(inout) :: e
character *(len=*), intent(in) :: text
character *(len=*), optional, intent(in) :: ptext
integer, optional, intent(in) :: idat(:), imat(:,:), ix(:)
real(rk), optional, intent(in) :: rdat(:), rmat(:,:)
complex(rk), optional, intent(in) :: zdat(;), zmat(:,:)

Before a call to messy, you are free to change any of the default values defined in messy ty above, but there
is another mechanism that can be used to change some of these values on a more temporary basis, in the
text argument using a $ followed by letters as described below. The $ which serves as an escape character
can be changed in messy m.f90. Only certain characters are allowed after a $ and the actions associated
with these are listed below. In describing some of these we use “[· · ·]” to indicate something is optional,
“[integer]” indicates an optional integer, “text” is used for any text, and # is used for a single decimal digit.
When output form either idat or rdat is requested the first number printed is printed from the first location

in the array and further requests are always from the location just after the last one printed.

A. Print a real matrix from rmat. If column and row headings have not been changed using $O (see
below), column headings have the form Col nnn, and Row headings have the form Row nnn, where nnn
is the index of the column or row.

B. Break, restores all defaults and returns.

1Prepared at Math à la Carte.com by fkrogh@mathalacarete.com

A:2

C. Continue. $C, can be used to end an integer when followed by a digit. When the this is the last thing
in text, and we are a processing an error message, the error message is not ended at this point, but is
continued on the next call.

D. $D[integer] is used to specify a temporary number of significant digits for floating point output. If
the integer is missing it restores the default, if the integer is ≤ 0, then this specifies the negative of the
number of digits that must follow the decimal point and that no exponent is to be used in the output
(and thus large numbers will use a lot of space). The usual default is always restored after a $B.

E. Start an error message, see Section 2. The next two characters are digits, the first gives the stop index,
and the next the print index. If the stop index is 0, it is not treated as an error, but can be used to
limit printing of other messages. If this is an error message the index of the error, defined by the package
generating the error message, is in ix(1) if it is present (useful if some integer vector is part of the error
message), and else is in idat(1). (And if idat is not present, then a 0 is printed for the error index.)
Note that after any print from idat the next integer printed from idat will come from the next location.
If the stop index is 0, print will still come out on the error unit.

F. Define an alternate format for integer or floating point output. The $F is followed by one of the
letters: IFE, and then “digits.digits”, where the “. digits” is optional for “I”. The “E” cases are converted
to Fortran’s scientific edit descriptor “ES”. This also does the type of output specified by the format.
(Either the next integer from idat in the “I” case, the next real from rdat for real formats, or in the
$ZF case, the next complex number from zdat. In the complex case the format provided is used for both
the real and imaginary part unless the format is terminated with a “,”, in which case the format for the
imaginary part follows.) These formats are not saved from one call to the next.

G. Output the next real from rdat using the last real format specified by $F above.

H. In the middle of text, $H specifies a preferred place for breaking a line. If this is the first thing in text
it specifies the start of a table. By a table we mean text that is arranged in columns where the caller
indicates where line breaks may occur. If there are more columns than will fit on a line, text that does
not fit will be saved in a scratch file, and that text will be output when the end of the table is indicated
with a $B. In most cases the end will be indicated with text containing nothing but the $B. The user is
responsible for setting up headings, and formatting the following lines so things line up as desired. Using
$F (or $<integer> followed by F) should be used for this purpose. The text from the first $H up to the
next $H is text that for every row will be repeated when data is needed from the scratch file. Later $H’s
signal where it is acceptable for a line to be broken. The text for headings should extend to exactly the
same distance as is required by later lines. The test program tmessy.f90 gives an example for setting up
tables, including suggestions on how to match the heading line with the following lines. One can have at
most lenbuf−50 characters in a line where lenbuf is a parameter in messy m.f90, currently = 256.

I. Print the next integer in idat, and continue.

J. As for I above, except use the last integer format defined by a ”$F”, see above.

K. This is followed by an integer (assumed 0 with no digits given). If that integer is > e%dblev, then
actions are as if text had ended at this point. If e%dblev is 0, then an immediate return is made unless
text starts with “$E”, or we are already processing an error message. The $K<integer> is ignored when
processing an error message. If this feature is used, then the smaller the integer following the $K, the
more likely the following text is to print. The larger the number in e%dblev, the more likely text after a
“$K” is to print.

L. Followed by an integer gives a new line length. Internally the number specified is replaced as necessary
to get it in the interval [40, lenbuf−50] (parameter lenbuf in code is now 256).

M. Print a matrix from imat. Headings are as for $A.

N. Start a new line, and continue.

O. Define starting indexes for vector or matrix output and for the matrix case, alternative formats for
output of column and row labels. The $O may only appear immediately after a $A, $M, $V, or $W.
Following the $O is an optional integer giving the starting index value (which may be negative). No
integer gives the default, which is 1. In the matrix case one can indicate the text to output for the column
and row headings, and whether and where the index should be printed. A $O following a $A or $M, is
followed by text which specifies the desired result for columns, a $O, then specifications for rows, and
then a terminating $O. Following the optional integer giving the first index, one may have nothing, or a

specification of the number of characters in the headings and where indexes are to be printed followed by
the actual text used for headings. “<#” means print the index first with # digits in the heading. “>#”
is the same but the heading text follows the index. “ #” gives no index, but just # characters of heading.
“|##” has the first # characters of heading text then the index, and then the following # characters of
heading text. The sum of the digits in the ## must not exceed 9.
If the text is the same for all columns (or rows) then text contains L characters, otherwise it contains
some multiple of L characters, and different text is used for each heading until running out of text in
which case the last given is repeated. One can get the default actions by not using the $O, with OO$O,
with $O>4Col $O>4Row $O, $O>4Col OO, or OO>4Row $O. If column headings were to be Earth,
Air, Fire, and Water and row labels were to have the form ”Case <index>:”, this would be $O 5Earth
Air FireWater$O|51Case :$O. Column headings are centered over the data for that column, unless the
column headings are wider than needed by the data in which case the data is right justified with the
heading.

P. Print the text from ptext at this point. Useful if you call an internal subroutine with a common
message except for one small bit of text.

Q. This is used to print integers as bit strings. If ix is not defined it is assumed that the bit string is in a
single integer, and that leading 0’s are not to be printed. If ix is present then |ix(1)| defines the number of
bits, and if ix(1) > 0, then this gives the number of bits and all are printed, otherwise it is assumed that
leading 0’s should not be printed, and the bit string consists of at least one integer. Idat contains the bit
strings much like when idat is used for output of integers or integer vectors, with the difference that a
single bit string may require more than 1 word. Following the $Q must be a B, O or a Z, indicating that
one wants the bits output in binary octal or hexadecimal. Following this must be an I or a V indicating
that one want just a single bit string output, or would like to output the contents of idat as a vector of
bit strings. Since Fortran does not have a bit data type, the high order bit of the integers is ignored, thus
if one has 32 bit integers, each integer holds only 31 bits.

R. Print the next real entry in rdat, and continue.

S. Print the real sparse vector, with row/column indexes in idat and values in rdat. Text at the start of
the line containing the $S is printed at the start of each line.

T. Tab to the column that is a multiple of that set with $<integer>T, see 0–9 below.

U. Set the output unit to the following integer. This output unit will be used until the next $B.

V. Print a floating point vector from rdat. If other numbers have been printed from rdat, then the vector
starts with the first unprinted number.

W. As for $V, but for integers from idat.

X. Print the integer in ix(k). The default for k is 1, but k can be changed by following the $X with an
integer.

Z. This is used for complex data. It must be followed immediately by A, F, G, R, or V, with these giving
the same result as these give in the real case when preceded by a ”$”.

0–9. Starts an <integer> and then either a F, G, J, T, or a ’ ’ will repeat the $F, $G, or $J action that
number of times, or set the column multiple for tab stops, or output that many blanks.

$. A single $ is output.

Default. Anything else gives an error message and returns.

There are many examples in tmessy.f90, but we give a simple example here. Suppose you have a real
matrix “rmatrix” that you would like to print with 8 significant digits, and with a line length of 100. To
have “rmatrix:” printed along with the matrix, you could use

call messy(e,¨$D8$L100rmatrix:AB,̈ rmat=rmatrix)

Of course you could just accept the default digits (full precision), and the default line length (128), and
you can always make permanent changes to the defaults in messy ty. You need the $B if you don’t want
these defaults to apply on the next call, otherwise just leave it off.

One might guess that if you pass in a full array, messy would adjust indexes printed to match those of the
array. But Fortran does not work this way. Fortran always passes arrays into messy with a lower bound of
1. If you want indexes to match those of an array that does not have a lower bound of 1, you can use the
$O feature.

July 9, 2012 Krogh: Messy Documentation Page 3

A:4

2. ERROR MESSAGES

When it comes to printing or stopping on an error message there is no single right answer. Sometimes the
user would like the code to print and not stop, or print and stop, or do neither depending on the message,
and on the context in which the code is being run. And it may be that they would like the error messages
and other messages to go to separate files.

For the person writing the code which is outputting the error message, they should have set e%ename to
the name they use to identify the package as part of the initialization. For any particular message they can
indicate how important they think it is for this message to stop and to print. The text for an error message
must start with $Esp, where s is a digit indicating how important it is to stop on completion of printing
this error message, and p is a digit indicating how important it is that the message print. One should only
use a 9 for s if they have given a flag to the user indicating that without appropriate action on their part
the program will be stopped. One must have p ≥ s and p=9 only if s is 9. By default a line of $’s is printed
before and after an error message. One is encouraged to use multiple calls to output all possible information
of potential interest concerning the error. All but the last call for an error message should end with a $C,
and only the first has the starting $E.

For the person using a package that processes errors they should have access to the data in “e”, in order
to change the rules for stopping, printing, line lengths, output units, etc. Note that e%maxerr will contain
the index of the stop index and print index for the error that seemed most serious, and errcnt will have a
count of the total number of error messages.

3. WITH MULTIPLE LEVELS

With Fortran 2003, one has a very nice way to set up calls to a subroutine package. If one uses a derived
type to pass all of the internal information that must be saved from one call to the next, then the code can
be made thread safe. If as part of the data structure used, one includes a variable of type messy ty, then
at the time just after that structure is initialized the user is free to change defaults as they wish. But the
benefits from this sort of organization go deeper.

Suppose a boundary value solver, bsolve, calls a nonlinear solver, nlsolve, which calls a linear optimizer,
losolve. Suppose these use corresponding types, bsolve ty, nlsolve ty, losolve ty. If they are all using
messy, then each of these types would include a component of type messy ty. Bsolve would include a
component of type nlsolve ty and nlsolve would include a component of type losolve ty. Thus when a user
declares a type of bsolve ty, all of these other types are included as part of the package. This makes it
possible for a routine at the lowest level to get information back to any higher level in a straightforward way.
We believe this is an attractive way to design the interface to software packages.

The facility for writing messages to an arbitrary file may be useful in a parallel computing environment
where only one node is able to process I/O. Each processor assigns different units to itself, and messages for
each processor would go to different units. The one node capable of doing I/O could pick up the messages from
each of these output units without messages from different processes getting mixed together in a confusing
way.

4. THREADS

If you want to use threads, you should read the comments at the start of the test program thrdtmessy.f90
to learn what modifications may be needed to messy m.f90 in order to use threads. This program gives a
very simple example of how such code can be organized if your compiler supports OpenMP. In this code,
each thread calls messy with a separate variable of derived type messy ty. In the comments there you will
find five modes for scheduling threads: STATIC, DYNAMIC, GUIDED, RUNTIME, or AUTO. There is no
guarantee that the output files run in different environments will give the same outputs, but all output files
as a group should contain all that is written.

A programmer can declare this type to be threadprivate or they can allocate an array that corresponds
to the maximum number of threads used, as in the example.

5. ACKNOWLEDGMENTS

The author is indebted to W. Van Snyder for answering many questions about the Fortran standard, and
for suggestions on alternative ways of doing things to take advantage of what the latest versions of Fortran
have to offer. Richard Hanson has provided useful input, including improvements in exposition, in features
and in a careful review of this document. He has also done all of the work for the thread implementation.
Tim Hopkins has helped by locating problems in using the NAG compiler.

REFERENCES

Fred T. Krogh. Algorithm xxx: A Fortran Message Processor. ACM Trans. Math. Softw. (????).

	Setup
	Error Messages
	With Multiple Levels
	Threads
	Acknowledgments

