
 1

 DISPMODULE User Manual

Copyright 2008, Kristján Jónasson, Dept. of Computer Science, University of
Iceland (jonasson@hi.is). This software is free. For details see the file README.

1. INTRODUCTION

DISPMODULE is a standard Fortran 95 module for quick and easy displaying (“pretty-printing”) of num-
bers, vectors or matrices using default or specified format. It can be useful for debugging, purposes, for pre-
liminary display of numerical results, and even for final display of such results in cases when carefully for-
matted tables are not needed. It is comparable to the automatic matrix printing of Matlab, S and R, but offers
substantially more control over the format used.

The module can handle the standard Fortran data types integer, single precision, double precision, complex,
logical and character. Integer, real, complex and logical data of other than default kind are supported with
add-on modules. The module contains the following public procedures:

Subroutine DISP The main procedure used for displaying items
Subroutine DISP_SET Used to change default settings for DISP

Subroutine DISP_SET_FACTORY Restores DISP-settings to original (factory) default
Function DISP_GET Returns a structure with current DISP-settings
Function TOSTRING Returns a string representation of a scalar or vector
Subroutine TOSTRING_SET Used to change default settings for TOSTRING
Subroutine TOSTRING_SET_FACTORY Restores TOSTRING-settings to original default

In addition the module defines a public derived type, DISP_SETTINGS, used for saving and restoring settings
for DISP. The procedures DISP and TOSTRING have a generic interface and optional arguments, so the same
subroutine / function name, is used to display items of different data types and ranks, with or without labels,
and using default or specified format. Similarly DISP_SET is generic and can be used both to change individ-
ual settings and to restore previously saved settings.

The most basic calling syntax for displaying is CALL DISP(expression) which will display the expression
with default format. The format may be specified with CALL DISP(expression, edit-descriptor), and CALL
DISP(title, expression) will label the displayed item with a title. Examples are CALL DISP(A), CALL
DISP(A,'F9.3'), CALL DISP('A=',A) and CALL DISP('A=',A,'F9.3'), the last one specifying both title
and format. If exp(1)ija i j= + − , i, j = 1,…,4, then CALL DISP('A = ', A) writes out:

A = 2.72 7.39 20.09 54.60
 7.39 20.09 54.60 148.41
 20.09 54.60 148.41 403.43
 54.60 148.41 403.43 1096.63

and if exp()ijb ij= the result of CALL DISP(B) is:

2.71828E+0 7.38906E+0 2.00855E+1 5.45981E+1
7.38906E+0 5.45981E+1 4.03429E+2 2.98096E+3
2.00855E+1 4.03429E+2 8.10308E+3 1.62755E+5
5.45981E+1 2.98096E+3 1.62755E+5 8.88611E+6.

It is also possible to number the rows and columns: CALL DISP(A, STYLE='NUMBER') will give:

 1 2 3 4
1 2.72 7.39 20.09 54.60
2 7.39 20.09 54.60 148.41
3 20.09 54.60 148.41 403.43
4 54.60 148.41 403.43 1096.63.

 2

The selection between F and E editing depends on the size of the largest displayed element as discussed in
section 3.2 below. Among the settings that may be controlled is the spacing between columns, the number of
significant digits, the placement of the label, and the file unit where the output goes. Items can in addition be
displayed side by side, for example:

CALL DISP('X = ', X, ADVANCE='NO')
CALL DISP('Y = ', Y)

which might output:

X = 7 8 3 Y = 11
 4 0 2 2
 1 3 6 7

Complex numbers are formatted as illustrated by:

complex C(3,3)
forall(i=1:3, k=1:3) C(i,k)=log(cmplx(-i*k))**k
call disp('C = ', C, 'F0.3')

which will display

C = 0.000 + 3.142i -9.389 + 4.355i -31.203 - 19.631i
 0.693 + 3.142i -7.948 + 8.710i -47.300 - 0.749i
 1.099 + 3.142i -6.659 + 11.258i -54.449 + 14.495i

Infinite and not-a-number real values are supported and displayed as NaN, +Inf or –Inf.

The remaining sections in this user manual contain detailed information on using the module. Section 2 dis-
cusses the basics of using the module, including use statements, compiling and linking, and add-on modules
supporting non-default kinds of data. Section 3 gives a detailed description of the generic subroutine DISP.
All the possible arguments are listed and the purpose of each one described. Section 4 describes how to
change various settings that control how items are displayed with DISP. Section 5 describes the function
TOSTRING which may be used to change numbers to strings. Finally testing of the module is discussed in sec-
tion 6.

2. USAGE

2.1 Overview of modules
The major part of the package is the module DISPMODULE in the file dispmodule.f90. This module should be
referenced with a use-statement, USE DISPMODULE, and the file should be compiled and linked with other
files. To display non-default kinds of data the add-on modules described in section 2.3 below must also be
used. The file dispmodule.f90 actually begins with two auxiliary modules, PUTSTRMODULE and
DISPMODULE_UTIL. The first one contains two dummy subroutines, PUTSTR and PUTNL, which do nothing, but
must be incorporated to avoid an “undefined symbol” link error. In addition it defines the named constant
(parameter) DEFAULT_UNIT = −3, which makes the asterisk unit (usually the screen) the default to display on.
The second auxiliary module has utility procedures which are not accessible to the user.

Alternatively the user can write his own PUTSTRMODULE as described in section 3.4 below. An example is
near the beginning of dispmodule.f90 (commented out). It may be used (by commenting it in, and com-
menting the default module out) to allow Matlab mex files to display in the Matlab command window.

2.2 An example program

Following is a short example program that uses the package:

PROGRAM EXAMPLE
 USE DISPMODULE
 REAL :: A(3) = (/ 1.2345, 2.3456, 3.4567 /)
 CALL DISP('A = ', A, SEP=', ', ORIENT = 'ROW')
END PROGRAM EXAMPLE

 3

If this program is in a file example.f90 and the Gnu Fortran compiler is used with Unix, the following
commands will accomplish compiling, linking and executing (the $-symbols are operating system prompts):

$ gfortran -c dispmodule.f90
$ gfortran -o example example.f90 dispmodule.o
$./example

Alternatively the compiled modules may be placed in a library that is included when linking:

$ gfortran -c dispmodule.f90
$ ar -r libdispmodule.a dispmodule.o
$ gfortran -o example example.f90 -L. -ldispmodule
$./example

The program should write out “A = 1.23450, 2.34560, 3.45670”. The package also contains a little
longer example program (in dispdemo.f90) with a makefile. On Unix with gfortran, the command:

$ make demo compiler=gfortran

should compile, link, and run dispdemo. The makefile’s default compiler name is f95.

2.3 Displaying data of non-default kind
The Fortran standard only guarantees the support of one kind of integers, logicals and characters, and two
kinds of real and complex numbers (the standard mentions double precision complex numbers, and reading
between the lines their support is almost deducible, though not directly guaranteed). The size of default kind
integers, logicals and single precision reals is with most (if not all) computers / compilers either 4 or 8 bytes,
and many (if not all) computers / compilers support other kinds of integers covering the range of byte lengths
1, 2, 4 and 8. The support of 1 byte logicals is also common, and some computers / compilers have quadruple
precision reals.

Support of these “non-standard” kinds is provided by the add-on modules DISP_I1MOD, DISP_I2MOD,
DISP_I4MOD, DISP_I8MOD, DISP_L1MOD and DISP_R16MOD. These assume that the following hold:

SELECTED_INT_KIND(2) → 1 byte integers
SELECTED_INT_KIND(4) → 2 byte integers
SELECTED_INT_KIND(9) → 4 byte integers
SELECTED_INT_KIND(18) → 8 byte integers
SELECTED_REAL_KIND(25) → 16 byte reals (quad precision)
LOGICAL(1) → 1 byte logicals

If this is not the case, or support for other kinds is wanted, then the files must be edited to obtain what is de-
sired. To use any of these modules, reference them with use-statements: USE DISP_xxMOD, compile them and
link with the program. With a little editing effort it is also possible to combine (a subset of) them with
DISPMODULE in a single module − the details are left to the user.

3. SUBROUTINE DISP
This is the principal subroutine of the package. It has various control arguments that specify the exact format
of the output. Most of these may also be used as arguments of the subroutine DISP_SET. When used with
DISP, a control argument affects only the item being displayed with the current call, but when used with
DISP_SET, the default settings for subsequent DISP calls are affected. The default values for individual argu-
ments given below are used unless they have been changed by a call to DISP_SET. All character arguments
should be of type default character. An overview of the arguments is in table 1, and further details are in sec-
tions 3.1−3.5.

3.1 Simple calls
CALL DISP
CALL DISP(X)
CALL DISP(TITLE, X)
CALL DISP(X, FMT)
CALL DISP(TITLE, X, FMT)

 4

Table I. Arguments of subroutine DISP (all are optional).

Argument Type Length Kind Rank Possible values Default Purpose

TITLE Character * Default 0 Any Empty Label to use for X

X

Integer
Real

Complex
Logical

Character

 Any
0, 1

or 2
Any Item to display

FMT Character * Default 0 Valid edit descriptor
Depends
on X and
DIGMAX

Edit descriptor for an
element of X (real part if
X is complex)

FMT_IMAG Character * Default 0 Valid edit descriptor
Depends
on X and
DIGMAX

Edit descriptor for imagi-
nary parts of elements of
X

ADVANCE Character 6≤ Default 0
NO, YES or DOU-

BLE
YES

Stay on same line, ad-
vance to next line, to next
line but one?

DIGMAX Integer Default 0 1, 2,… , 90 6

Number of significant
digits to show for X-
element of largest abso-
lute magnitude

LBOUND Integer Default 1 Any [1] or
[1,1]

Numbers of first row /
column of X

ORIENT Character 3 Default 0 ROW or COL COL Display row vector or
column vector?

SEP Character 9≤ Default 0 Any String used to separate
matrix columns

STYLE Character 9≤ Default 0

LEFT, ABOVE,
PAD, UNDERLINE
or NUMBER — can

be combined, e.g.
PAD & NUMBER

LEFT
Placement and form of
title; should rows / col-
umns be numbered?

TRIM Character 4≤ Default 0 YES, NO or AUTO AUTO
Trim blanks from left of
X? (AUTO means trim if
FMT is absent)

UNIT Integer Default 0 3≥ − ASTER-
ISK_UNIT

External file unit to send
output to

ZEROAS Character 9≤ Default 0 Any String to display instead
of zeros

The first call advances to the next line, and the other calls display X on the default unit (the unit may be
changed with the UNIT argument). The default putstrmodule (see section 2) sets the asterisk unit (usually
the screen) to be default. The purpose of individual arguments is as follows:

TITLE Provides a label for X. The label prefixes X by default but this may be changed with the
STYLE argument (see examples in section 3.2). When X is absent TITLE must also be absent.

X The item to be displayed. X may be scalar, vector or matrix (i.e. of rank 2≤) and the follow-
ing kinds of data are supported:

default integer
default real (or single precision, real(kind(1.0)))
double precision real (or real(kind(1d0)))
default complex (or complex(kind(1.0)))
double precision complex (or complex(kind(1d0)))
default logical
default character

 5

With the add-on modules described in section 2.3 other kinds may be displayed. Matrices
are displayed in traditional mathematical order, so the rows displayed are X(1,:), X(2,:)
etc. Vectors are by default displayed as column vectors (but a row orientation may be speci-
fied with the ORIENT argument). An SS edit descriptor is applied automatically so positive
elements are not prefixed with a + sign (the Fortran standard makes outputting a + sign op-
tional).

FMT When present, FMT should contain an edit descriptor that will be used to format each element
of X (or the real parts of X in case X is complex and FMT_IMAG is present; see below). The
possible edit descriptors are:

Fw.d, Dw.d, Ew.dEe, ENw.dEe, ESw.dEe: real data (the Ee suffixes are optional)
Iw, Bw, Ow, Zw: integer data (all may be suffixed with .m)
Lw: logical data
A, Aw: character data
Gw.d, Gw.dEe: any data

Example calls for numeric X are CALL DISP(X,'ES11.4') and CALL

DISP('X=',X,'F8.4'). If X is a scalar string (i.e. of rank 0) and TITLE is absent FMT must
be specified with a keyword (otherwise the call is taken to have TITLE and X): CALL
DISP('str',FMT='A4') displays “ str” but CALL DISP('str','A4') displays “strA4”).

If FMT is absent, each element of X is formatted with a default edit descriptor. When X is of
type logical the default is L1 and when it is of type character the default is A (which is
equivalent to Aw where w = LEN(X)). For integer data the default is Iw where w is exactly
big enough to accommodate both the largest positive and the largest negative values in X.
For real and complex data the default also depends on the largest absolute values in X, as de-
tailed in the DIGMAX-paragraph in section 3.2. The format used for complex numbers is dem-
onstrated in the introduction above.

3.2 Call with complete list of arguments
CALL DISP (TITLE, X, FMT, FMT_IMAG, ADVANCE, DIGMAX, LBOUND, ORIENT, SEP,
 STYLE, TRIM, UNIT, ZEROAS)

All dummy arguments are optional and some of them are incompatible with some data types of X. The argu-
ments control how X is displayed, as described in section 3.1 and below. For the character arguments
ADVANCE and ORIENT the case of letters is ignored (so e.g. ADVANCE = 'yes' and ADVANCE = 'YES' are
equivalent). Normally argument association for arguments after FMT (or FMT_IMAG) will be realized with ar-
gument keywords, e.g. CALL DISP('X=', X, DIGMAX=3, ORIENT='row'). When X is a scalar string FMT
must also be associated with keyword, as mentioned in section 3.1. The most useful application of calling
DISP with X absent is to advance to the next line or display an empty line. For this purpose, the only relevant
arguments are UNIT, and ADVANCE with the value 'yes' or 'double'.

FMT_IMAG = edit-descriptor-imag An edit descriptor for imaginary parts of complex X. The
statement CALL DISP((1.31,2.47),'F0.1','F0.2') will display “1.3 + 2.47i”. If FMT_IMAG
is absent and FMT is present then both real and imaginary parts are edited with FMT. If both are ab-
sent, separate defaults are used, as explained in the DIGMAX-paragraph below. FMT_IMAG must be
absent if X is not complex.

ADVANCE = adv The value for adv may be 'yes', 'no' or 'double'. If the value is 'yes' then X
is written out immediately, if it is 'double' then X is written out followed by an empty line (thus
giving double spacing), and if it is 'no' then X is not written out until the next DISP call on the
same unit with advancing turned on (either by default, via a call to DISP_SET, or via the ADVANCE
keyword). When this occurs, all the items displayed with DISP since the last output occurred on
the unit are written out side by side, separated by three spaces unless a different separation has
been specified via the MATSEP argument of DISP_SET. Default value of ADVANCE is 'yes'.

 6

DIGMAX = n Controls the format used for real and complex data in the absence of FMT. For real
items the format is chosen so that the displayed number of largest absolute magnitude (say xmax)
has n significant decimal digits. If max0.1 10nx≤ < an F edit descriptor is used, otherwise an E
edit descriptor. For complex items these rules are applied separately to the real parts and imagi-
nary parts, and thus two different formats are used. When X is not of real or complex type the ar-
gument DIGMAX is ignored. When DIGMAX is present FMT should be absent. The default is n = 6.

LBOUND = lbound This argument is a default integer vector with the numbers of the first row /
column to show when displaying with numbered style. When calling subroutines in Fortran, only
the shape of matrix arguments is passed with the arguments, but matrix lower bounds are as-
sumed to be 1 unless declared explicitly in the routine. To compensate for this deficiency lbound
may be set to the declared lower bound(s) of X. To take an example, let exp(1)ija i j= + − as in
section 1, but let A be declared with REAL::A(0:3,0:3). Then CALL DISP(A, STYLE = 'NUMBER',

LBOUND = LBOUND(A)) will display:

 0 1 2 3
0 1.000 2.718 7.389 20.086
1 2.718 7.389 20.086 54.598
2 7.389 20.086 54.598 148.413
3 20.086 54.598 148.413 403.429.

In fact the call may be shortened to CALL DISP(A, LBOUND = LBOUND(A)) because numbering is
default when LBOUND is present.

ORIENT = ori This argument can only be used when X is a vector (i.e. has rank 1). If ori is 'col'
(the default) a column vector is displayed, and if ori is 'row' a row vector results.

SEP = sep Specifies a string which is written out between columns of displayed matrices. If X has
rows (−1, 3) and (5, 10) and sep is ', ' then the output will be:

-1, 5
 5, 10

The length of the string must be at most 9. Default is ' ' (character string with two spaces).

STYLE = style There are five possible styles:

'left' Title is immediately to the left of the first line of the displayed item.
'above' Title is centred immediately above the item.
'pad' Title is centred above the item, padded with hyphens (-).
'underline' Title is centred above the item, underlined with hyphens.
'number' Each matrix or vector row and / or column is numbered.

Any of the four title position styles can also be combined with the number style by specifying for
example STYLE = 'pad & number'. Any character except space may be used instead of hyphen
by prefixing it to the style. STYLE = '*underline' will thus underline the title with asterisks.
Both row and column numbers appear for numbered matrices, but for vectors only row numbers
appear (or column numbers when ORIENT is 'col'). The five styles are illustrated below, accom-
panied by an example of combined padded title and numbering.

Matr = 1.2 4.2 Matr ---Matr-- Matr 1 2 ____Matr____
 5.6 18.3 1.2 4.2 1.2 4.2 --------- 1 1.2 4.2 1 2
 5.6 18.3 5.6 18.3 1.2 4.2 2 5.6 18.3 1 1.2 4.2
 5.6 18.3 2 5.6 18.3

The default value of style is 'left' if LBOUND is absent, 'number' if it is present, and 'left &
number' if both TITLE and LBOUND are present.

 7

TRIM = trim This argument can take three values, 'YES', 'NO' and 'AUTO'. When YES is speci-
fied, each column of displayed items is trimmed from the left, with 'NO' the items are not
trimmed and if trim is 'AUTO' the items are trimmed when FMT is absent but not when it is pre-
sent. In the following example, X and U are displayed with trim = 'yes', but Y and V with trim =
'no'. In all cases the edit descriptor is the default (I4). The default is TRIM = 'AUTO'.

----X---- -------Y------ -----U----- -------V------
1 2 4 1 2 3 333 22 4444 333 22 4444
2 22 34 2 22 34
3 32 1234 3 32 1234

One application of trimming is to display matrices with a fixed number of fractional digits but
variable effective field width. Then Fw.d editing with w big enough is accompanied by TRIM =

'yes'. An example is the following display of a matrix with (i, k) element exp()ik using F20.2
and 'yes':

 power exponentials
2.72 7.39 20.09
2.72 54.60 8103.08

Similar output may be obtained using I and F edit descriptors with w = 0 as discussed in section
3.5. Apart from I and F edited displays, it is possible to trim A-edited displays as well as E-edited
displays with some negative elements, but the first column all positive:

With TRIM='yes': X=1.2e+5 -4.1e-2 With TRIM='no': X= 1.2e+5 -4.1e-2
 2.3e-3 8.6e+1 2.3e-3 8.6e+1

UNIT = external-file-unit The unit which the output is sent to. There are three special units,
which may be referred to either with constants or parameters (named constants) as follows:

 Constant Parameter Preconnected unit
 −3 ASTERISK_UNIT The asterisk unit (often the screen)
 −2 PUTSTR_UNIT The subroutines PUTSTR and PUTNL
 −1 NULL_UNIT Null device (all output to this is discarded)

These units are further described in sections 3.3 and 3.4. Other unit numbers correspond to exter-
nal files that should have been connected with open-statements. The default unit depends on the
named constant DEFAULT_UNIT, defined in PUTSTRMODULE. The default PUTSTRMODULE sets it to
−3 (see sections 2 and 3.4).

ZEROAS = zerostring Supported for integer and real items (not complex). Any element that
compares equal to 0 will be displayed as zerostring. If, for example, A is a 4 by 4 upper triangular
matrix with 1 max(0, 1)ija j i= − + then call disp('A = ', A, 'F0.3', zeroas = '0', advance
= 'no') and call disp('B = ', A, 'F0.3', zeroas='.') will display:

A = 1.000 0.500 0.333 0.250 B = 1.000 0.500 0.333 0.250
 0 1.000 0.500 0.333 . 1.000 0.500 0.333
 0 0 1.000 0.500 . . 1.000 0.500
 0 0 0 1.000 . . . 1.000

Notice that when zerostring contains a decimal point it is lined up with other decimal points in
the column. If zerostring has length 0, the default behaviour of not treating zeros specially is re-
established, in case an earlier DISP_SET call has been used to set ZEROAS.

 8

3.3 ASTERISK_UNIT and NULL_UNIT

As already mentioned in section 3.2 there are three special units, ASTERISK_UNIT = −3, PUTSTR_UNIT = −2
and NULL_UNIT = −1. These public named constants (parameters) are defined by DISPMODULE.

Selecting ASTERISK_UNIT channels all output to the unit that WRITE(*,...) statements use. The
ISO_FORTRAN_ENV intrinsic module of Fortran 2003 defines the named constant OUTPUT_UNIT and this may
be used instead, unless its value is set to −2 by the compiler (which would clash with PUTSTR_UNIT).

Selecting NULL_UNIT causes all output via DISP to be discarded. This feature makes it simple to turn the out-
put on and off, which may be useful for debugging and testing purposes. If UNIT = U is specified in all DISP-
calls, it is enough to change the value of U to −1 to turn off output.

3.4 PUTSTR_UNIT: Output with user written subroutines

One of the purposes of the PUTSTR_UNIT is to make displaying possible in situations where ordinary print-
and write-statements do not work. This is for example the case in Matlab mex-files (in fact the execution of a
write statement on the asterisk unit crashes Matlab). To use the PUTSTR_UNIT it is necessary to write two
subroutines with interfaces:

SUBROUTINE PUTSTR(S)
CHARACTER(*), INTENT(IN) :: S

SUBROUTINE PUTNL()

The first of these should output the string S, and the second one should advance output to the next line.
These subroutines should be placed in a module PUTSTRMODULE as explained in section 2. The module should
also define a named constant DEFAULT_UNIT, which could be set to −2 to make the PUTSTR_UNIT default. An
example that works with g95 and Matlab mex-files is:

MODULE PUTSTRMODULE
 integer, parameter :: default_unit = -2

CONTAINS
 subroutine putstr(s)
 character(*), intent(in) :: s
 call mexprintf(s//char(0))
 end subroutine putstr

 subroutine putnl()
 call mexprintf(char(10)//char(0))
 end subroutine putnl

END MODULE PUTSTRMODULE

At the beginning of the file dispmodule.f90 there is a slightly longer version which works with both g95
and gfortran. Testing this module is discussed in section 6.2 below.

3.5 Using w=0 editing

The Fortran standard stipulates that writing a single element with I0 editing results in the smallest field width
that accommodates the value, and the same applies to B0, O0, Z0 and F0.d editing. With DISP, the width of
a displayed column will be the width of the widest field in the column, and each element is right-adjusted in
the column. This gives exactly the same output as using TRIM='yes' and a specified field width bigger than
the largest occurring. Note that with F0.d editing, there is no limit on the width of a column, but with Fw.d
and TRIM='yes' any element wider than w will be displayed as w asterisks:

------------------F0.2------------------ -----F13.2, TRIM='yes'----
14.28 142857142857142857142857.14 0.47 14.28 ************* 0.47
 1.42 1414213562.37 0.69 1.42 1414213562.37 0.69

 9

3.6 Not-a-number and infinite values

If the compiler supports not-a-number and infinite values as defined by the IEEE exceptional values of For-
tran 2003, these are displayed as NaN, +Inf or –Inf. A not-a-number value X is identified as being not equal
to itself, and an infinite value is either greater than HUGE(X) or smaller than –HUGE(X). On all the compilers
tried the sequence BIG=1E20; CALL DISP(EXP(BIG)) displays +Inf, and the program segment:

REAL :: Z = 0, BIG = 1E20

CALL DISP((/Z, Z/Z, BIG, -EXP(BIG)/))

displays

0.00000E+00
 NaN
1.00000E+20
 -Inf

4. CONTROLLING DEFAULT SETTINGS − DISP_SET AND DISP_GE T
The subroutine DISP_SET may be used to change default values of all the arguments of DISP except TITLE, X,
FMT and LBOUND. In addition the default separator between items that are displayed side-by-side (using
ADVANCE='no') may be changed with the MATSEP argument.

4.1 The derived type DISP_SETTINGS

 DISPMODULE contains the following definition of the data type DISP_SETTINGS.

TYPE DISP_SETTINGS
 character(3) :: advance = 'YES'
 character(9) :: matsep = ' '
 character(3) :: orient = 'COL'
 character(9) :: sep = ' '
 character(19) :: style = 'LEFT'
 character(4) :: trim = 'AUTO'
 character(9) :: zeroas = ''
 integer :: digmax = 6
 integer :: matseplen = 3
 integer :: seplen = 2
 integer :: unit = -3
 integer :: zaslen = 0
END TYPE DISP_SETTINGS

Structures of type DISP_SETTINGS may be used to save and later restore format control settings of DISP. As
shown, new variables of this type will automatically have default values for all components.

4.2 Calling syntax for DISP_SET

There are two ways to call DISP_SET:

CALL DISP_SET(SETTINGS)
CALL DISP_SET(ADVANCE, DIGMAX, MATSEP, ORIENT, SEP, STYLE, UNIT, ZEROAS)

Both calls change the default format control used in subsequent calls to DISP. In the first call, SETTINGS is of
type DISP_SETTINGS and the default values for all arguments is changed. In the second call all the arguments
are optional. If an argument is absent the corresponding default setting is not changed. An example call is

CALL DISP_SET(STYLE = 'pad', SEP = ' ').

The effect is that titles will be written padded above matrices, and matrix column will be separated by one
blank. The type and purpose of all the arguments except MATSEP has been described in section 3.2.

 10

MATSEP = ms Specifies a character string of length 9≤ that is written out between items (matri-
ces) when they are displayed side-by-side. An example is:

CALL DISP(X, ADVANCE='NO')
CALL DISP(Y, ADVANCE='NO')
CALL DISP_SET(MATSEP=' | ')
CALL DISP(Z, ADVANCE='YES')

The output from these calls might be:

12.2 | 1.3 | 1
 9.6 | 13.0 | 3
-2.0 | 4.0 | 4

Note that MATSEP affects the separation of all items that have been placed in the output queue of the
unit being displayed on.

4.3 The function DISP_GET

The argumentless function DISP_GET returns the current default settings in a structure of type
DISP_SETTINGS. If a subroutine changes the default settings with DISP_SET it is possible to save the settings
that are in effect when the routine is entered, and restore these settings before returning from the routine. An
example is:

subroutine disp_xy(x,y)
 use dispmodule
 real x(:,:), y(:,:)
 type(disp_settings) ds
 ds = disp_get()
 call disp_set(digmax=4, sep=',')
 call disp('x=',x)
 call disp('y=',y)
 call disp_set(ds)
end

5. NUMBERS TO STRINGS

5.1 Introduction

Many programming languages have built-in functions that change numbers to strings. It is for instance pos-
sible with Matlab to write

s = ['The square of ' num2str(x) ' is ' num2str(x*x)]; disp(s)

and in Java one may write

String s = "The square of " + Float.toString(x) + " is " Float.toString(x*x);
System.out.println(s)

(or in fact even shorter: System.out.println("The square of " + x + " is " + x*x);). Both program
fragments will display “The square of 1.5 is 2.25”. It is possible to achieve a similar effect in Fortran using
internal files and list-directed output:

character(100) s
real :: x = 1.5
write(s, *) 'The square of', x, 'is', x*x
print *, trim(s)

but this is cumbersome, and also there is the disadvantage that the result is compiler-dependent.

 11

DISPMODULE has a function, TOSTRING, which overcomes this disadvantage and offers additional flexibility.
With x = 1.5 the following statement will produce the same output as Matlab and Java give:

call disp('The square of '//tostring(x)//' is '//tostring(x*x))

Because Fortran 95 does not have variable length strings, using TOSTRING lacks some of the possibilities of
the Java and Matlab functions. However, TOSTRING is compatible with the ISO_VARYING_STRING module,
and if this is available one may for example obtain the same output as above with:

use iso_varying_string
type(varying_string) :: xs, x2s
...
x = 1.5
xs = tostring(x)
x2s = tostring(x**2)
print *, 'The square of'//xs//' is '//x2s

TOSTRING accepts integer, logical or real scalars or vectors. The subroutine TOSTRING_SET may be used to
change settings for TOSTRING.

5.2 The function TOSTRING

Apart from the item to be turned into a string, an edit descriptor to use can optionally be supplied as the sec-
ond argument to TOSTRING. The two ways to invoke TOSTRING are:

TOSTRING(X)
TOSTRING(X, FMT)

These invocations return a character string representing the value of the argument X. When X is a vector indi-
vidual elements are separated by a string, with the original (or factory) default value ", ". By (original) de-
fault, G editing is used to convert real numbers, I editing integers, and blanks are trimmed from (each ele-
ment of) X, both from the left and the right. In addition trailing zeroes are trimmed from the fractional part of
real X-elements, as well as a trailing decimal point. The separating string, trimming behaviour, and default
editing may be changed by calling TOSTRING_SET

X The item to be changed to a string. X may be a scalar or a vector (i.e. of rank 0 or 1) and of one
of the following kinds:

default integer
default real (i.e. real(1.0), single precision)
double precision real (i.e. real(1d0))
default logical

FMT Character string with an edit descriptor used to format each element of X. The possible edit de-
scriptors are given in section 3.1, except that A and Aw can of course not be used. When FMT
is absent, a default edit descriptor is used. The default may be set by calling TOSTRING_SET but
the original (or factory) defaults are I0 for integers, L1 for logicals and 1PG12.5 for reals.

5.3 The subroutines TOSTRING_SET and TOSTRING_SET_FACTORY

The subroutine TOSTRING_SET has five arguments, all of which are optional. Argument association will nor-
mally be realized using argument keywords, e.g. CALL TOSTRING_SET(SEP='; '). The examples in section
5.4 clarify how to use this subroutine. The five arguments are:

SEP Character string used to separate elements of displayed vectors. Original default value is
', '.

 12

RFMT Character string containing default edit descriptor to use to display real items. The original
default value is '1PG12.5'

IFMT Character string containing default edit descriptor to use to display integer items. The origi-
nal default value is 'I0'.

TRIMB Controls whether leading and trailing blanks are trimmed from individual displayed ele-
ments. Possible values are 'YES' (to trim blanks) and 'NO' (for no trimming). Default is
'YES'.

TRIMZ Controls whether trailing zeros are trimmed from the fractional part of displayed items.
Possible values are 'NONE' (for no zero trimming), 'G' (to trim fractional trailing zeros
only when G editing is used), and 'ALL' (to trim zeros with all types of editing). Trailing
decimal points are also removed when zero-trimming is active. Default value is 'G'.

The subroutine TOSTRING_SET_FACTORY (which has no arguments) may be called to restore all settings of
TOSTRING to the original default values (the factory defaults): SEP=', ', RFMT='1PG12.5', IFMT= 'I0',
TRIMB='YES' and TRIMZ='G'.

5.4 TOSTRING examples

When the original (factory) defaults are in effect, the result of invoking TOSTRING will usually be as follows.

Invocation Returned string
tostring(atan(1.0)) '0.785398'
tostring(exp([-3.,-1.,0.,1.])) '4.97871E-02, 0.36788, 1, 2.7183'
tostring(real([(i,i=1,5)])**8) '1, 256, 6561, 65536, 3.90625E+05'
tostring([1.23456,1.2300,1.23456e6]) '1.2346, 1.23, 1.23456E+06'
tostring(real([(i,i=1,5)])**8,'f0.1') '1.0, 256.0, 6561.0, 65536.0, 390625.0'
tostring(real([(i,i=1,5)])**8,'f6.1') '1.0, 256.0, 6561.0, ******, ******'
tostring([1200000.,-1.2e-9]) '1.2E+06, -1.2E-09'
!
tostring(1.200d103) '1.2+103'
tostring([1.1d0,2.2d10,3.3d20]) '1.1E+00, 2.2E+10, 3.3E+20'
!
tostring(-77) '-77'
tostring([(i,i=-3,3)]**11) '-177147, -2048, -1, 0, 1, 2048, 177147'
tostring([(i,i=-3,3)]**11, 'i7') '-177147, -2048, -1, 0, 1, 2048, 177147'
tostring([(i,i=-3,3)]**11, 'i4') '****, ****, -1, 0, 1, 2048, ****'
!
tostring((1,3)/(4,2)) '0.5 + 0.5i'
tostring(cmplx((/-1,-2/))**0.25) '0.70711 + 0.70711i, 0.8409 + 0.8409i'
!
tostring([.true., .false., .false.]) 'T, F, F'
tostring(.true., 'L2') 'T'

The returned strings may be slightly different from the ones shown, because some compilers (at least some
versions of g95) will produce one more decimal place in a few cases, and because the Fortran standard al-
lows G editing to give exponent fields in the form ±0dd instead of ±Edd. The examples make use of brackets
to construct vector constants (a Fortran 2003 feature). If the compiler being used does not support this, (/ and
/) must be used instead. Notice that trimming is on by default so there is not much purpose in specifying the
format for integers and logicals. Notice also that (usually) 5 significant digits are displayed when the default
G editing results in F edited output, but 6 digits for the numbers of small or large magnitude, displayed with
E editing. This discrepancy is present in the Fortran standard; the presence of the scale factor 1P in the edit
descriptor increases the number of displayed significant digits.

Examples of using TOSTRING_SET follow (again the returned string may be slightly different).

 13

Invocation Returned string
call tostring_set(sep=';')
tostring([1,2,30]) '1;2;30'
!
call tostring_set(trimb='NO')
tostring(real([(i,i=1,5)])**8,'f6.1') ' 1.0; 256.0;6561.0;******;******'
tostring([1,2,30],'i3') ' 1; 2; 30'
tostring([(i,i=-3,3)]**11, 'i4') '****;****; -1; 0; 1;2048;****'
tostring([1,2,30],'i0') '1;2;30'
tostring(.true.,'L3') ' T'
!
call tostring_set(trimz='NONE',sep=', ',trimb='YES')
tostring(real([(i,i=1,4)])**8) '1.0000, 256.00, 6561.0, 65536.'
tostring([1.23456,1.2300,1.23456e6]) '1.2346, 1.2300, 1.23456E+06'
tostring(1.200d103) '1.20000+103'
!
call tostring_set(trimz='ALL')
tostring(real([(i,i=1,5)])**8,'f0.1') '1, 256, 6561, 65536, 390625'
!
call tostring_set(rfmt='G12.4')
tostring(real([(i,i=0,5)])**8) '1, 256, 6561, 0.6554E+05, 0.3906E+06'
tostring([1200000.,-1.2e-9]) '0.12E+07, -0.12E-08'
!
call tostring_set_factory()

6. TESTING THE MODULES

The package has been checked successfully with four different compilers, g95, gfortran, ifort from Intel and
f95 from Nag. The g95 compiler has been used on Windows, Ubuntu Linux and Sun Solaris, gfortran on
Windows and Ubuntu Linux, ifort on Windows and an AMD-64 computer with Suse Linux and the Nag
compiler on Windows only.

There is one named constant at the beginning of the test programs which may be changed. This is the pa-
rameter verbose. When verbose is 2, the results of all tests are reported on the screen, when verbose is 1
(the default) the report is much more concise, and when it is 0 the report is minimal (and a few tests are by-
passed). In all cases the report ends with “OK” if all tests are passed, otherwise it ends with assertion failure
information.

6.1 Checking DISPMODULE only

The display modules are accompanied by a test program in the file test_dispmodule.f90. The test program
is fairly comprehensive, and tries to test all the features of DISPMODULE. Thus all public procedures are called
with and without all optional arguments, and for those arguments that have a limited range of allowed values
(such as ADVANCE, STYLE and TRIM) all these values are tried. In addition the tests check all the examples that
are given in this user manual. However, it is obviously impossible to test all possible combinations of argu-
ments and argument values, so one must be content with a partial test, accompanied by examination of the
source code of the modules and the test program.

To check only DISPMODULE (not the add-on modules), test_dispmodule should be compiled and linked with
dispmodule. With the Gnu Fortran compiler and Unix give the commands:

$ gfortran -o test test_dispmodule.f90 dispmodule.f90
$./test

It is also possible to use Make, with the command (again assuming the Gnu compiler):

$ make check compiler=gfortran.

 14

6.2 Complete checking

To check also the add-on modules and displaying of NaN-s and infinities it is easiest to use Make, which
works if the compiler has a pre-processing option (most compilers do). Use one of the make-commands:

$ make check-all-kinds
$ make check-quadprec
$ make check-naninf

$ make check-naninf-ieee

possibly adding an option to select the compiler and/or editing the makefile to select the add-on modules to
link with the program (needed if default integers are 8 bytes). The first listed make command checks display-
ing of 1, 2, 4 and 8 byte integers, single and double precision reals and 1 byte logicals, the second one checks
displaying of quaruple precision reals, and the last two check displaying of nan-s and infinities (use check-
naninf-ieee if the compiler supports Fortran 2003 ieee_arithmetic).

It is also possible to carry out complete checking manually, by un-commenting (some of) the “use

disp_...” statements, changing the kind parameters (irange or sik, logikind and srk) near the beginning
of test_dispmodule.f90, and linking with the needed add-on modules. With some compilers / computers it
may be necessary to make changes to definitions of kind parameters in the add-on modules (and the test pro-
gram).

6.3 Displaying from Matlab mex files

There is a separate example program of calling DISP from a Matlab mex file in mexdispdemo.f90. This has
been tested with g95, gfortran and ifort on Windows. To run this example one must first set up the Matlab
mex command for Fortran compilation, and for the testing this has been done with gnumex (see gnu-
mex.sourceforge.net). Also one needs to use the PUTSTRMODULE that is commented out at the start of
DISPMODULE (or with g95 the one given in section 3.4) instead of the dummy version. Having made these
preparations one can issue from the Matlab prompt the commands:

>> mex -c dispmodule.f90
>> mex mexdispdemo.f90 dispmodule.obj
>> mexdispdemo(hilb(3), 1:4)

Mexdispdemo simply displays its arguments, which should be a matrix and a vector.

