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1. FRAMEWORK

The Generalized Minimum RESidual (GMRES) method was proposed by Saad
and Schultz in 1986 [Saad and Schultz 1986] in order to solve large, sparse and non
Hermitian linear systems. GMRES belongs to the class of Krylov based iterative
methods.

The FGMRES (Flexible Generalized Minimum Residual) method [Saad 1993] is
among the most widely used Krylov solvers for the iterative solution of general
large linear systems when variable preconditioning is considered.

For the sake of generality we describe this method for linear systems that are
complex, everything also specialises to real arithmetic calculation. Let A be a
square nonsingular n × n complex matrix, and b be a complex vector of length n,
defining the linear system

Ax = b (1)

to be solved. Let x0 ∈ Cn be an initial guess for this linear system and r0 = b−Ax0

be its corresponding residual.
The convergence of GMRES or GMRES(m) to solve (1) might be slow. To

overcome this drawback, one often prefers to solve a transformed linear system
that is referred to as the preconditioned linear system. More precisely if A ≈M−1

we actually solve the linear system

AMz = b (2)

with x = Mz. In some situation, it might not be possible to explicitly form M

and its application to a vector might vary from one iteration to the next (for
instance Mt is obtained by iteratively solving the linear system Ay = t). Such a
preconditioninng strategy is referred to as flexible preconditioning. The FGMRES
(Flexible Generalized Minimum Residual) method [Saad 1993] is among the most
widely used Krylov solvers for the iterative solution of general large linear systems
when variable/flexible preconditioning is considered.

1The major part of this work was carried out while the three authors were working at CERFACS
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2. IMPLEMENTATION OF FGMRES

2.1 The user interface

For the sake of simplicity and portability, the FGMRES implementation is devel-
oped in Fortran 77 and is based on the reverse communication mechanism

—for implementing the numerical kernels that depend on the data structure selected
to represent the matrix A and the preconditioners,

—for performing the dot products.

This last point has been implemented to allow the use of FGMRES in a parallel
distributed memory environment, where only the user knows how the data has
been distributed. We have one driver per arithmetic, and we use the BLAS and
LAPACK terminology that is:

DRIVE SFGMRES for real single precision arithmetic computation,
DRIVE DFGMRES for real double precision arithmetic computation,
DRIVE CFGMRES for complex single precision arithmetic computation,
DRIVE ZFGMRES for complex double precision arithmetic computation.

Finally, to hide the numerical method from the user as much as possible, only
a few parameters are required by the drivers, whose interfaces are similar for all
arithmetics. Below we present the interface for the real double precision driver:

CALL DRIVE_DFGMRES(N,NLOC,M,LWORK,WORK,IRC,ICNTL,CNTL,INFO,RINFO)

N is an INTEGER variable that must be set by the user to the order n

of the matrix A. It is not altered by the subroutine.

NLOC is an INTEGER variable that must be set by the user to the size
of the subset of entries of b and x that are allocated to the calling
process in a distributed memory environment (See Figure 1 for a
illustration of the definition of this parameter). For serial or shared
memory computers NLOC should be equal to N. It is not altered by the
subroutine.

M is an INTEGER variable that must be set by the user to the projection
size m (restart parameter). This parameter controls the amount of
memory required for storing the basis Vm and Zm as well as the
Hessenberg matrix. It is not altered by the subroutine except if it
was set by the user to a value larger than N or to a value too large for
LWORK. In the first case, it would be reset to N. In the latter case, it
would be reset to the maximum possible value permitted by LWORK.
From a rate of convergence point of view, it is generally observed that
the larger M the faster the convergence.

LWORK is an INTEGER variable that must be set by the user to the size of the
workspace WORK. LWORK must be greater than or equal to LWORK min:

LWORK min = M*M+M*(2*NLOC+5)+5*NLOC+1 if ICNTL(7)=1,

LWORK min = M*M+M*(2*NLOC+5)+6*NLOC+1 otherwise.

The above value of LWORK min should be incremented by M if
ICNTL(4)=2 or ICNTL(4)=3.
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It is not altered by the subroutine.

WORK is a SINGLE/DOUBLE PRECISION REAL/COMPLEX array of
length LWORK. The first NLOC entries contain the initial guess x0 in
input and the computed approximation of the solution in output.
The following NLOC entries contain the right-hand side b of the linear
system. The remaining entries are used as workspace by the subrou-
tine.

IRC is an INTEGER array of length 5 that needs not be set by the user.
This array controls the reverse communication. Details of the reverse
communication management are given in Section 2.2.

ICNTL is an INTEGER array of length 7 that contains control parameters
that must be set by the user. Details of the control parameters are
given in Section 2.3.

CNTL is a SINGLE/DOUBLE PRECISION REAL array of length 3 that
contains control parameters that must be set by the user. Details of
the control parameters are given in Section 2.3.

INFO is an INTEGER array of length 3 which contains information on the
reasons of exiting FGMRES. Details are given in Section 2.4.

RINFO is a SINGLE/DOUBLE PRECISION REAL which contains the back-
ward error for the linear systems.

In the figure below we illustrate how the parameter NLOC and N should be set for
the parallel solution of a linear system in a distributed memory environment using
2 processors. We assume that (x1, b1) of size n1 ((x2, b2) of size n2) are stored in
the local memory of the processor P1 (resp. P2).

„

A11 A12

A21 A22

« „

x1

x2

«

=

„

b1
b2

«

on P1 : NLOC = n1, N = n1 + n2

on P2 : NLOC = n2, N = n1 + n2

Fig. 1. Definition of NLOC and N on 2 processors in a parallel distributed environement

2.2 The reverse communication management

The INTEGER array IRC allows the implementation of the reverse communication.
None of its entries must be set by the user.

On each exit, IRC(1) indicates the action that must be performed by the user
before invoking the driver again. Possible values of IRC(1) and the associated
actions are as follows:

0 Normal exit.

1 The user must perform the matrix-vector product z ← Ax.

3 The user must perform the right preconditioning z ←M−1
i

x.

4 The user must perform one or more scalar products z ← xHy.

Notice that the value 2 has been skipped to be consistent with the implementation
we proposed for GMRES in [Frayssé et al. 2003; 2005].
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On each exit with IRC(1) > 0, IRC(2) indicates the index in WORK where x should
be read and IRC(4) indicates the index in WORK where z should be written.

When IRC(1) = 4, IRC(5) gives the number of scalar products to be performed.
In this case, x denotes an array of size NLOC×IRC(5) stored column-wise (i.e. with
a leading dimension equal to NLOC). IRC(3) indicates the index in WORK where y

should be read. This programming trick permits one to implement the dot products
with a level 2 BLAS routine: this happens when the orthogonalization scheme is
either CGS or ICGS. Furthermore, on distributed memory computers, this allows
one to reduce the number of global synchronizations/reductions and alleviate the
cost of the dot product computations.

Finally, IRC(6) indicates the index in WORK where a free workspace of size IRC(7)
is available because it is not yet used by the solver. We allocate the space required
to store Vm and Zm at the end of the workspace, as depicted in Figure 2. We refer

V Z

lwork

IRC(6)

IRC(7)

v1 v2 ................vi zi ........................z2 z1

M*NLOC M*NLOC

Fig. 2. Management of the workspace: picture at the i-th iteration of FGMRES.

to Section 3 for an example of use of the driver routine.

2.3 The control parameters

The entries of the array ICNTL control the execution of the DRIVE FGMRES subrou-
tine. All entries of ICNTL are input parameters and some of them have a default
value set by the routine INIT FGMRES.
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ICNTL(1) is the stream number for the error messages (Default is 6).
Must be a strictly positive value.

ICNTL(2) is the stream number for the warning messages (Default is 6).
Must be greater than or equal to zero. A zero value implies that the
warning messages will not be displayed.

ICNTL(3) is the stream number for the convergence history (Default is 0).
Must be greater than or equal to zero. A zero value implies that the
convergence history will not be displayed.

ICNTL(4) determines which orthogonalization scheme to apply (Default is 0,
i.e. MGS).

ICNTL(5) controls whether the user wishes to supply an initial guess of the
solution vector (Default is 0).
Must be equal to either 0 or 1. If ICNTL(5)=0, the initial guess is
set to zero.

ICNTL(6) is the maximum number of iterations (accumulated over the restarts)
allowed (Default is arbitrary 100).
Must be larger than 0.

ICNTL(7) controls the strategy to compute the residual at the restart (Default
is 1).
Must be equal to either 0 or 1.

Possible values for ICNTL(4) are

0 modified Gram-Schmidt orthogonalization (MGS) (Default),

1 iterative selective modified Gram-Schmidt orthogonalization (IMGS),

2 classical Gram-Schmidt orthogonalization (CGS),

3 iterative selective classical Gram-Schmidt orthogonalization (ICGS).

Possible values for ICNTL(7) are

0 A recurrence formula is used to compute the residual at each restart,
except if the convergence was detected using the Arnoldi residual
during the previous restart

1 The residual is explicitly computed using a matrix-vector product
(Default).

The entries of the CNTL array define the tolerance and the normalizing factors
that control the execution of the algorithm:

CNTL(1) is the convergence tolerance for the backward error (Default is 10−5).
Must be greater than or equal to zero.

CNTL(2) is the normalizing factor α (Default is 0).
Must be greater than or equal to zero.

CNTL(3) is the normalizing factor β (Default is 0).
Must be greater than or equal to zero.

Default values are used when the user’s input is α = β = 0; that is β = ‖b‖2
respectively.

ACM Journal Name, Vol. V, No. N, Month 20YY.



6 · Valérie Frayssé et al.

2.4 The information parameters

Once IRC(1) = 0, the entries of the array INFO explain the circumstances under
which FGMRES was exited. All entries of INFO are output parameters.

Possible values for INFO(1) are

0 normal exit. Convergence has been observed.

-1 erroneous value n < 1.

-2 erroneous value m < 1.

-3 LWORK too small.

-4 convergence not achieved after ICNTL(6) iterations.

If INFO(1) = 0, then INFO(2) contains the number of iterations performed un-
til achievement of the convergence and INFO(3) gives the minimal size for the
workspace. If INFO(1) = -3, then INFO(2) contains the minimal size necessary for
the workspace.

If INFO(1) = 0, then RINFO contains the backward error for the linear system.

2.5 Initialization of the parameters

An initialization routine is available to the user for each arithmetic:

INIT SFGMRES for real single precision arithmetic computation,
INIT DFGMRES for double precision arithmetic computation,
INIT CFGMRES for complex single precision arithmetic computation,
INIT ZFGMRES for complex double precision arithmetic computation.

These routines set the input control parameters ICNTL and CNTL defined above to
default values. The generic interface is

CALL INIT_FGMRES(ICNTL,CNTL)

The default value for

ICNTL(1) is 6,

ICNTL(2) is 6,

ICNTL(3) is 0: no convergence history,

ICNTL(4) is 0: MGS is used,

ICNTL(5) is 0: default initial guess x0 = 0,

ICNTL(6) is arbitrary set to 100,

ICNTL(7) is 1: the residual is explicitly computed at each restart,

CNTL(1) is 1,

CNTL(2) is 0,

CNTL(3) is 0.

2.6 Automatic correction for invalid parameters

To avoid an exit with an error when some parameters have been wrongly set by the
user, we try as far as possible to correct them and generate a warning message in
the warning stream. Such a situation might occur when:

ACM Journal Name, Vol. V, No. N, Month 20YY.
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M is set to a value larger than N, we set it to N.

LWORK is too small for the required M, we then compute the largest possible
value of M allowed for that size of the workspace. If M is lower than
1, we exit with an error.

ICNTL(4) is set to an invalid value, we set it back to the default.

ICNTL(5) is set to an invalid value, we set it back to the default.

ICNTL(7) is set to an invalid value, we set it back to the default.

2.7 Unrecoverable invalid parameters

For some invalid values of the input parameters we cannot guess what could be a
relevant alternative and consequently we output an error message and return to the
calling program. Such a situation might occur when:

N is set to a value smaller than 1.

M is set to a value smaller than 1.

LWORK is too small to enable any FGMRES iteration.

For the sake of maintenance of the code, only one source file exists and is used to
generate the source code for each of the four arithmetics. The final code is written
in Fortran 77 and makes calls to BLAS routines, as indicated in Table I. We

Simple precision Double precision

real complex real complex

SAXPY CAXPY DAXPY ZAXPY

SNRM2 SCNRM2 DNRM2 DZNRM2

SCOPY CCOPY DCOPY ZCOPY

SGEMV CGEMV DGEMV ZGEMV

SROT CROT DROT ZROT

SROTG CROTG DROTG ZROTG

STRSV CTRSV DTRSV ZTRSV

Table I. BLAS routines called in GMRES.

should also mention that a free implementation of GMRES [Frayssé et al. 2003;
2005] is also available at the same URL address.

3. AN EXAMPLE OF USE

We give below an example of use of the FGMRES driver. Here the preconditioner
is the GMRES method implemented as in [Frayssé et al. 2003; 2005]. Note that, in
this example, we have chosen not to allocate extra memory for the preconditioner:
when the preconditioner is needed for FGMRES, we compute how many steps of
GMRES are possible with the part of the workspace which is still free. The inner
GMRES can be itself preconditioned: in this example we use a simple a Jacobi
(left) preconditioner.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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program validation

*

integer lda, ldstrt, lwork

parameter (lda= 1000, ldstrt = 60)

parameter (lwork= ldstrt**2 + ldstrt*(2*lda+5)

& + 6*lda + ldstrt)

*

integer i, j, n, m, m2

integer revcom, colx, coly, colz, nbscal

integer revcom2, colx2, coly2, colz2, nbscal2

integer irc(7), icntl(7), info(3)

integer irc2(5), icntl2(8), info2(3)

*

integer matvec, precondLeft, precondRight, dotProd

parameter (matvec=1, precondLeft=2)

parameter (precondRight=3, dotProd=4)

*

integer nout

*

complex*16 a(lda,lda), work(lwork)

real*8 cntl(3), rinfo, rn

real*8 cntl2(5), rinfo2(2)

*

complex*16 ZERO, ONE

parameter (ZERO = (0.0d0, 0.0d0), ONE = (1.0d0, 0.0d0))

*

* Initialize the matrix

*

....

* Set the right-hand side b such that b_i = 1+sqrt(-1)

do i = 1,n

work(i+n) = (1.d0,1.d0)

enddo

*

*****************************************************

* Initialize the control parameters to default values

*****************************************************

call init_zfgmres(icntl,cntl)

call init_zgmres(icntl2,cntl2)

*

**********************************

*c Tune some parameters for FGMRES

**********************************

*

* Tolerance

cntl(1) = 1.d-9

* Save the convergence history in file fort.20

icntl(3) = 20

* ICGS orthogonalization

icntl(4) = 3

* Maximum number of iterations

icntl(6) = 100

*

*********************************

*c Tune some parameters for GMRES

*********************************

*

* Tolerance

cntl2(1) = 5.d-2

* warning output stream

icntl2(2) = 0

* Save the convergence history in file fort.20

icntl2(3) = 30

* No preconditioning
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icntl2(4) = 0

print *,’ Inner GMES precond 0-none, 1:left, 2:right ’

read(*,*) icntl2(4)

* ICGS orthogonalization

icntl2(5) = 3

* Maximum number of iterations

icntl2(7) = 6

print *,’ Max Inner GMES iterations ’

read(*,*) icntl2(7)

*

*****************************************

** Reverse communication implementation

*****************************************

*

10 call drive_zfgmres(n,n,m,lwork,work,

& irc,icntl,cntl,info,rinfo)

revcom = irc(1)

colx = irc(2)

coly = irc(3)

colz = irc(4)

nbscal = irc(5)

*

if (revcom.eq.matvec) then

* perform the matrix-vector product for FGMRES

* work(colz) <-- A * work(colx)

call zgemv(’N’,n,n,ONE,a,lda,work(colx),1,

& ZERO,work(colz),1)

goto 10

*

else if (revcom.eq.precondRight) then

* perform the right preconditioning for the FGMRES iteration

*

* Check if there is enough space left in the workspace

* to perform few steps of GMRES as right preconditioner

rn = float(n)

rx = rn + 5.0

rc = 5.0*rn + 1 - float(irc(7))

*

* Update the linear part of the second order equation to

* be solved to compute the largest possible restart

if ((icntl2(5).eq.2).or.(icntl2(5).eq.3)) then

rx = rx + 1

endif

* Update the constant part of the second order equation to

* be solved to compute the largest possible restart

*

if (icntl2(8).eq.0) then

rc = rc + rn

endif

m2 = ifix((-rx+sqrt(rx**2-4.0*rc))/2.0)

*

if (m2.gt.0) then

* copy colx in the workspace (right hand side location) of

* the inner gmres iteration

call zcopy(n,work(colx),1,work(irc(6)+n),1)

20 call drive_zgmres(n,n,m2,irc(7),

& work(irc(6)),irc2,icntl2,cntl2,info2,rinfo2)

revcom2 = irc2(1)

colx2 = irc2(2) + irc(6) -1

coly2 = irc2(3) + irc(6) -1

colz2 = irc2(4) + irc(6) -1

nbscal2 = irc2(5)

if (revcom2.eq.matvec) then

* Perform the matrix-vector product for the
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* inner GMRES iteration

call zgemv(’N’,n,n,ONE,a,lda,work(colx2),1,

& ZERO,work(colz2),1)

goto 20

else if (revcom2.eq.precondRight) then

* perform the precond. for the inner GMRES iteration

do i =0,n-1

work(colz2+i) = work(colx2+i)/a(i+1,i+1)

enddo

goto 20

else if (revcom2.eq.precondleft) then

* perform the precond. for the inner GMRES iteration

do i =0,n-1

work(colz2+i) = work(colx2+i)/a(i+1,i+1)

enddo

goto 20

else if (revcom2.eq.dotProd) then

* perform the dot-product for the inner GMRES iteration

* work(colz) <-- work(colx) work(coly)

* The statement to perform the dot products can be

* written in a compact form.

* call zgemv(’C’,n,nbscal2,ONE,work(colx2),n,

* & work(coly2),1,ZERO,work(colz2),1)

* For sake of simplicity we write it as a do-loop

do i=0,nbscal2-1

work(colz2+i) = zdotc(n,work(colx2+i*n),1,

& work(coly2),1)

goto 20

endif

call zcopy(n,work(irc(6)),1,work(colz),1)

goto 10

else

* (m2.le.0)

call zcopy(n,work(colx),1,work(colz),1)

goto 10

endif

else if (revcom.eq.dotProd) then

* perform the scalar product for the FGMRES iteration

* work(colz) <-- work(colx) work(coly)

*

* The statement to perform the dot products can be written in

* a compact form.

* call zgemv(’C’,n,nbscal,ONE,work(colx),n,

* & work(coly),1,ZERO,work(colz),1)

* For sake of simplicity we write it as a do-loop

do i=0,nbscal-1

work(colz+i) = zdotc(n,work(colx+i*n),1,

& work(coly),1)

enddo

goto 10

endif

*

*******************************

* dump the solution on a file

*******************************

.....

*
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