
EIGENTEST
The C User’s Guide

Che-Rung Lee
G. W. Stewart

Aug 20 2007

Introduction

Eigentest is a collection of routines to create and manipulate test matrices, called eigen-
mats, with known eigenvalues and eigenvectors. Eigenmats are real matrices maintained
in factored form in such a way that storage and operation costs are proportional to the
order of the eigenmat in question. The spectrum of an eigenmat consists of real eigen-
values, complex conjugate pairs of eigenvalues, and real Jordan blocks. The operations
consist of multiplying a matrix by (A − sI), (A − sI)T, (A − sI)−1, and (A − sI)−T,
where A is the eigenmat and s is a shift. In addition, Eigentest provides a function to
compute individual eigenvectors and principal vectors, and functions to help with the
creation of eigenmats.

This document is intended to provide a quick introduction to eigenmats, their oper-
ations, and their implementation in C. For more details see the TOMS paper describing
the Eigentest package.

Structure of an eigenmat

An eigenmat A has the factored form

A = Y ZLZ−1Y −1 ≡ XLX−1.

The matrix X consists of the eigenvectors and principal vectors of A. We will peel this
factorization apart like an onion, beginning with the matrix Y .

The matrix Y is a special case of a Householder-SVD matrix, or hsvdmat for short.
It has the form

Y = (I − uuT)Σ(I − vvT), (1)

where
‖u‖ = ‖v‖ =

√
2

and
Σ = diag(σ1, . . . , σn), σi > 0 (i = 1, . . . , n).

The matrices I − uuT and I − vvT are called Householder transformations. They are
orthogonal matrices, and hence the right-hand of (??) is the singular value decomposi-
tion of Y . By increasing the ratio of the largest to the smallest of the singular values
σ1, . . . , σn, one can increase the ill-conditioning of the hsvdmat Y .

1

2 Eigentest User’s Guide: C

The matrix Z is the general case of an hsvdmat. It has the block diagonal form

Z = diag(Z0, . . . , Znblocks−1),

where each Zi is an hsvdmat of the form (??).
The matrix L has the block structure

L = diag(L1, L2, . . . , Lm).

There are three kinds of blocks.

• Real eigenvalue. A real matrix of order one containing a real eigenvalue λ.

• Complex conjugate eigenvalues. A real matrix of order two having the form

Li =
(

µ ν
−ν µ

)
.

This is a normal matrix, whose eigenvalues are are µ± νi with eigenvectors(
1
±i

)
.

• Jordan block. A real Jordan block of the form
λ η1 0 · · · 0
0 λ η2 · · · 0
...

...
.

...
0 0 · · · λ ηk−1

0 0 · · · 0 λ

 . (2)

The representation of an eigenmat

In C, an eigenmat A is represented by the structure

struct eigenmat{
int n; /* The order of the matrix. */
double *eig; /* Array containing the eigenvalues of A

or the superdiagonals of a Jordan block. */
int *type; /* The type of the entry in eig. */
struct hsvd Y, Z; /* The outer and inner hsvd transformations. */

};

Eigentest User’s Guide: C 3

The contents of the type and eig arrays are determined as follows.

Real eigenvalue
type(i) = 1 eig(i) = λ

Complex eigenvalue
type(i) = 2 eig(i) = µ
type(i+1) = 3 eig(i+1) = ν

Jordan block
type(i) = −k eig(i) = λ
type(i+j) = −1 eig(i+j) = ηj (j = 1, . . . , k−1)

The matrix Z is composed of hsvdmats Zi of, say, order ki of the form1

Zi = (I − uiu
T
i)Σi(I − viv

T
i), i = 0, . . . ,nblocks−1.

It is stored as follows. The vectors ui are packed in a floating-point array u of length
n in their natural order. Likewise, the vectors vi are packed in a floating-point array
v, and the singular values σi are stored in a floating-point array sig. These arrays are
accompanied by an integer array bs (for block start) of length nblocks+1. The absolute
value of ith entry of bx contains the starting index for the ith block; i.e.,

b[0] = 0 and b[i] = ±(k0 + · · ·+ ki−1) (i > 0).

Since k0 + · · ·+ knblocks−1 = n, we have

b[nblocks] = ±n.

The matrix Z is implemented by the structure

struct hsvd{
int n; /* The order of the matrix. */
int nblocks; /* The number of blocks in the hsvdmat. */
int *bs; /* abs(bs[i]) is the index of the start of the

block i+1. abs(bs[nblock]) is equal to n.
If bs[i+1]<0, the i-th block is an
identity. */

double *u; /* The vector generating the left Householder
transformation. */

1There is no necessary correspondence between the blocks of Z and the blocks of L. But since the
purpose of a block of Z is to combine blocks of L, it is to be expected that a block of Z will exactly
contain a contiguous sequence of blocks of L.

4 Eigentest User’s Guide: C

double *v; /* The vector generating the right Householder
transformation. */

double *sig; /* The diagonals of the Sigma_i. */
};

It may happen that Y or some of the Zi must be identity matrices. One way to
create an identity is to set ui = vi and Σi = I; but this is an inefficient way to compute
b = Zib. Consequently, Eigentest adopts the following convention.

If bs[i + 1] < 0, then Zi = I.

Thus if we wish to make Z an identity matrix, we simply set

Z.nblocks = 1;
Z.bs[0] = 0;
Z.bs[1] = -n;

The matrix Y is represented as an hsvdmat with only one block.
Eigentest provides a function to allocate storage for an eigenmat and its associated

hsvdmats. It has the form

void EigenmatAlloc(struct eigenmat *A, int n, int nblocks,
int yident, int zident){

A Pointer to the eigenmat to be initialized.
n The order of A.
nblocks The number of blocks in the hsvdmat A.Z.
yident If yident!=0, A.Y is initialized as an identity matrix.
zident If zident!=0, A.Z is initialized as an identity matrix.

EigenmatAlloc creates the arrays in A, A.Y, and A.Z. In addition it initializes A.n,
A.Z.n, A.Z.nblocks, A.Z.bs[0], A.Z.bs[n], A.y.n, A.y.nblocks, and A.Y.bs.

EigematFree(A) dealocates the storage of the eigenmat A.
A utility subroutine routine, hscale, that scales a vector to have norm

√
2 is provided

to aid in setting up hsvdmats. Its calling sequence is

void hscal(int n, double *u)

u pointer to a nonzero vector of doubles of length n.
On return the norm of u is sqrt(2).

Eigentest User’s Guide: C 5

sigmin = 1.0e-1;
EigenmatGen(&A, 8, 2, 0, 0);

A.type[0] = 1; A.type[1] = 1; A.type[2] = 1;
A.eig[0] = 1; A.eig[1] = 2; A.eig[2] = 3;
A.type[3] = 2; A.type[4] = 2;
A.eig[3] = 1; A.type[4] = 12;
A.type[5] = -3; A.type[6] = -1; A.type[7] = -1;
A.eig[5] = sqrt(2); A.eig[6] = 1e-3; A.eig[7] = 1e-3;

A.Z.bs[1] = 0;
A.Z.bs[2] = 5;
A.Z.bs[3] = -8;
for (i=0; i<5; i++){

A.Z.u[i] = ((double) rand())/RAND_MAX - 0.5;
A.Z.v[i] = ((double) rand())/RAND_MAX - 0.5;
A.Z.sig[i] = 1;

}
hscal(&A.Z.u[0], 5);
hscal(&A.Z.v[0], 5);
A.Z.sig[5] = sigmin;

for (i=0; i<8; i++){
A.Y.u[i] = ((double) rand())/RAND_MAX - 0.5;
A.Y.v[i] = ((double) rand())/RAND_MAX - 0.5;
A.Y.sig[i] = 1;

}
hscal(&A.Y.u[0], 8);
hscal(&A.Y.v[0], 8);
A.Y.sig[5] = sigmin;

Figure 1: Generating an eigenmat

Figure ?? shows how to set up an eigenmat. A has three real eigevalues (1, 2, 3),
a pair of complex conjugate eigenvalues (1 ± 12i), and a Jordan block of order 3 with
eigenvalue

√
2 and superdiagonal elements of 10−3. The hsvdmat Z mixes the real

and complex eigenvalues and leaves the Jordan block alone. The hsvdmat Y mixes
everything.

From the foregoing it is clear that setting up an eigenmat can be nontrivial. In
complicated experiments, you may want to write a function, whose arguments are the
parameters you want to vary, to generate your matrix. For example, if one were per-
forming a series of experiments to determine the effects of the condition of Y and Z,

6 Eigentest User’s Guide: C

one might turn the code in Figure ?? into a function with the argument sigmin.

Manipulating eigenmats

Eigentest has two functions to work with eigenmats and one to work with hsvdmats.

• EigenmatProd computes the the products involving an eigenmat. Its calling sequence
is

void EigenmatProd(struct eigenmat *A, int ncols,
double *B, int tdb,
double *C, int tdc,
double shift, char *job)

A Pointer to the eigenmat.
ncols Number of columns in the matrix B.
B Pointer to an array containing the matrix B.
tdb The trailing dimension of the array B.
C Pointer to an array containing the matrix C.
tdc The trailing dimension of C.
shift A shift.
job A string specifying the operation to be performed.

"ab" C = (A - shift*I)*B
"atb" C = (A - shift*I)^T*B
"aib" C = (A - shift*I)^-1*B
"aitb" C = (A - shift*I)^-T*B

• EigenmatVecs computes specified eigenvectors or, in the case of a Jordan block, prin-
cipal vectors. Its calling sequence is

void EigenmatVecs(struct eigenmat *A, int eignum,
double *eigr, double *eigi,
double *xr, double *xi,
double *yr, double *yi,
double *cond, char job)

A The eigenmat whose vectors are to be computed.
eignum The position in A.eig of the eigenvalue.
eigr The real part of the eigenvalue.

Eigentest User’s Guide: C 7

eigi The imaginary part of the eigenvalue.
xr(:) The real part of the right eigenvector or

principal vector.
xi(:) The imaginary part of the right eigenvector or

principal vector.
yr(:) The real part of the left eigenvector or

principal vector.
yi(:) The imaginary part of the left eigenvector

or principal vector.
cond The condition number of the eigenvalue

(or -1, if the eigenvalue belongs to a
Jordan block).

job A string specifying what to compute.

"r" Compute the right eigenvector.
"l" Compute the left eigenvector.
"b" Compute both and the condition number.
(Note: For Jordan blocks, principal vectors
are computed and -1 is returned for the
condition number.)

All vectors returned have norm one.

• HsvdProd is a utility routine used by Eigentest to compute products involving an
hsvdmat. The result overwrites the original matrix. Its calling sequence is

void HsvdProd(struct hsvd *X, int ncols,
double *B, int tdb,
char *job)

X Pointer to the hsvdmat.
ncols The number of columns in B.
B The array B.
tdb The trailing dimension of B.
job A string specifying the operation to be performed.

"ab" B <- X*B
"atb" B <- X^t*B
"aib" B <- X^-1*B
"aitb" B <- X^-T*B

8 Eigentest User’s Guide: C

The C package

The C version of the eigetest package comes with the following files.

README A brief introductory file.

eigentest.c, eigentest.h The Eigentest program and its header file. These two
files can be compiled to compute an object file suitable for linking to an application
(which will, of course, need eigentest.h.)

testeigentest.c A test program for Eigentest that runs 64 test cases probing various
aspects of the package. The numbers in the output should be within two or so
orders of magnitude of the rounding unit.

Eigentest.pdf The technical report describing eigentest.

CUsersGuide.pdf This user’s guide.

