
EIGENTEST
The Fortran 77 User’s Guide

Che-Rung Lee
G. W. Stewart

Aug 20 2007

Introduction

Eigentest is a collection of routines to create and manipulate test matrices, called eigen-
mats, with known eigenvalues and eigenvectors. Eigenmats are real matrices maintained
in factored form in such a way that storage and operation costs are proportional to the
order of the eigenmat in question. The spectrum of an eigenmat consists of real eigen-
values, complex conjugate pairs of eigenvalues, and real Jordan blocks. The operations
consist of multiplying a matrix by (A − sI), (A − sI)T, (A − sI)−1, and (A − sI)−T,
where A is the eigenmat and s is a shift. In addition, Eigentest provides a function to
compute individual eigenvectors and principal vectors, and functions to help with the
creation of eigenmats.

This document is intended to provide a quick introduction to eigenmats, their oper-
ations, and their implementation in Fortran 77. For more details see the TOMS paper
describing the Eigentest package.

Structure of an eigenmat

An eigenmat A has the factored form

A = Y ZLZ−1Y −1 ≡ XLX−1.

The matrix X consists of the eigenvectors and principal vectors of A. We will peel this
factorization apart like an onion, beginning with the matrix Y .

The matrix Y is a special case of a Householder-SVD matrix, or hsvdmat for short.
It has the form

Y = (I − uuT)Σ(I − vvT), (1)

where
‖u‖ = ‖v‖ =

√
2

and
Σ = diag(σ1, . . . , σn), σi > 0 (i = 1, . . . , n).

The matrices I − uuT and I − vvT are called Householder transformations. They are
orthogonal matrices, and hence the right-hand of (1) is the singular value decomposition

1

2 Eigentest User’s Guide: Fortran 77

of Y . By increasing the ratio of the largest to the smallest of the singular values
σ1, . . . , σn, one can increase the ill-conditioning of the hsvdmat Y .

The matrix Z is the general case of an hsvdmat. It has the block diagonal form

Z = diag(Z1, . . . , Znblocks),

where each Zi is an hsvdmat of the form (1).
The matrix L has the block structure

L = diag(L1, L2, . . . , Lm).

There are three kinds of blocks.

• Real eigenvalue. A real matrix of order one containing a real eigenvalue λ.

• Complex conjugate eigenvalues. A real matrix of order two having the form

Li =
(

µ ν
−ν µ

)
.

This is a normal matrix, whose eigenvalues are are µ± νi with eigenvectors(
1
±i

)
.

• Jordan block. A real Jordan block of the form
λ η1 0 · · · 0
0 λ η2 · · · 0
...

...
.

...
0 0 · · · λ ηk−1

0 0 · · · 0 λ

 . (2)

The representation of an eigenmat

The implementation of Eigentest in Fortran 77 presents two problems not encountered
by its Matlab, C, and Fortran 95 variants. First, Fortran 77 does not have dynamic
memory allocation: all memory must be allocated statically at compile time. This
means that the programmer must predetermine the maximum size of the eigenmats
that will be needed and hard code that information into the declarations of the pro-
gram. The second problem is that Fortran 77 has no way of creating structures or
derived types. This means that either the components of an Eigemant will have to be
represented by a host of individual variables, which will clutter the calling sequences

Eigentest User’s Guide: Fortran 77 3

of the Eigentest subroutines, or that it will have to be packed into arrays, which will
obscure the underlying structure of the eigenmat.

Eigentest takes the second approach. The entire eigemat is represented by an
integer array iem and a floating-point array fem. To help the programmer in setting
up an eigenmat, we have provided a routine eminit to place the components of an
eigenmat in the arrays. Since eigenmats are manipulated by functions provided by
Eigentest, there is no need to worry about the details of how components are stored in
the arrays.1 However, to use eminit the programmer must know what the components
are. In describing them it will be convenient to pretend that Fortran 77 has structures.
We will use Matlab notation, since it is widely used and its indexing conventions are
compatible with those of Fortran.

An eigenmat A is represented by the structure

struct(’n’, <Order of the matrix> ...
’eig’, <Array containing the eigenvalues of A or

the superdiagonals of a Jordan block> ...
’type’, <The type of the entry in eig> ...
’Z’ <The block hsvdmat Z> ...
’Y’, <The block hsvdmat Y> ...

)

(3)

The contents of the type and eig arrays are determined as follows.

Real eigenvalue
type(i) = 1 eig(i) = λ

Complex eigenvalue
type(i) = 2 eig(i) = µ
type(i+1) = 3 eig(i+1) = ν

Jordan block
type(i) = −k eig(i) = λ
type(i+j) = −1 eig(i+j) = ηj (j = 1, . . . , k−1)

The matrix Z is composed of hsvdmats Zi of, say, order ki of the form2

Zi = (I − uiu
T
i)Σi(I − viv

T
i), i = 1, . . . ,nblocks.

It is stored as follows. The vectors ui are packed in a floating-point array u of length
n in their natural order. Likewise, the vectors vi are packed in a floating-point array

1For those who do like to worry about such things, the details are given in an appendix to this guide.
2There is no necessary correspondence between the blocks of Z and the blocks of L. But since the

purpose of a block of Z is to combine blocks of L, it is to be expected that a block of Z will exactly
contain a contiguous sequence of blocks of L.

4 Eigentest User’s Guide: Fortran 77

v, and the singular values σi are stored in a floating-point array sig. These arrays are
accompanied by an integer array bs (for block start) of length nblocks+1. The absolute
value of ith entry of bx contains the starting index for the ith block; i.e.,

b(1) = 1 and b(i) = ±(1 + k1 + · · ·+ ki−1) (i > 1).

Since 1 + k1 + · · ·+ knblocks = n + 1, we have

b(nblocks+1) = ±(n + 1).

The matrix Z is implemented by the structure

struct(’n’, <The order of the matrix> ...
’nblocks’, <The number of blocks> ...
’bs’, <The block start indices> ...
’sig’, <The diagonal elements of the Sigma’s> ...
’u’, <The components of the u’s> ...
’v’, <The components of the v’s> ...

)

(4)

It may happen that Y or some of the Zi must be identity matrices. One way to
create an identity is to set ui = vi and Σi = I; but this is an inefficient way to compute
b = Zib. Consequently, Eigentest adopts the following convention.

If bs(i+1) < 0, then Zi = I.

Thus if we wish to make Z an identity matrix, we simply set

Z = struct(’n’, n, ’nblocks’, 1, ’bs’, [1;-(n+1)], ...
’sig’, [], ’u’, [], ’v’, []);

The matrix Y is represented as an hsvdmat with only one block.
As mentioned above, all of the components of an eigenmat are stored in two singly

subscripted arrays: an integer array iem, and a double-precision array fem. Eigentest

provides a subroutine eminit to initialize and eigenmat. It’s calling sequence is

eminit(nmax, n, iem, fem, nblk, idy, idz, ia, fa, job)
integer nmax, n, iem(*), nblk, idy, idz, ia(*)
double precision fem(*), fa(*)
character job*(*)

Eminit takes information from its calling sequence and places it in the appropriate
places in iem and fem as specified by job. Its useage is simple but best explained by a
running example. We will consider the generation of an eigenmat of order eight. It has

Eigentest User’s Guide: Fortran 77 5

three real eigenvalues (1, 2, 3), a pair of complex conjugate eigenvalues (1± 12i), and a
Jordan block of order 3 with eigenvalue

√
2 and superdiagonal elements of 10−3. The

hsvdmat Z mixes the real and complex eigenvalues and leaves the Jordan block alone
(i.e., Z2 = I). The hsvdmat Y mixes everything.

We begin with the arrays iam and fem. Their size will depend on the order of the
largest eigenmat to be represented, which must be known before compilation. Then we
define storage for iam, fem, ia, and fa by the statements by the statements

parameter nmax = <The order of the largest matrix>
integer iem(2*nmax+12), ia(nmax+1)
double precision fem(8*nmax), fa(nmax)

The next thing is to set up the basic eigenmat. In the matrix described above, the
order of the matrix is eight, the number of blocks in Z is two, the second block being
an identity. Therefore, we set up the block structure of Z in ia and call eminit as
follows.3

ia(1)=1; ia(2)=6; ia(3)=-9;
call eminit(nmax, 8, iem, fem, 2, 0, 0, ia, fa, ’setup’)

We now proceed to set the type and eig components. First we compute and store
them in the ia and fa arrays.

ia(1) = 1; ia(2) = 1; ia(3) = 1;
fa(1) = 1; fa(2) = 2; fa(3) = 3;
ia(4) = 2; ia(5) = 2;
fa(4) = 1; fa(5) = 12;
ia(6) = -3; ia(7) = -1; ia(8) = -1;
fa(6) = sqrt(2); fa(7) = 1e-3; fa(8) = 1e-3;

We then enter them into the eigenmat as follows.

call eminit(nmax, 8, iem, fem, 2, 0, 0, ia, fa, ’eig’)

We now turn to the matrix Z. It’s block structure has already been initialized in
the ’setup’ phase. All we need to do is import the u, v, and sig arrays. This is done
as follows.

3For the sake of brevity, we use ‘;’ as a (nonstandard) statement separator

6 Eigentest User’s Guide: Fortran 77

do i=1,5
fa(i) = duni() - 0.5

end do
call hscal(5, fa)
call eminit(nmax, 8, iem, fem, 2, 0, 0, ia, fa, ’zu’)
do i=1,5

fa(i) = duni() - 0.5
end do
call hscal(5, fa)
call eminit(nmax, 8, iem, fem, 2, 0, 0, ia, fa, ’zv’)
do i=1,5

fa(i) = 1
end do
fa(5) = 1.e-1
call eminit(nmax, 8, iem, fem, 2, 0, 0, ia, fa, ’sig’)

(5)

The vectors u and v are random vectors in [−.5, .5) normalized so that their norms are√
2. The singular values are all one, except for the last, which is 10−1. Since Z2 = I,

there is no need to initialize that block.
Note the two utility routines in this sequence. The function duni() [by D. Kahaner

and G. Marsaglia] produces a pseudo-random double-precision number that is uniformly
distributed in [0, 1). For more on its usage, see the comments in the code. The sub-
routine hscal scales a nonzero vector so that its norm is

√
2, which is required of the

generating vector of a Householder transformation. Its calling sequence is

call hscal(n, u)
u a nonzero vector of length n. On return,

u is scaled so that its norm is sqrt(2).

The initialization of Y is similar.

do i=1,8
fa(i) = duni() - 0.5

end do
call hscal(8, fa)
call eminit(nmax, 8, iem, fem, 2, 0, 0, ia, fa, ’yu’)
do i=1,8

fa(i) = duni() - 0.5
end do
call hscal(8, fa)
call eminit(nmax, 8, iem, fem, 2, 0, 0, ia, fa, ’yv’)
do i=1,8

Eigentest User’s Guide: Fortran 77 7

fa(i) = 1
end do
fa(8) = 1.0e-1
call eminit(nmax, 8, iem, fem, 2, 0, 0, ia, fa, ’ysig’)

This completeness the construction of our eigenmat. There are four points to be
made about the process.

• If during ’setup’ the parameter idy is nonzero, Y is initialized as an identity matrix
and needs no further initialization. Similarly for idz.

• Once the ’setup’ process is complete, the other entries can be made in any order.
However, be sure not to change the first five arguments.

• One can use arrays other than ia or fa in calls to eminit. For example, you may
prefer the following code for initializing Z over the code in (5).

do i=1,5
fau(i) = duni() - 0.5
fav(i) = duni() - 0.5
fas(i) = 1

end do
call hscal(5, fau)
call hscal(5, fav)
fas(6) = 1.0e-1
call eminit(nmax, 8, iem, fem, 2, 0, 0, ia, fau, ’zu’)
call eminit(nmax, 8, iem, fem, 2, 0, 0, ia, fav, ’zv’)
call eminit(nmax, 8, iem, fem, 2, 0, 0, ia, fas, ’sig’)

• In complicated experiments, you may want to write a function to generate your
eigenmat having the parameters you want to vary as its arguments. For example, if the
problem is to study the effects of ill-conditioning of Y and Z, it will pay to encapsulate
the above code in a function with an argument sigmin that replaces 1.0e-1.

Manipulating eigenmats

Eigentest has two functions to work with eigenmats.

• The subroutine emprod computes the products involving an eigenmat. Its calling
sequence is

8 Eigentest User’s Guide: Fortran 77

emprod(iem, fem, ncols, B, ldb, C, ldc, shift, op)
integer iem(*), ncols, ldb, ldc
double precision fem(*), B(ldb,*), C(ldc,*), shift
character op*(*)

iem,fem Arrays containing the eigenmat.
ncols Number of columns in the matrix B.
B Pointer to an array containing the matrix B.
ldb The leading dimension of the array B.
C Pointer to an array containing the matrix C.
ldc The leading dimension of C.
shift A shift.
op A string specifying the operation to be performed.

’ab’ C = (A - shift*I)*B
’atb’ C = (A - shift*I)’*B
’aib’ C = (A - shift*I)\B
’aitb’ C = (A - shift*I)’\B

• The subroutine emvecs computes specified eigenvectors or, in the case of a Jordan
block, principal vectors. Its calling sequence is

subroutine emvecs(iem, fem, eignum, eig, x, y, cond, job)
integer iem(*), eignum
double precision fem(*), cond
complex*16 eig, x(*), y(*)
character job

iem, fem Arrays containing the eigenmat whose vectors
are to be computed.

eignum The position in A%eig of the eigenvalue.
eig The eigenvalue.
x(:) The right eigenvector or principal vector.
y(:) The left eigenvector or principal vector.
cond The condition number of the eigenvalue.

(or -1, if the eigenvalue belongs to a
Jordan block).

job A string specifying what to compute.

Eigentest User’s Guide: Fortran 77 9

’r’ Compute the right eigenvector or
principal vector.

’l’ Compute the left eigenvector or
principal vector..

’b’ Compute both and the condition number.
(Note: For Jordan blocks, principal vectors
are computed and -1 is returned for the
condition number.)

Appendix: The storage of an Eigenmat

In this appendix we give the details of the storage of an eigenmat in the arrays iem and
fem. The reader should refer to (3) and (4) for the components of an eigenmat. We
also give the calling sequence for hsvdpr, a utility routine for computing products with
hsvdmats.

The components of an hsvdmat are stored as follows.

iem(1) nmax The maximum size of the matrix.
iem(2) n The order of the matrix.
iem(3) type The beginning of an array

containing the types of the
eigenvalues in eig.

iem(nmax+3) The beginning of the integer
array for the hsvdmat Y.

iem(nmax+8) The beginning of the integer array
for the hsvdmat Z.

fem(1) eig The array containing the eigenvalues
of the matrix.

fem(nmax+1) The beginning of the double array
for the hsvdmat Y.

fem(4*nmax+1) The beginning of the double array
for the hsvdmat Z.

fem(7*nmax+1) The beginning of a work array of
length nmax.

(6)

An hsvdmat is stored as follows.

iem(1) nmax maximum value of n.
iem(2) n The order of the hsvd.
iem(3) nblk The number of blocks in the hsvd.
iem(4) bs Beginning of the block start array.

abs(bs(5))=1 and abs(bs(i+1))-abs(bs(i))

10 Eigentest User’s Guide: Fortran 77

is the size of the ith block.
If bs(i+1) is negative, block i is
an identity.

fem(1) u start of u.
fem(1+nmax) v start of v.
fem(1+2*nmax) sig start of the singular values.

Here the indexing is relative to be beginning of of the hsvdmat in (6). Thus the start of
the bs array for Z is iem((nmax+8)+4-1) or iem(nmax+11). Again, the array sig for
Y begins at fem((nmax+1)+(1+2*nmax)-1) or fem(3*nmax+1).

Eigentest provides a function to manipulate the hsvdmats Y and Z. Its calling
sequence is

subroutine hsvdpr(ihsm, fhsm, ncols, B, ldb, op)
integer ihsm(*), ncols, ldb
double precision fhsm(*), B(ldb,*)
character op*(*)

ihsm, fhsm The hsvd
ncols The number of columns in B.
B The array B.
ldb The leading dimension of B.
op A string specifying the operation to be performed.

’ab’ B <- X*B
’atb’ B <- X^t*B
’aib’ B <- X^-1*B
’aitb’ B <- X^-1T*B

In its ordinary use, hsvdpr would be called with the location in iem and fem at which
Y and Z begins. For example, to perform an operation with Z, one would code [see
(6)]

call hsvdpr(iem(nmax+8), fhsm(4*nmax+1), ncols, B, ldb, op)

The Fortran 77 package

The Fortran 77 version of the eigetest package comes with the following files.

README A brief introductory file.

eigentest.f The Eigentest program. This file can be compiled to compute an object
file suitable for linking to an application.

Eigentest User’s Guide: Fortran 77 11

testeigentest.f A test program for Eigentest that runs 64 test cases probing various
aspects of the package. The numbers in the output should be within two or so
orders of magnitude of the rounding unit.

Eigentest.pdf The technical report describing eigentest.

F77UsersGuide.pdf This user’s guide.

