
EIGENTEST
The Fortran 95 User’s Guide

Che-Rung Lee
G. W. Stewart

Aug 20 2007

Introduction

Eigentest is a collection of functions to create and manipulate test matrices, called
eigenmats, with known eigenvalues and eigenvectors. Eigenmats are real matrices main-
tained in factored form in such a way that storage and operation costs are proportional
to the order of the eigenmat in question. The spectrum of an eigenmat consists of real
eigenvalues, complex conjugate pairs of eigenvalues, and real Jordan blocks. The opera-
tions consist of multiplying a matrix by (A−sI), (A−sI)T, (A−sI)−1, and (A−sI)−T,
where A is the eigenmat and s is a shift. In addition, Eigentest provides a function to
compute individual eigenvectors and principal vectors, and functions to help with the
creation of eigenmats.

This document is intended to provide a quick introduction to eigenmats, their oper-
ations, and their implementation in Fortran 95. For more details see the TOMS paper
describing the Eigentest package.

Structure of an eigenmat

An eigenmat A has the factored form

A = Y ZLZ−1Y −1 ≡ XLX−1.

The matrix X consists of the eigenvectors and principal vectors of A. We will peel this
factorization apart like an onion, beginning with the matrix Y .

The matrix Y is a special case of a Householder-SVD matrix, or hsvdmat for short.
It has the form

Y = (I − uuT)Σ(I − vvT), (1)

where
‖u‖ = ‖v‖ =

√
2

and
Σ = diag(σ1, . . . , σn), σi > 0 (i = 1, . . . , n).

The matrices I − uuT and I − vvT are called Householder transformations. They are
orthogonal matrices, and hence the right-hand of (1) is the singular value decomposition

1

2 Eigentest User’s Guide: Fortran 95

of Y . By increasing the ratio of the largest to the smallest of the singular values
σ1, . . . , σn, one can increase the ill-conditioning of the hsvdmat Y .

The matrix Z is the general case of an hsvdmat. It has the block diagonal form

Z = diag(Z0, . . . , Znblocks−1),

where each Zi is an hsvdmat of the form (1).
The matrix L has the block structure

L = diag(L1, L2, . . . , Lm).

There are three kinds of blocks.

• Real eigenvalue. A real matrix of order one containing a real eigenvalue λ.

• Complex conjugate eigenvalues. A real matrix of order two having the form

Li =
(

µ ν
−ν µ

)
.

This is a normal matrix, whose eigenvalues are are µ± νi with eigenvectors(
1
±i

)
.

• Jordan block. A real Jordan block of the form
λ η1 0 · · · 0
0 λ η2 · · · 0
...

...
.

...
0 0 · · · λ ηk−1

0 0 · · · 0 λ

 . (2)

The representation of an eigenmat

In Fortran 95, an eigenmat A is represented by the structure

type eigenmat
integer :: n ! The order of the matrix.
real(wp), allocatable :: eig(:) ! Array containing the

! eigenvalues of A
! or the superdiagonals

Eigentest User’s Guide: Fortran 95 3

! of a Jordan block.
integer, allocatable :: type(:) ! The type of the entry

! in eig.
type(hsvdmat) :: Y, Z ! The outer and inner hsvd

! transformations.
end type eigenmat

The contents of the type and eig arrays are determined as follows.

Real eigenvalue
type(i) = 1 eig(i) = λ

Complex eigenvalue
type(i) = 2 eig(i) = µ
type(i+1) = 3 eig(i+1) = ν

Jordan block
type(i) = −k eig(i) = λ
type(i+j) = −1 eig(i+j) = ηj (j = 1, . . . , k−1)

The matrix Z is composed of hsvdmats Zi of, say, order ki of the form1

Zi = (I − uiu
T
i)Σi(I − viv

T
i), i = 1, . . . ,nblocks.

It is stored as follows. The vectors ui are packed in a floating-point array u of length
n in their natural order. Likewise, the vectors vi are packed in a floating-point array
v, and the singular values σi are stored in a floating-point array sig. These arrays are
accompanied by an integer array bs (for block start) of length nblocks+1. The absolute
value of ith entry of bx contains the starting index for the ith block; i.e.,

b(1) = 1 and b(i) = ±(1 + k1 + · · ·+ ki−1) (i > 1).

Since 1 + k1 + · · ·+ knblocks = n + 1, we have

b(nblocks+1) = ±(n + 1).

The matrix Z is implemented by the structure

1There is no necessary correspondence between the blocks of Z and the blocks of L. But since the
purpose of a block of Z is to combine blocks of L, it is to be expected that a block of Z will exactly
contain a contiguous sequence of blocks of L.

4 Eigentest User’s Guide: Fortran 95

type hsvdmat
integer :: n ! The order of the matrix.
integer :: nblocks ! The number of blocks

! in the hsvdmat.
integer, allocatable :: bs(:) ! abs(bs(i)) is the index of the

! start of the i-th block.
! abs(bs(nblocks+1)) = n+1.
! If bs(i+1)<0, the i-th block
! is an identity.

real(wp), allocatable :: u(:) ! The vectors generating the left
! Householder transformations.

real(wp), allocatable :: v(:) ! The vectors generating the right
! Householder transformations.

real(wp), allocatable :: sig(:) ! The diagonals of the Sigma_i.
end type hsvdmat

It may happen that Y or some of the Zi must be identity matrices. One way to
create an identity is to set ui = vi and Σi = I; but this is an inefficient way to compute
b = Zib. Consequently, Eigentest adopts the following convention.

If bs(i + 1) < 0, then Zi = I.

Thus if we wish to make Z an identity matrix, we simply set

Z.nblocks = 1
Z.bs[0] = 0
Z.bs[1] = -n

The matrix Y is represented as an hsvdmat with only one block.
Eigentest provides a function to allocate storage for an eigenmat and its associated

hsvdmats. It has the form

subroutine EigenmatAlloc(A, n, nblocks, yident, zident)
type(eigenmat), intent(inout) :: A
integer, intent(in) :: n
integer, intent(in) :: nblocks
logical :: yident, zident

A The eigenmat to be initialized.
n The order of A.
nblocks The number of blocks in the hsvd matrix Z.

Eigentest User’s Guide: Fortran 95 5

yident If yident is .true., Y is declared to be an identity
matrix and only Y%nblock and Y%bs are initialized.

zident If zident is .true., Z is declared to be an identity
matrix and only Z%nblock and Z%bs are initialized.

EigenmatAlloc allocates memory for the arrays in A, A%Y, and A%Z. In addition it initial-
izes A%n, A%Z%n, A%Z%nblocks, A%Z%bs(1), A%Z%bs(nblocks+1), A%Y%n, A%y%nblocks,
and A%Y%bs. All other arrays are initialized to zero.

EigematFree(A) dealocates the storage of the eigenmat A.
A utility subroutine routine, hscale, that scales a vector to have norm

√
2 is provided

to aid in setting up hsvdmats. Its calling sequence is

call hscal(u)
u A nonzero vector. On return the

norm of u is sqrt(2).

Figure 1 shows how to set up an eigenmat. A has three real eigevalues (1, 2, 3), a pair
of complex conjugate eigenvalues (1±12i), and a Jordan block of order 3 with eigenvalue√

2 and superdiagonal elements of 10−3. The hsvdmat Z mixes the real and complex
eigenvalues and leaves the Jordan block alone. The hsvdmat Y mixes everything.

Note that Eigentest provides a utility subroutine to scale a nonzero vector so that
its norm is

√
2. Its calling sequence is

call hscal(n, u)
u a nonzero vector of length n. On return,

u is scaled so that its norm is sqrt(2).

From the foregoing it is clear that setting up an eigenmat can be nontrivial. In
complicated experiments, you may want to write a function, whose arguments are the
parameters you want to vary, to generate your matrix. For example, if one were per-
forming a series of experiments to determine the effects of the condition of Y and Z,
one might turn the code in Figure 1 into a function with the argument sigmin.

Manipulating eigenmats

Eigentest has two functions to work with eigenmats and one to work with hsvdmats.

• EigenmatProd computes the the products involving an eigenmat. It has the form

subroutine EigenmatProd(A, ncols, B, ldb, C, ldc, shift, job)
type(Eigenmat), intent(in) :: A
integer, intent(in) :: ncols, ldb, ldc
real(wp), intent(in) :: B(ldb,*)

6 Eigentest User’s Guide: Fortran 95

sigmin = 1.0e-3_wp

call EigenmatAlloc(A, 8, 2, 0, 0);

A%type(1:3) = (/1,1,1/)
A%eig(1:3) = (/1,2,3/)
A%type(4:5) = (/2,3/)
A%eig(4:5) = (/1,12/)
A%type(6) = -3;
A%type(7:8) = -(/1,1/))
A%eig(6) = sqrt(2.0_wp);
A%eig(7:8) = 1e-3_wp*(/1,1/);

A%Z%bs(1) = 1;
A%Z%bs(2) = 6;
A%Z%bs(3) = -9;
call random(A%Z%u(1:5)); A%Z%u(1:5)=A%Z%u(1:5)-0.5
call hscal(5, A%Z%u(1:5))
call random(A%Z%v(1:5)); A%Z%v(1:5)=A%Z%v(1:5)-0.5
call hscal(5, A%Z%v(1:5))
A%Z%sig = (/(1, i=1,8)/)
A%Z%sig(8) = sigmin

call random(A%Y%u); A%Y%u=A%Y%u-0.5
call hscal(8, A%Y%u)
call random(A%Y%v); A%Y%u=A%Y%v-0.5
call hscal(8, A%Y%v)
A%Y%sig = (/(1, i=1,8)/)
A%Y%sig(8) = sigmin

Figure 1: Generating an eigenmat

Eigentest User’s Guide: Fortran 95 7

real(wp), intent(inout) :: C(ldc,*)
real(wp), intent(in) :: shift
character(*), intent(in) :: job

A The eigenmat
ncols Number of columns in the matrix B.
B The array containing the matrix B.
ldb The leading dimension of B.
C The array array containing the matrix C.
ldc The leading dimension of C.
shift A shift.
job A string specifying the operation to be performed.

"ab" C = (A - shift*I)*B
"atb" C = (A - shift*I)^T*B
"aib" C = (A - shift*I)^-1*B
"aitb" C = (A - shift*I)^-T*B

• EigenmatVecs computes specified eigenvectors or, in the case of a Jordan block, prin-
cipal vectors. Its calling sequence is

subroutine EigenmatVecs(A, eignum, eig, x, y, cond, job)
type(Eigenmat), intent(in) :: A
integer, intent(in) :: eignum
complex(wp), intent(out) :: eig
complex(wp), intent(inout) :: x(:)
complex(wp), intent(inout) :: y(:)
real(wp), intent(out) :: cond
character, intent(in) :: job

A The eigenmat whose vectors are to be computed.
eignum The position in A%eig of the eigenvalue.
eig The eigenvalue.
x(:) The right eigenvector or principal vector.
y(:) The left eigenvector or principal vector.
cond The condition number of the eigenvalue.

(or -1, if the eigenvalue belongs to a
Jordan block).

job A string specifying what to compute.

8 Eigentest User’s Guide: Fortran 95

"r" Compute the right eigenvector.
"l" Compute the left eigenvector.
"b" Compute both and the condition number.
(Note: For Jordan blocks, principal vectors
are computed and -1 is returned for the
condition number.)

All vectors returned have norm one.

• HsvdProd is a utility routine used by Eigentest to compute the products involving
an hsvdmat. Its calling sequence is

subroutine HsvdProd(X, ncols, B, ldb, job)
type(hsvdmat), intent(in) :: X
integer, intent(in) :: ncols, ldb
real(wp), intent(inout) :: B(ldb, *)
character(*), intent(in) :: job

X Pointer to the hsvdmat.
ncols The number of columns in B.
B The array B.
ldb The leading dimension of B.
job A string specifying the operation to be performed.

"ab" B <- X*B
"atb" B <- X^T*B
"aib" B <- X^-1*B
"aitb" B <- X^-T*B

The Fortran 95 package

The Fortran95 version of the eigetest package comes with the following files.

README A brief introductory file.

eigentest.f95 The Eigentest module eigentest. This module must be use’d by
any application that uses Eigentest (e.g., testeigentest below.)

testeigentest.f95 A test program for Eigentest that runs 64 test cases probing
various aspects of the package. The numbers in the output should be within two
or so orders of magnitude of the rounding unit.

Eigentest.pdf The technical report describing eigentest.

Eigentest User’s Guide: Fortran 95 9

F95UsersGuide.pdf This user’s guide.

