
Nomad user guide

version 3.4.2

Sébastien Le Digabel

July 30, 2010

How to use this guide:

• New users of Nomad: Section 2 describes how to install the software. Section 3
describes the simplest usage of Nomad. Nomad has default values for all of its
internal parameters.

• Advanced features of Nomad: The more experienced users will find in Sec-
tion 4 and above ways to tailor the output files and to modify all internal parame-
ters.

1

http://www.gerad.ca/Sebastien.Le.Digabel

Contents

1 Introduction 3

2 Installation and examples 4
2.1 Installation procedure . 4
2.2 Setting environment variables . 6
2.3 Manual compilation of the code . 6

2.3.1 X systems: Linux, Unix, and Mac OS X . 6
2.3.2 Windows with minGW . 6
2.3.3 Windows with Visual C++ . 7

2.4 Examples . 7
2.4.1 Advanced examples . 7
2.4.2 Interface examples . 8

3 NOMAD batch mode 8
3.1 Creation of a basic parameters file . 9
3.2 Basic instructions on blackbox programs . 9

4 NOMAD library mode 14
4.1 Definition of the problem . 14
4.2 The main function . 17

4.2.1 Parameters . 17
4.2.2 Evaluator declaration and algorithm run . 17
4.2.3 Access to the solution and to optimization data 18

4.3 Other functionalities of the library mode . 20
4.3.1 Automatic calls to user-defined functions . 20
4.3.2 Create groups of variables . 20
4.3.3 Multiple runs . 20

5 Parameters description 22
5.1 Parameters describing the problem . 22

5.1.1 Basic . 22
5.1.2 Advanced . 23

5.2 Algorithmic parameters . 24
5.2.1 Basic . 24
5.2.2 Advanced . 25

5.3 Output parameters . 26
5.3.1 Basic . 27
5.3.2 Advanced . 27

5.4 Additional information for some parameters . 27
5.4.1 Executable parameters BB EXE and SGTE EXE 27
5.4.2 Blackbox input parameter BB INPUT TYPE 28
5.4.3 Blackbox output parameter BB OUTPUT TYPE 28
5.4.4 Blackbox redirection parameter BB REDIRECTION 29
5.4.5 Bounds . 29
5.4.6 Direction types . 30
5.4.7 Output parameters DISPLAY STATS and STATS FILE 30
5.4.8 Fixed variables parameter FIXED VARIABLE 32

5.4.9 Mesh and poll size parameters . 32
5.4.10 Opportunistic strategy . 32
5.4.11 Scaling parameter SCALING . 33
5.4.12 Temporary directory parameter TMP DIR 33
5.4.13 Group of variable parameter VARIABLE GROUP 33
5.4.14 Starting point parameter X0 . 33

6 Special functionalities 34
6.1 Categorical variables . 34

6.1.1 Algorithm . 34
6.1.2 Categorical variables with NOMAD . 35

6.2 Biobjective optimization . 36
6.3 Sensitivity analysis . 37
6.4 Variable Neighborhood Search (VNS) . 38
6.5 Parallel versions . 38

6.5.1 The p-Mads method . 39
6.5.2 The Coop-MADS method . 39
6.5.3 The PSD-MADS method . 40

7 Release notes 40
7.1 Version 3.4 . 40

7.1.1 Major changes . 40
7.1.2 Minor changes . 41
7.1.3 Specific changes for versions 3.4.1 and 3.4.2 41
7.1.4 List of modified classes or methods . 41
7.1.5 List of main changes for programs using the NOMAD library 42

7.2 Previous versions . 42
7.2.1 Version 3.3 . 42
7.2.2 Version 3.2 . 42
7.2.3 Version 3.1 . 43

7.3 Future versions . 43

Related publications 46

1 Introduction

Nomad (Nonsmooth Optimization by Mesh Adaptive Direct Search) is a C++ implementation of
the Mesh Adaptive Direct Search (Mads) algorithm [6, 18, 20], designed for constrained optimiza-
tion of blackbox functions in the form

min
x∈Ω

f(x) (1)

where Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn, f, cj : X → R ∪ {∞} for all j ∈ J = {1, 2, . . . ,m},
and where X is a subset of Rn. It is also possible to consider (2) as a biobjective version of (1).
Biobjective optimization is described in Section 6.2.

Developers of the method behind Nomad include

• Mark A. Abramson (Mark.A.Abramson@boeing.com), The Boeing Company.

3

mailto:Mark.A.Abramson@boeing.com

• Charles Audet (www.gerad.ca/Charles.Audet), GERAD and Département de mathématiques
et de génie industriel, École Polytechnique de Montréal.

• J.E. Dennis Jr. (www.caam.rice.edu/∼dennis), Computational and Applied Mathematics
Department, Rice University.

• Sébastien Le Digabel (www.gerad.ca/Sebastien.Le.Digabel), GERAD and Département de
mathématiques et de génie industriel, École Polytechnique de Montréal.

Version 3.0 (and above) of Nomad is developed by Sébastien Le Digabel. Previous versions
were written by Gilles Couture (GERAD).

Nomad is designed to be used in two different modes: batch and library. The batch mode is
intended for a basic and simple usage of the Mads method, while the library mode allows more
flexibility. For example, in batch mode, users must define their separate blackbox program that will
be called with system calls by Nomad. In library mode users may define their blackbox function
as C++ code that will be directly called by Nomad without system calls and temporary files. This
document explains how to get started with the batch mode in Section 3 and with the library mode
in Section 4.

A new user of Nomad can start to use it easily (see Section 3). Nomad has default values for
all of its internal parameters. The more experienced users will find in this document ways to tailor
the output files and to modify the internal parameters.

Nomad should be cited with references [4, 38]. Other relevant papers by the developers are
accessible through the Nomad website www.gerad.ca/nomad.

The project started in 2001, and was funded in part by AFOSR, CRIAQ, FQRNT, LANL,
NSERC, the Boeing Company, and ExxonMobil Upstream Research Company.

2 Installation and examples

Nomad is developed in C++ under Linux with the gcc compiler (g++), version 4. The parallel version
uses the message passing interface (MPI [52]). In particular, the MPI implementations openMPI, LAM,
MPICH, and the Microsoft HPC pack, have been considered.

Nomad has also been tested on Unix, Mac OS X with Xcode (gcc 4), Windows XP with minGW
(gcc for Windows), and Visual C++ 2008. Nomad is freely distributed under the GNU Lesser
General Public License that can be read in the file lgpl.txt provided in the package or at
www.gnu.org/licenses.

There are two ways of installing Nomad: execute the installation program corresponding to
your system, or compile the source code. Three files containing the Nomad package are available
on the website. Download the one adapted to your system (Windows, Linux/Unix, or Mac OS X).

2.1 Installation procedure

For Windows, simply execute the downloaded file, and follow the instructions. The Nomad exe-
cutable and the Nomad library included in the Windows package have been constructed with minGW.
If you are using Visual C++, your programs will not link with this version of the library and you
must compile the library yourself.

For Mac OS X, open the disk image and copy the Nomad directory into your Applications folder.
We suggest that the user chooses an installation directory without space in the name to ease the
creation of environment variables. Also choose directories for which you have the adequate writing
rights.

4

http://www.gerad.ca/Charles.Audet
http://www.gerad.ca
http://www.caam.rice.edu/~dennis
http://www.gerad.ca/Sebastien.Le.Digabel
http://www.gerad.ca
mailto:Gilles.Couture@gerad.ca
http://www.gerad.ca
http://www.gerad.ca/nomad
http://www.gnu.org/licenses/
http://www.gerad.ca/nomad

For X systems, decompress the downloaded zip file where you want to install Nomad, go to the
$NOMAD HOME/install directory, and execute the ./install command.

This script automatically compiles the code and generates the Nomad executable in $NOMAD-
HOME/bin and the Nomad library in $NOMAD HOME/lib. The script also detects if MPI is installed
by checking the existence of the command mpic++. If so, the parallel Nomad executable and
library are generated in the same directories than for the scalar version. Note that this installation
procedure may also be applied on Mac OS X if the gcc compiler is installed (if not, install Xcode).
After installation, you should have the directory structure described by Figure 1.

$NOMAD_HOME
|- bin
|- doc
|- examples
| |- advanced
| | |- categorical
| | | |- bi_obj
| | | |- single_obj
| | |- multi_start
| | |- plot
| | |- restart
| | |- user_search
| |- basic
| | |- batch
| | | |- bi_obj
| | | |- single_obj
| | |- library
| | | |- bi_obj
| | | |- single_obj
| |- interfaces
| | |- AMPL
| | |- CUTEr
| | |- DLL
| | |- FORTRAN
| | |- GAMS
| | |- MATLAB
| | |- NOMAD2
|- install
|- lib
|- src
|- tools
| |- COOP-MADS
| |- PSD-MADS
| |- SENSITIVITY

Figure 1: Directory structure of the Nomad package.

5

2.2 Setting environment variables

The installation programs do not set any environment variables. Defining such variables allows more
convenient access to Nomad. The first variable to be defined should be $NOMAD HOME, whose value
is the directory where Nomad has been installed. This variable is used by the makefiles provided in
the examples and is assumed to be defined in this document. Another environment variable to set
is the path variable where $NOMAD HOME/bin should be added. This way, you may just type nomad
to execute Nomad.

To create your environment variables, on X systems, if your shell is bash, add the following lines
in the file .profile located in your home directory:

export NOMAD_HOME=YOUR_NOMAD_DIRECTORY
export PATH=YOUR_NOMAD_DIRECTORY/bin:$PATH

In case your shell is csh or tcsh, add the following lines to the file .login:

setenv NOMAD_HOME YOUR_NOMAD_DIRECTORY
setenv PATH YOUR_NOMAD_DIRECTORY/bin:$PATH

In order for your variables to be active, enter the command ‘source .profile’ or ‘source
.login’, or simply log out and log in. If you use a different shell, please modify your environment
variables accordingly.

On Windows, environment variables are accessible in the Control Panel|System|Advanced|En-
vironment variables menu. Please note that environment variables are named differently and
$NOMAD HOME corresponds to %NOMAD HOME%. For the parallel version under Windows, you need also
to define the %MPI HOME% environment variable corresponding to the home directory of your MPI
installation.

2.3 Manual compilation of the code

If the installation program failed, you need to compile the source code located in $NOMAD HOME/src
to generate the Nomad executables. We assume a basic knowledge of makefiles, which are provided
for X and Windows systems.

2.3.1 X systems: Linux, Unix, and Mac OS X

Enter the command ‘make all’ from a terminal opened in directory $NOMAD HOME/src. This
will create the executable file nomad located in $NOMAD HOME/bin and the library file nomad.a in
$NOMAD HOME/lib. For the parallel version, type ‘make allmpi’, after ensuring that the command
mpic++ works. The executable nomad.MPI and the library nomad.MPI.a should be generated after
the compilation. If these ‘make’ commands fail, try ‘gmake’ instead of ‘make’.

2.3.2 Windows with minGW

Apply the same procedure as in 2.3.1 except that for the parallel version the environment vari-
able %MPI HOME% must be defined depending on your MPI implementation. The executable are
%NOMAD HOME%\bin\nomad.exe and %NOMAD HOME%\bin\nomad MPI.exe, and the libraries %NOMAD-
HOME%\lib\nomad.lib and %NOMAD HOME%\lib\nomad MPI.lib.

6

2.3.3 Windows with Visual C++

For the scalar version, create a new console and empty project. Choose a name for your project
(‘project name’ for example), and create the project in %NOMAD HOME%. Then, add all .cpp
and .hpp source files to the project, and compile in release mode. This generates the ex-
ecutable file %NOMAD HOME%\project name\Release\project name.exe, which can be copied in
%NOMAD HOME%\bin for convenience and to stay consistent with this document. Apply the same
procedure to generate the library except that you must create an empty static library project and
that you must not insert the file nomad.cpp into the project.

For the parallel version you must link your program with MPI. First, you must install a MPI
implementation (MPICH or the Microsoft HPC pack, for example). Then, once your project is created,
in the project properties, add your MPI library directory to ‘Linker Additional Library Directories’,
and add the MPI library (typically mpi.lib) to ‘Linker Input Additional Dependencies’. Finally,
add the location of the MPI header file to ‘Additional Include Directories’.

2.4 Examples

Examples are located in $NOMAD HOME/examples. Some of them use the batch mode described
in Section 3 and some of them use the library mode of Section 4. For the library examples, a
makefile is included which can be used to generate a scalar executable (command make), or a parallel
executable (command make mpi). The examples are classified into 3 categories: basic examples,
advanced examples, and examples illustrating interfaces between Nomad and various programing
or modeling languages.

Basic examples are a good way to start out with Nomad. The detailed description of the
advanced examples is given next.

2.4.1 Advanced examples

• CATEGORICAL: Categorical variables on a simple portfolio selection problem. A single-
objective and a biobjective version are given.

• MULTI START: Multistart program launching multiple instances of Mads. The different
starting point are generated following a Latin-Hypercube sample strategy.

• PLOT: Illustration of the NOMAD::Evaluator::update success() virtual function allow-
ing to plot information during the Nomad execution. This example has been developed by
Quentin Reynaud.

• RESTART: How to make a Nomad restart and illustration of the user-defined function
NOMAD::Evaluator::update iteration().

• USER SEARCH: How users may code their own search strategy. This example corre-
sponds to a search described in [24]. Other examples on how to design a search strat-
egy can be found in files $NOMAD HOME/src/Speculative Search.*pp, LH Search.*pp, and
VNS Search.*pp. Please note that the Mads theory assumes that trial search points must be
lying on the current mesh. Functions NOMAD::Point::project to mesh() and NOMAD::Dou-
ble::project to mesh() are available to perform such projections.

7

2.4.2 Interface examples

Examples of interfaces inluded in the Nomad package are:

• AMPL: This interface to the AMPL format uses a library developed by Dominique Orban and
available at www.gerad.ca/∼orban/LibAmpl/. A readme.txt file is given with the example
and describes the different steps necessary for the example to work. This example has been
written with the help of Dominique Orban and Anthony Guillou.

• CUTEr: How to optimize CUTEr [43] test problems.

• DLL: Blackbox that is coded inside a dynamic library (a Windows DLL). Single-objective and
biobjective versions are available.

• FORTRAN: Two examples. First a blackbox problem coded as a FORTRAN routine linked
to the Nomad library. Then a more elaborated example mixing FORTRAN and the Nomad
library where a FORTRAN program is used both to define the problem and to run Nomad.

• GAMS: Optimization on a blackbox that is a GAMS [32] program.

• MATLAB: Optimization on a blackbox that is a MATLAB function. In order for this last
example to work, the MATLAB MCC compiler must be present, allowing the creation of
stand-alone executables from MATLAB functions.

• NOMAD2: Program to use Nomad version 3 on a problem originally designed for the version
2 of the software. This example has been written by Quentin Reynaud.

3 Nomad batch mode

This section explains how to get started with the Nomad batch mode and describes all the steps to
solve a blackbox problem. The Nomad batch mode is launched with one argument that corresponds
to the name of a parameters text file. The blackbox problem must be coded as a stand-alone
program. The different steps are:

1. Install Nomad following the instructions in Section 2.

2. Create a directory for your problem. In this document, we use the notation $PB DIR to refer
to this directory.

3. Create your problem blackbox, which corresponds to an executable located in $PB DIR (see
Section 3.2). This program will output the objective and the constraints.

4. Create a parameters file, for example $PB DIR/param.txt, located in the problem directory
(see Section 3.1). This file describes where Nomad will find your problem and what parameters
to use.

5. If the Nomad executable corresponds to the file $NOMAD HOME/bin/nomad, launch the algo-
rithm with ‘$NOMAD HOME/bin/nomad $PB DIR/param.txt’.

At any time, you can type ‘nomad -h param name’ to have information on a specific parameter,
as described in Section 7.2.2. Advanced usage of Nomad is not described in this section: All param-
eters are described in Section 5 and other examples are given in $NOMAD HOME/examples/advanced.

8

http://www.gerad.ca/$\sim $orban/LibAmpl/

3.1 Creation of a basic parameters file

The parameters file is a text file given as argument to the Nomad executable with the command
‘$NOMAD HOME/bin/nomad $PB DIR/param.txt’ where param.txt is the parameters file (which
must be located in the problem directory) and nomad is the Nomad executable.

For basic usage, the following parameters must be defined:

• The number of variables, n (DIMENSION).

• The name of the blackbox executable that outputs the objective and the constraints (BB EXE).

• The output types of the blackbox executable: objective and constraints (BB OUTPUT TYPE).

• A starting point (X0).

• Some stopping criteria (MAX BB EVAL, for example).

Bounds on variables are defined with the LOWER BOUND and UPPER BOUND parameters. If no
stopping criterion is specified, the algorithm will stop as soon as the mesh size reaches a given
tolerance.

An example is given in Figure 2 that corresponds to the parameters file located in $NOMAD HOME/
examples/basic/batch/single obj. Any entry on a line is ignored after the character ‘#’. The
order in which the parameters appear or their case is unimportant.

The two constraints defined in the parameters file in Figure 2 are of different types. The first
constraint c1(x) ≤ 0 is treated by the progressive barrier approach (PB), which allows constraint
violations. The second constraint, c2(x) ≤ 0, is treated by the extreme barrier approach (EB) that
forbids violations.

See Section 5 for the detailed description of all parameters.

3.2 Basic instructions on blackbox programs

With the batch use of Nomad, the blackbox defining your problem corresponds to a program that
will be system-called by the algorithm. It may be coded in any language (even scripts) but must
respect certain conditions. It must be callable in a terminal as follows: If the blackbox executable
is $PB DIR/bb.exe, one can execute it with the command ‘$PB DIR/bb.exe x.txt’. Here x.txt
is a text file containing a total of n=DIMENSION values consisting of one value for each variable,
separated by spaces.

The problem directory, where the parameters file is located, may have spaces in its name. The
blackbox executable may be located in sub-directories of the problem directory, but the names of
the sub-directories must be space-free.

The blackbox program returns the evaluation values by displaying them in the standard output.
It also returns the value 0 to indicate that the evaluation went well (a simple ‘return 0’ instruction
in C). Otherwise Nomad considers that the evaluation failed. The number of values displayed by
the blackbox program corresponds to the number of constraints plus one (or two) representing
the objective function value(s) that one seeks to minimize. The constraints values correspond
to constraints of the form cj ≤ 0 (for example, the constraint 0 ≤ x1 + x2 ≤ 10 will must be
displayed with the two quantities c1(x) = −x1 − x2 and c2(x) = x1 + x2 − 10). The order of the
displayed outputs corresponds to the order defined in the parameters file with parameters BB EXE
and BB OUTPUT TYPE. If variables have bound constraints, these are defined in the parameters file
with parameters LOWER BOUND and UPPER BOUND. Bounds should not appear in the blackbox code.

9

In basic mode, your blackbox program cannot display other data than the objective and con-
straint values, but the advanced mode allows it to do so. Your code may generate temporary files
but it is preferable to include tag numbers to the file names because of parallelism (see Section 6.5).
The advanced parameters described in Section 5.2.2 allow you to include these tags in the blackbox
input files. If you already have a blackbox program in a certain format, you need to interface it
with a wrapper program to match the Nomad specifications. If your blackbox program crashes in
batch mode, it will not affect Nomad: The point that caused this crash will simply be tagged as a
blackbox failure.

A basic C++ program example is given in Figure 3 for the following problem with 5 variables
and 2 constraints:

min
x∈R5

f(x) = x5

subject to



c1(x) =
5∑

i=1
(xi − 1)2 − 25 ≤ 0

c2(x) = 25−
5∑

i=1
(xi + 1)2 ≤ 0

xi ≥ −6 i = 1, 2, . . . , 5
x1 ≤ 5
x2 ≤ 6
x3 ≤ 7 .

With gcc, you can compile this example with ‘g++ -o bb.exe bb.cpp’, and test it with the
text file x.txt containing ‘0 0 0 0 0’, by entering the command ‘bb.exe x.txt’. This test
should display ‘0 -20 20’, which means that the point x = (0 0 0 0 0)T has an objective value of
f(x) = 0, but is not feasible, since the second constraint is violated (c2(x) = 20 > 0).

10

DIMENSION 5 # number of variables

BB_EXE bb.exe # ‘bb.exe’ is a program that
BB_OUTPUT_TYPE OBJ PB EB # takes in argument the name of

a text file containing 5
values, and that displays 3
values that correspond to the
objective function value (OBJ),
and two constraints values g1
and g2 with g1 <= 0 and
g2 <= 0; ‘PB’ and ‘EB’
correspond to constraints that
are treated by the Progressive
and Extreme Barrier approaches
(all constraint-handling
options are described in the
detailed parameters list)

X0 (0 0 0 0 0) # starting point

LOWER_BOUND * -6 # all variables are >= -6
UPPER_BOUND (5 6 7 - -) # x_1 <= 5, x_2 <= 6, x_3 <= 7

x_4 and x_5 have no bounds

MAX_BB_EVAL 100 # the algorithm terminates when
100 blackbox evaluations have
been made

TMP_DIR /tmp # indicates a directory where
temporary files are put
(increases performance by ~100%
if you’re working on a network
account and if TMP_DIR is on a
local disk).

Figure 2: Example of a basic parameters file. All parameters are detailed in Section 5 or with the
command ‘nomad -h param name’.

11

#include <cmath>
#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;

int main (int argc , char ** argv) {

double f = 1e20, c1 = 1e20 , c2 = 1e20;
double x[5];

if (argc >= 2) {
c1 = 0.0 , c2 = 0.0;
ifstream in (argv[1]);
for (int i = 0 ; i < 5 ; i++) {
in >> x[i];
c1 += pow (x[i]-1 , 2);
c2 += pow (x[i]+1 , 2);

}
f = x[4];
if (in.fail())
f = c1 = c2 = 1e20;

else {
c1 = c1 - 25;
c2 = 25 - c2;

}
in.close();

}
cout << f << " " << c1 << " " << c2 << endl;
return 0;

}

Figure 3: Example of a basic blackbox program. This code corresponds to the file bb.cpp in
$NOMAD HOME/examples/basic/batch/single obj.

12

NOMAD - version 3.4.1 - www.gerad.ca/nomad

Copyright (C) 2001-2010 {

Mark A. Abramson - The Boeing Company

Charles Audet - Ecole Polytechnique de Montreal

Gilles Couture - Ecole Polytechnique de Montreal

John E. Dennis, Jr. - Rice University

Sebastien Le Digabel - Ecole Polytechnique de Montreal

}

Funded in part by AFOSR and Exxon Mobil.

License : ‘$NOMAD_HOME/src/lgpl.txt’

User guide: ‘$NOMAD_HOME/doc/user_guide.pdf’

Examples : ‘$NOMAD_HOME/examples’

Tools : ‘$NOMAD_HOME/tools’

Please report bugs to nomad@gerad.ca

MADS run {

BBE OBJ

3 0

12 -1

34 -2

100 -2

} end of run (max number of blackbox evaluations)

blackbox evaluations : 100

best infeasible solution: (4.4 1.2 0 -1 -2) h=0.6 f=-2

best feasible solution : (4.4 1.2 1.3 -1 -2) h=0 f=-2

Figure 4: Output given by Nomad on the blackbox problem coded in Figure 3 with parameters file
in Figure 2.

Nomad is flexible enough so that blackbox codes can be coded differently and with more so-
phistication in the advanced mode (see Section 4).

Figure 4 shows the display that the execution of Nomad produces for the blackbox program in
Figure 3 with the parameters file in Figure 2. Notice that the first feasible point has been found
after 3 blackbox evaluations. In this case, the starting point x = (0 0 0 0 0)T violates the second
constraint, which is treated by the extreme barrier approach. In such a situation, Nomad launches
an initial optimization, called the phase one step, during which the value of the constraint violation
is minimized. Once a feasible point is generated with this phase one, the original objective function
is considered again.

13

4 Nomad library mode

This section explains how to create a C++ program able to call the Nomad routines using the pre-
compiled Nomad static library. We suppose that the library is correctly installed and that the
environment variable $NOMAD HOME is defined. If not, you must specify the installation directory of
Nomad in the makefile. Explanations are given for Linux and g++ and for the scalar library, but
are similar for Windows and minGW or Visual C++, and for the parallel library. A basic knowledge
of object oriented programmation with C++ is assumed.

The use of the standard C++ types for reals and vectors is of course allowed within your code,
but it is suggested that you use the Nomad types as much as possible. For reals, Nomad uses the
class NOMAD::Double, and for vectors, the class NOMAD::Point. A lot of functionalities have been
coded for theses classes, which are visible in files Double.hpp and Point.hpp. All Nomad class
files are named like the classes and are located in the directory $NOMAD HOME/src. Other Nomad
types (essentially enumeration types) are also defined in defines.hpp. Some utility functions on
these types can be found in utils.hpp. The namespace NOMAD is used for all Nomad types, and
you must type NOMAD:: in front of all types unless you type ‘using namespace NOMAD;’ at the
beginning of your program.

The example shown in this section corresponds to files located in the directory $NOMAD HOME/ex-
amples/basic/library/single obj. It is identical to the example shown in Section 3, except that
no temporary files are used, and no system calls are made. For this example, just one C++ source file
is used, but there could be a lot more. Other examples can be found in $NOMAD HOME/examples and
in the main function of Nomad located in the file $NOMAD HOME/src/nomad.cpp which implements
the Nomad batch mode. This illustrates the fact that even in library mode a parameters file may
be used and system calls performed.

As a first task, a makefile needs to be created in the directory where your source code is located.
An example of such a makefile is shown on Figure 5. Notice that each line after ‘:’ has to begin
with a tabulation. Such makefiles are given at various places inside the examples directory.

We now describe the other steps required for the creation of the source file basic lib.cpp, which
includes the header file nomad.hpp, and which is divided into two parts: a class for the description
of the problem, and the main function. Once compiled with the makefile (type ‘make’), the binary
file basic lib is created and can be executed.

4.1 Definition of the problem

Describing the blackbox problem directly in the code that calls Nomad avoids the use of tem-
porary files and system calls by the algorithm. This is achieved by defining a derived class
My Evaluator that inherits from the class NOMAD::Evaluator in single-objective optimization and
from NOMAD::Multi Obj Evaluator in multi-objective mode (see header files Evaluator.hpp and
Multi Obj Evaluator.hpp). An example of such a class is shown in Figure 7.

The objective of this user class is to redefine the virtual method eval x() that will be auto-
matically called by the algorithm. The prototype of eval x() is given in Figure 6. Note that const
and non-const versions of the method are available.

The argument x (in/out) corresponds to an evaluation point, i.e. a vector containing the co-
ordinates of the point to be evaluated, and also the result of the evaluation. The coordinates are
accessed with the operator [] (x[0] for the first coordinate) and outputs are set with the method
NOMAD::Eval Point::set bb output() (x.set bb output(0,v) to set the objective function value
to v if the objective has been defined at the first position). Constraints must be represented by
values cj for a constraint cj ≤ 0. Please refer to files Eval Point.hpp and Point.hpp for details

14

EXE = basic_lib
COMPILATOR = g++
OPTIONS = -ansi -Wall -O3 -DGCC_X
L1 = $(NOMAD_HOME)/lib/nomad.a
LIBS = $(L1) -lc -lm
INCLUDE = -I$(NOMAD_HOME)/src -I.
COMPILE = $(COMPILATOR) $(OPTIONS) $(INCLUDE) -c
OBJS = basic_lib.o

$(EXE): $(OBJS)
$(COMPILATOR) -o $(EXE) $(OBJS) $(LIBS) $(OPTIONS)

basic_lib.o: basic_lib.cpp $(L1)
$(COMPILE) basic_lib.cpp

clean:
@echo " cleaning obj files"
@rm -f $(OBJS)

Figure 5: Example of a makefile for a single C++ file linked with the Nomad library.

bool eval_x (NOMAD::Eval_Point & x ,
const NOMAD::Double & h_max ,
bool & count_eval) const;

Figure 6: Prototype of method NOMAD::Evaluator::eval x(). A non-const version is also available.

about the classes defining Nomad vectors.
The second argument, the real h max (in), corresponds to the current value of the barrier hmax

parameter. It is not used in this example but it may interrupt an expensive evaluation if the
constraint violation value h grows larger than hmax. See [20] for the definition of h and hmax and
of the progressive barrier method for handling constraints.

The third argument, count eval (out), needs to be set to true if the evaluation counts as a
blackbox evaluation, and false otherwise (for example, if the user interrupts an evaluation with
the hmax criterion before it costs some expensive computations, then set count eval to false).

If a surrogate function is to be used, then its evaluation routine should be coded in the method
eval x(). First, to indicate that a surrogate can be computed, the user must set the parameter
HAS SGTE to yes, via the method NOMAD::Parameters::set HAS SGTE(). Then, in eval x(), the
test ‘if (x.get eval type()== SGTE)’ must be made to differentiate an evaluation with the true
function f or with the surrogate. More notes on surrogates are given in Section 5.1.2.

Another possibility for the designer of eval x() is the ability to define a priority for the trial
point x via the method NOMAD::Eval Point::set user eval priority(). Points with higher pri-
orities will be evaluated first. For more details, see the code in Priority Eval Point.*pp.

The function eval x() should return true if the evaluation succeeded, and false if the evalu-
ation failed.

Finally, note that the call to eval x() inside the Nomad code is inserted into a try block. This

15

means that if an error is detected by the user inside the eval x() function, an exception should
be thrown. The choice for the type of this exception is left to the user, but NOMAD::Exception is
available (see Exception.*pp). If an exception is thrown by the user-defined function, then the
associated evaluation is tagged as a failure and not counted unless the user explicitely set the flag
count eval to true.

class My_Evaluator : public NOMAD::Evaluator {
public:
My_Evaluator (const NOMAD::Parameters & p) :

NOMAD::Evaluator (p) {}

~My_Evaluator (void) {}

bool eval_x (NOMAD::Eval_Point & x ,
const NOMAD::Double & h_max ,
bool & count_eval) const {

NOMAD::Double c1 = 0.0 , c2 = 0.0;
for (int i = 0 ; i < 5 ; i++) {
c1 += (x[i]-1).pow2();
c2 += (x[i]+1).pow2();

}
x.set_bb_output (0 , x[4]); // objective value
x.set_bb_output (1 , c1-25); // constraint 1
x.set_bb_output (2 , 25-c2); // constraint 2

count_eval = true; // count a blackbox evaluation
return true; // the evaluation succeeded

}
};

Figure 7: Example of a user class defining a hard-coded blackbox problem.

Of course, more elaborated NOMAD::Evaluator subclasses may be designed in order to consider
some additional problem-related parameters. Such an example can be found in the source files
Multi Obj Evaluator.*pp where some weights are defined to change the objective function of the
problem between successive optimizations (this example correspond to the BiMads algorithm [26]).

The virtual method update success() can also be redefined in subclasses deriving from NOMAD
::Evaluator. This method will be automatically invoked every time a new improvement is made.
Note that the automatic calls to this method can be enabled/disabled with NOMAD::Evaluator Con-
trol::set call user update success().

Another virtual method defined in the class NOMAD::Evaluator is compute f(). This method
allows the user to compute the value of the objective function directly from the blackbox outputs.
This is used by the BiMads algorithm. If compute f() is not user-defined, then Nomad simply
takes the value of f as the first OBJ output from the blackbox.

16

4.2 The main function

Once your problem has been defined, the main function can be written. Nomad routines may
throw C++ exceptions, so it is recommended that you put your code into a try block. In addition,
functions NOMAD::begin() and NOMAD::end() must be called at the beginning and at the end of
the main function. NOMAD::Slave::stop slaves() has also to be called at the end of the main
function if parallelism is used.

4.2.1 Parameters

First, a NOMAD::Parameters object needs to be declared. Parameters are defined similarly as in
batch mode and each parameter PNAME is set with the method NOMAD::Parameters::set PNAME().
In order to see all the options, use the help ‘nomad -h param name’, or refer to the detailed
list of parameters in Section 5, or to the header file Parameters.hpp. Nomad additional C++
types necessary for the calls to NOMAD::Parameters functions can be found in file defines.hpp.
An example is given in Figure 8. This example is taken from file basic lib.cpp located in
$NOMAD HOME/examples/basic/library/single obj and corresponds to the same parameters file
example shown in Figure 2, except that no problem executable is used.

No parameters file is needed, but it is possible to take the parameters from such a file, with
NOMAD::Parameters::read("param.txt") where param.txt is a valid parameters file. If a direc-
tory path is included in the name of the file, this path will be considered as the problem path instead
of the default location ‘./’. To display the parameters described by a Parameters object p, use
the instruction ‘cout << p << endl;’.

Once that all parameters are set, the method NOMAD::Parameters::check() must be invoked to
validate the parameters. The algorithm will not run with a non-checked NOMAD::Parameters object.
It is not even possible to access data from an object of this class while not checked. If parameters
are changed, check() must be invoked again before a new run can be conducted. Notice that the
call to check() may be bypassed by using NOMAD::Parameters::force check flag() but only
advanced users should use it.

4.2.2 Evaluator declaration and algorithm run

The Mads algorithm is implemented with the NOMAD::Mads class. Objects of this class are created
with a NOMAD::Parameters object and an NOMAD::Evaluator object. In the example described here,
the NOMAD::Evaluator object corresponds to an object of type My Evaluator. A NULL pointer may
also be used instead of the NOMAD::Evaluator object: in this case, the default evaluator will be
used. Assuming that the parameter BB EXE has been defined, this default evaluator consists in
evaluating the objective function via a separated blackbox program and system calls. When an
NOMAD::Evaluator object is used, parameters BB EXE and SGTE EXE are ignored. A more advanced
NOMAD::Mads constructor with user-created caches is also available in $NOMAD HOME/src/Mads.hpp.

Once that the NOMAD::Mads object is declared, run the algorithm with NOMAD::Mads::run() (or
NOMAD::Mads::multi run() for multi-objective optimization). An example is shown in Figure 9.

It is also possible for the user to redefine the virtual method NOMAD::Evaluator::list of po-
ints preprocessing() to indicate a preprocessing strategy that will be applied by the algorithm
before each series of evaluations is made. All points may then be modified according to this strategy.
See $NOMAD HOME/src/Evaluator.hpp for the header of this method.

17

4.2.3 Access to the solution and to optimization data

In the example of $NOMAD HOME/examples/basic/library/single obj, final information is dis-
played via a call to the operator << at the end of NOMAD::Mads::run(). More specialized access to
solution and optimization data is allowed. To access the best feasible and infeasible points, use the
methods NOMAD::Mads::get best feasible() and NOMAD::Mads::get best infeasible(). To
access optimization data or statistics, call the method NOMAD::Mads::get stats() which returns
access to a NOMAD::Stats object. Then, use the access methods defined in Stats.hpp. For example,
to display the number of blackbox evaluations, write:

cout << "bb eval = " << mads.get_stats().get_bb_eval() << endl;

18

// display:
NOMAD::Display out (std::cout);

// parameters creation:
NOMAD::Parameters p (out);

p.set_DIMENSION (5); // number of variables

// definition of output types:
vector<NOMAD::bb_output_type> bbot (3);
bbot[0] = NOMAD::OBJ;
bbot[1] = NOMAD::PB;
bbot[2] = NOMAD::EB;
p.set_BB_OUTPUT_TYPE (bbot);

// starting point:
p.set_X0 (NOMAD::Point (5 , 0.0));

// lower bounds: all var. >= -6:
p.set_LOWER_BOUND (NOMAD::Point (5 , -6.0));

// upper bounds (x_4 and x_5 have no upper bounds):
NOMAD::Point ub (5);
ub[0] = 5.0; // x_1 <= 5
ub[1] = 6.0; // x_2 <= 6
ub[2] = 7.0; // x_3 <= 7
p.set_UPPER_BOUND (ub);

p.set_MAX_BB_EVAL (100); // the algorithm terminates
// after 100 bb evaluations

// parameters validation:
p.check();

Figure 8: Example of parameters creation in library mode.

// custom evaluator creation:
My_Evaluator ev (p);

// algorithm creation and execution:
NOMAD::Mads mads (p , &ev , cout);
mads.run();

Figure 9: Evaluator and Mads objects usage.

19

4.3 Other functionalities of the library mode

4.3.1 Automatic calls to user-defined functions

Virtual methods are automatically invoked by Nomad at some special events of the algorithm.
These methods are left empty by default and you may redefine them so that your own code is auto-
matically called. These virtual methods are defined in the NOMAD::Evaluator and NOMAD::Multi
Obj Evaluator classes and are detailed below:

• NOMAD::Evaluator::list of points preprocessing(): Called before the evaluation of a
list of points (it allows the user to pre-process the points to be evaluated).

• NOMAD::Evaluator::update iteration(): Invoked every time a Mads iteration is termi-
nated.

• NOMAD::Evaluator::update success(): Invoked when a new incumbent is found (single-
objective) or when a new Pareto point is found (biobjective).

• NOMAD::Multi Obj Evaluator::update mads run(): For biobjective problems, this method
is called every time a single Mads run is terminated.

It is possible to disable the automatic calls to these methods, with the functions NOMAD::Mads::
enable user calls() and NOMAD::Mads::disable user calls(), or with the parameters USER
CALLS ENABLED and EXTENDED POLL ENABLED. These parameters are automatically set to yes, except
during the extended poll for categorical variables and during the VNS search.

4.3.2 Create groups of variables

This section gives some explanations about creating groups of variables in library mode. See Sec-
tion 5.4.13 for defining such groups in batch mode. Groups of variable are created with the method
NOMAD::Parameters::set VARIABLE GROUP() which has two different prototypes. The method
must be called each time a new group is created. For both versions of the function, the user needs
to give a list of the indexes of the variables composing the group. In Nomad, a group of variable
generates its own polling directions. The most complete prototype of set VARIABLE GROUP() allows
to choose the types of these directions, for the primary and secondary polls. The detailed types
of directions can be found in file defines.hpp and the enum type direction type. The simplified
prototype uses OrthoMads types of directions by default. In all cases a Halton seed must be
provided, which is not considered if direction types do not correspond to OrthoMads. Otherwise,
a value must be provided. This value should be larger than the nth prime number, and ideally be
different for each group of variables. The method NOMAD::Directions::get max halton seed()
is available in order to get the highest Halton seed that has been used, and help determine such a
value. It is also possible to use the method NOMAD::Directions::compute halton seed() which
directly computes the Halton seed as the nth prime number.

Finally the function NOMAD::Parameters::reset variable groups() may be called to reset
the groups of variables. Remember also that after a modification to a Parameters object is made,
the method NOMAD::Parameters::check() needs to be called.

4.3.3 Multiple runs

The method NOMAD::Mads::run() may be invoked more than once, for multiple runs of the Mads
algorithm.

20

A first solution for doing that is simply to declare the NOMAD::Mads object, as in Figure 10.
But, in this case, the cache, containing all points from the first run, will be erased between the runs
(since its it created and deleted with NOMAD::Mads objects).

{
NOMAD::Mads mads (p , &ev , cout);

// run #1:
mads.run();

}

// some changes...

{
NOMAD::Mads mads (p , &ev , cout);

// run #2:
mads.run();

}

Figure 10: Two runs of Mads with a NOMAD::Mads object at local scope. The cache is erased
between the two runs.

A better solution consists in using the NOMAD::Mads::reset() method between the two runs and
to keep the NOMAD::Mads object in a more global scope. The method takes two boolean arguments
(set to false by default), keep barriers and keep stats, indicating if the barriers (true and
surrogate) and statistics must be reseted between the two runs. An example is shown in Figure 11.

NOMAD::Mads mads (p , &ev , cout);

// run #1:
mads.run();

// some changes...

mads.reset();

// run #2:
mads.run();

Figure 11: Two runs of Mads with a NOMAD::Mads object at a more global scope. The cache is
kept between the two runs.

Two examples showing multiple Mads runs are described in the advanced examples directory.

21

5 Parameters description

Parameters described in this section correspond to those that can be entered in a parameters file that
the batch mode will load. The same parameters description can be found by entering the command
‘nomad -h’, to see all the parameters, or ‘nomad -h param name’ for a particular parameter.

In library mode, parameters are defined via a NOMAD::Parameters object and methods NOMAD::
Parameters::set PARAM NAME(), where PARAM NAME is the name used in this section. It is also
possible to read a parameters file in library mode, with the method NOMAD::Parameters::read().
In batch mode, the problem directory is automatically determined by Nomad. It can be defined in
library mode with NOMAD::Parameters::set PROBLEM DIR().

All the entries of a line are ignored after the character ‘#’. Except for the file names, all strings
and parameter names are case insensitive (‘DIMENSION 2’ is the same as ‘Dimension 2’). File
names refer to files in the problem directory. To indicate a file name containing spaces, use quotes
("name" or ‘name’). These names may include directory information relatively to the problem
directory. The problem directory will be added to the names, unless the ‘$’ character is used
in front of the names. For example, if a blackbox executable is run by the command ‘python
script.py’, define parameter BB EXE with argument ‘$python script.py’.

Some parameters require the entry of variable indexes. These indexes begin at 0 and may be
entered directly or as index ranges with format ‘i-j’. Character ‘*’ may be used to replace
‘0-n-1’ (where n is the number of variables). Other parameters require arguments of type bool:
these values may be entered with the strings yes, no, y, n, 0, or 1. Finally, some parameters need
vectors as arguments, use (v1 v2 ... vn) for those. Characters ‘-’, ‘inf’, ‘-inf’ or ‘+inf’
are accepted to enter undefined real values (Nomad considers ±∞ as an undefined value). The
following subsections show tables describing all Nomad parameters. Parameters are classified into
different classes (problem, algorithm and output parameters). For each of these classes, basic and
advanced parameters are described separately.

5.1 Parameters describing the problem

5.1.1 Basic
name arguments description default

BB EXE list of strings; see 5.4.1 blackbox executables (re-
quired in batch mode)

none

BB INPUT TYPE see 5.4.2 blackbox input types * R (all real)

BB OUTPUT TYPE see 5.4.3 blackbox output types (re-
quired)

none

DIMENSION integer n the number of variables (re-
quired)

none

LOWER BOUND see 5.4.5 lower bounds none

UPPER BOUND see 5.4.5 upper bounds none

22

5.1.2 Advanced
name arguments description default

FIXED VARIABLE see 5.4.8 fixed variables none

PERIODIC VARIABLE index range define variables in the range to
be periodic (bounds required)

none

SGTE COST integer c the cost of c surrogate evalua-
tions is equivalent to the cost
of one blackbox evaluation

∞

SGTE EVAL SORT bool if surrogates are used to sort
list of trial points

yes

SGTE EXE list of strings; see 5.4.1 surrogate executables none

VARIABLE GROUP index range defines a group of variables;
see 5.4.13

none

Surrogates, or surrogate functions, are cheaper blackbox functions that are used, at least par-
tially, instead of the true function f to minimize. The current version of Nomad uses only static
surrogates which are not updated during the algorithm and which are provided by the user. If such
functions are defined, Nomad will use them to drive its search. See [31] for a survey on surrogate
optimization.

23

5.2 Algorithmic parameters

5.2.1 Basic
name arguments description default

DIRECTION TYPE see 5.4.6 type of directions for the poll ORTHO

F TARGET reals, f or (f1 f2) Nomad terminates if fi(xk) ≤
fi for all objective functions

none

HALTON SEED integer Halton seed for Ortho-
MADS [6]

nth prime
number

INITIAL MESH SIZE see 5.4.9 ∆m
0 [18] r0.1 or 1.0

LH SEARCH 2 integers: p0 and pi LH (Latin-Hypercube) search
(p0: initial, pi: iterative);
see 6.2 for biobjective

none

MAX BB EVAL integer maximum number of blackbox
evaluations; see 6.2 for biob-
jective

none

MAX TIME integer maximum wall-clock time (in
seconds)

none

MULTI NB MADS RUNS integer number of Mads runs see 6.2

MULTI OVERALL BB EVAL integer max number of blackbox eval-
uations for all Mads runs

see 6.2

OPPORTUNISTIC EVAL bool opportunistic strategy; yes

see 5.4.10

OPPORTUNISTIC LH bool opportunistic strategy for LH
search; see 6.2 for biobjective

see 5.4.10

SEED integer or NONE random seed; NONE or a neg-
ative integer to define a seed
that will be different at each
run

NONE

TMP DIR string temporary directory for black-
box i/o files; see 5.4.12

problem
directory

VNS SEARCH bool or real VNS search; see 6.4 no

X0 see 5.4.14 starting point(s) best point
from a cache
file or from
an initial LH
search

24

5.2.2 Advanced
name arguments description default

ASYNCHRONOUS bool asynchronous strategy for the
parallel version; see 6.5

yes

BB INPUT INCLUDE SEED bool if the random seed is put as
the first entry in blackbox in-
put files

no

BB INPUT INCLUDE TAG bool if the tag of a point is put as an
entry in blackbox input files

no

BB REDIRECTION bool if Nomad manages the cre-
ation of blackbox output files;
see 5.4.4

yes

CACHE SEARCH bool enable or disable the cache
search (useful with extern
caches)

no

EPSILON real precision on reals 1E-13

EXTENDED POLL ENABLED bool if no, the extended poll for
categorical variables is dis-
abled

yes

EXTENDED POLL TRIGGER real trigger for categorical vari-
ables; value may be relative;
see 6.1

r0.1

H MAX 0 real initial value of hmax (will be
eventually decreased through-
out the algorithm)

1E+20

H MIN real v x is feasible if h(x) ≥ v 0.0

H NORM norm type in {L1,
L2, Linf }

norm used to compute h L2

HAS SGTE bool indicates if the problem has a
surrogate (only necessary in li-
brary mode)

no or yes if
SGTE EXE is
defined

INITIAL MESH INDEX integer initial mesh index `0 [6] 0

L CURVE TARGET real Nomad terminates if it de-
tects that the objective may
not reach this value

none

MAX CACHE MEMORY integer Nomad terminates if the
cache reaches this memory
limit expressed in MB

none

MAX EVAL integer max number of evaluations
(includes cache hits and black-
box evaluations, does not in-
clude surrogate eval)

none

MAX ITERATIONS integer max number of Mads itera-
tions

none

MAX MESH INDEX integer max mesh index `max [6] none

MAX SGTE EVAL integer max number of surrogate eval-
uations

none

MAX SIM BB EVAL integer max number of simulated
blackbox evaluations (includes
initial cache hits)

none

25

name arguments description default

MESH COARSENING EXPONENT integer w+ [18] 1

MESH REFINING EXPONENT integer w− [18] -1

MESH UPDATE BASIS real τ [18] 4.0

MIN MESH SIZE see 5.4.9 ∆m
min [18] none

MIN POLL SIZE see 5.4.9 ∆p
min [18] none or 1

for int/bin
variables

MULTI F BOUNDS 4 reals see 6.2 none

MULTI FORMULATION string see 6.2 PRODUCT or
DIST L2

MULTI USE DELTA CRIT bool see 6.2 no

OPPORTUNISTIC CACHE SEARCH bool opportunistic strategy for
cache search

no

OPPORTUNISTIC LUCKY EVAL bool see 5.4.10 none

OPPORTUNISTIC MIN EVAL integer see 5.4.10 none

OPPORTUNISTIC MIN F IMPRVMT real see 5.4.10 none

OPPORTUNISTIC MIN NB SUCCESS integer see 5.4.10 none

OPT ONLY SGTE bool minimize only with surrogates no

RHO real ρ parameter of the progressive
barrier

0.1

SCALING see 5.4.11 scaling on the variables none

SEC POLL DIR TYPE see 5.4.6 type of directions for the sec-
ondary poll

see 5.4.6

SNAP TO BOUNDS bool snap to boundary trial points
that are generated outside
bounds

yes

SPECULATIVE SEARCH bool Mads speculative search [18] yes

STAT SUM TARGET real Nomad terminates if
STAT SUM reaches this value

none

STOP IF FEASIBLE bool Nomad terminates if it gener-
ates a feasible solution

no

USER CALLS ENABLED bool if no, the automatic calls to
user functions are disabled

yes

5.3 Output parameters

The displays have been simplified for the release of the version 3.4. Three different level of display
can be set via the parameter DISPLAY DEGREE, and these levels may be set differently for 4 different
sections of the algorithm (general displays, search and poll displays and displays for each iteration
data). The three different level can be entered with an integer in [0; 2], but also with the strings
‘NO DISPLAY’, ‘NORMAL DISPLAY’, or ‘FULL DISPLAY’. If the maximum level of display is set, then
the algorithm informations are displayed within indented blocks. These blocks ease the interpreta-
tion of the algorithm logs when read from a text editor. The characters used to mark the beginning
and the end of these blocks can be changed with the parameters OPEN BRACE and CLOSED BRACE.

From the implementation point of view, constants have been introduced for the display degrees:
NOMAD::NO DISPLAY, NOMAD::NORMAL DISPLAY, and NOMAD::FULL DISPLAY. In addition, a specific
class is now responsible for the whole program displays. This class is named NOMAD::Display and is
constructed from a std::ostream object such as std::cout. The use of a NOMAD::Display object is
similar to the use of a std::ostream object, except that the outputs are organized within indented
blocks. Compared to the previous versions of Nomad, methods like NOMAD::Parameters::get X
display degree() have been removed and put inside the class NOMAD::Display. To access the
NOMAD::Display object considered by the algorithm, call the method NOMAD::Parameters::out().

26

5.3.1 Basic
name arguments description default

CACHE FILE string cache file; if the file does not exist, it
will be created

none

DISPLAY DEGREE integer in [0; 2] or a
string with four digits;
see 5.3.2

0: no display; 2: full display 1

DISPLAY STATS list of strings what informations is displayed at
each success; see 5.4.7

see 5.4.7

HISTORY FILE string file containing all trial points with
format (x1 x2 ... xn) on each
line; includes multiple evaluations

none

SOLUTION FILE string file to save the current best feasible
point

none

STATS FILE a string file name plus a
list of strings

the same as DISPLAY STATS but for a
display into file file name

none

5.3.2 Advanced
name arguments description default

ADD SEED TO FILE NAMES bool if the seed is added to the file
names corresponding to parameters
HISTORY FILE, SOLUTION FILE and
STATS FILE

yes

CACHE SAVE PERIOD integer i the cache files are saved every i it-
erations (disabled for biobjective)

25

CLOSED BRACE string displayed at the end of indented
blocks

‘{’

DISPLAY DEGREE string with four dig-
its, each in [0; 2]

1st digit: general display; 2nd digit:
search display; 3rd digit: poll dis-
play; 4th digit: iterative display;

1111

example: DISPLAY DEGREE 0010

INF STR string used to display infinity ’inf’

OPEN BRACE string displayed at the beginning of in-
dented blocks

‘}’

POINT DISPLAY LIMIT integer maximum number of point coor-
dinates that will be displayed at
screen (-1 for no limit)

20

SGTE CACHE FILE string surrogate cache file (can not be the
same as CACHE FILE)

none

UNDEF STR string used to display undefined values ’-’

5.4 Additional information for some parameters

5.4.1 Executable parameters BB EXE and SGTE EXE

In batch mode, BB EXE indicates the names of the blackboxes executables. In library mode, it is
optional as a custom NOMAD::Evaluator class may be written with its own eval x() method. A
single string may be given if a single blackbox is used and gives several outputs. It is also possible
to indicate several blackbox executables. If the character ‘$’ is put at first position of a string,
this string is considered as a global command or file and no path is added. We give the following
examples:

27

BB_EXE bb.exe # defines that ‘bb.exe’ is an
BB_OUTPUT_TYPE OBJ EB EB # executable with 3 outputs

BB_EXE bb1.exe bb2.exe # defines two blackboxes
BB_OUTPUT_TYPE OBJ EB # ‘bb1.exe’ and ‘bb2.exe’

with one output each

BB_EXE "dir $with $spaces/bb.exe # use ‘$’ to describe a
path with spaces

BB_EXE "$python bb.py" # the blackbox is a python
script: it is run with
command
‘python PROBLEM_DIR/bb.py’

BB_EXE "$nice bb.exe" # to run PROBLEM_DIR/bb.exe
in nice mode on X systems

The parameter SGTE EXE associates surrogate executables with blackbox executables. It may
be entered with two formats: ‘SGTE EXE bb exe sgte exe’ to associate executables bb exe and
sgte exe, or ‘SGTE EXE sgte exe’ when only one blackbox executable is used. Surrogates must
display the same number of outputs as their associated blackboxes.

5.4.2 Blackbox input parameter BB INPUT TYPE

This parameter indicates the types of each variable. It may be defined once with a list of n input
types with format (t1 t2 ... tn) or several times with index ranges and input types. Input
types are values in {R, C, B, I} or {Real, Cat, Bin, Int}. R is for real/continuous variables,
C for categorical variable, B for binary variables, and I for integer variables. The default type is R.

5.4.3 Blackbox output parameter BB OUTPUT TYPE

This parameter defines the types of the values that the blackbox displays. The arguments are a
list of m types, where m is the number of outputs of the blackbox. At least one of these values
must correspond to the objective function that Nomad minimizes. If two outputs are tagged as
objectives, then the BiMads algorithm will be executed. Other values typically are constraints
of the form cj(x) ≤ 0, and the blackbox must display the left hand side of the constraint with
this format. A certain terminology is used to describe the different types of constraints. This
terminology can be consulted in [20]. EB constraints correspond to constraints that need to be always
satisfied (unrelaxable constraints). The technique used to deal with those is the extreme barrier
approach, consisting in simply rejecting the infeasible points. PB, PEB, and F constraints correspond
to constraints that need to be satisfied only at the solution, and not necessarily at intermediate
points (relaxable constraints). More precisely, F constraints are treated with the filter approach [17],
and PB constraints are treated with the progressive barrier approach [20]. PEB constraints are treated
first with the progressive barrier, and once satisfied, with the extreme barrier [22]. There may be
another type of constraints, the hidden constraints, but these only appear inside the blackbox during
an execution, and thus they cannot be indicated in advance to Nomad (when such a constraint is
violated, the evaluation simply fails and the point is not considered). If the user is not sure about

28

the nature of its constraints, we suggest using the keyword CSTR, which correspond by default to
PB constraints.

There may be other types of outputs. All the types are:

CNT EVAL Must be 0 or 1: count or not the blackbox evaluation
(equivalent to the argument cnt eval of NOMAD::Evaluator::eval x()).

EB Constraint treated with Extreme Barrier
(infeasible points are ignored).

F Constraint treated with filter approach [17].
NOTHING or - The output is ignored.

OBJ Objective value to minimize.
PB or CSTR Constraint treated with Progressive Barrier [20].

PEB Hybrid constraint PB/EB [22].
STAT AVG Average of this value will be computed for all blackbox calls

(must be unique).
STAT SUM Sum of this value will be computed for all blackbox calls

(must be unique).
Please note that F constraints are not compatible with CSTR, PB or PEB. However, EB can be

combined with F, CSTR, PB or PEB.

5.4.4 Blackbox redirection parameter BB REDIRECTION

If this parameter is set to yes (default), Nomad manages the creation of the blackbox output
file when the blackbox is executed via a system call (the redirection ‘>’ is added to the sys-
tem command). If no, then the blackbox must manage the creation of its output file named
TMP DIR/nomad.SEED.TAG.output. Values of SEED and TAG can be obtained in the blackbox
input files created by Nomad and given as first argument of the blackbox, only if parameters
BB INPUT INCLUDE SEED and BB INPUT INCLUDE TAG are both set to yes. TMP DIR is specified by
the user. If no, TMP DIR is the problem directory.

5.4.5 Bounds

Parameters LOWER BOUND and UPPER BOUND are used to define bounds on variables, and take similar
arguments as parameter FIXED VARIABLE (see 5.4.8). For example, with n = 7,

LOWER_BOUND 0-2 -5.0
LOWER_BOUND 3 0.0
LOWER_BOUND 5-6 -4.0
UPPER_BOUND 0-5 8.0

is equivalent to

LOWER_BOUND (-5 -5 -5 0 - -4 -4) # ‘-’ or ‘-inf’ means that x_4
has no lower bound

UPPER_BOUND (8 8 8 8 8 8 inf) # ‘-’ or ‘inf’ or ‘+inf’ means
that x_6 has no upper bound.

29

These two sequences define the following bounds



−5 ≤ x1 ≤ 8
−5 ≤ x2 ≤ 8
−5 ≤ x3 ≤ 8

0 ≤ x4 ≤ 8
x5 ≤ 8

−4 ≤ x6 ≤ 8
−4 ≤ x7 .

5.4.6 Direction types

The types of direction correspond to the arguments of parameters DIRECTION TYPE and SEC POLL
DIR TYPE. Up to 4 strings may be employed to describe one direction type. These 4 strings are s1
in {ORTHO,LT,GPS}, s2 in {∅,1,2,N+1,2N}, s3 in {∅,STATIC,RANDOM}, and s4 in {∅,UNIFORM}. If
only 1,2 or 3 strings are given, defaults are considered for the others. Combination of these strings
may describe the following 14 direction types:

s1 s2 s3 s4 direction types
1 ORTHO 1 OrthoMads, 1.
2 ORTHO 2 OrthoMads, 2.
3 ORTHO OrthoMads, 2n.
3 ORTHO 2N OrthoMads, 2n.
4 LT 1 LT-Mads, 1.
5 LT 2 LT-Mads, 2.
6 LT N+1 LT-Mads, n+1.
7 LT LT-Mads, 2n.
7 LT 2N LT-Mads, 2n.
8 GPS BIN GPS for binary variables.
9 GPS N+1 GPS, n+1, static.
9 GPS N+1 STATIC GPS, n+1, static.

10 GPS N+1 STATIC UNIFORM GPS, n+1, static, uniform angles.
11 GPS N+1 RAND GPS, n+1, random.
12 GPS N+1 RAND UNIFORM GPS, n+1, random, uniform angles.
13 GPS GPS, 2n, static.
13 GPS 2N GPS, 2n, static.
13 GPS 2N STATIC GPS, 2n, static.
14 GPS 2N RAND GPS, 2n, random.

GPS directions correspond to the coordinate directions. LT and ORTHO directions correspond to
the implementations LT-Mads [18] and OrthoMads [6] of Mads. The integer indicated after GPS,
LT and ORTHO corresponds to the number of directions that are generated at each poll. The 14 dif-
ferent direction types may be chosen together by specifying DIRECTION TYPE or SEC POLL DIR TYPE
several times. If nothing indicated, ORTHO is considered for the primary poll, and default direction
types for the secondary poll are ORTHO 1 or 2, LT 1 or 2, and GPS N+1 STATIC depending on the
value of DIRECTION TYPE.

5.4.7 Output parameters DISPLAY STATS and STATS FILE

These parameters display information each time a new feasible incumbent is found. DISPLAY STATS
displays at the standard output and STATS FILE writes a file. These parameters need a list of strings
as argument, without any quotes. These strings may include the following keywords:

30

BBE Blackbox evaluations.
BBO Blackbox outputs.
EVAL Evaluations (includes cache hits).

MESH INDEX Mesh index ` [6].
MESH SIZE Mesh size parameter ∆m

k [18].
OBJ Objective function value.

POLL SIZE Poll size parameter ∆p
k [18].

SGTE Number of surrogate evaluations.
SIM BBE Simulated blackbox evaluations (includes initial cache hits).

SOL Solution, with format iSOLj where i and j are two (optional)
strings: i will be displayed before each coordinate, and j after
each coordinate (except the last).

STAT AVG The AVG statistic (argument STAT AVG of BB OUTPUT TYPE).
STAT SUM The SUM statistic defined by argument STAT SUM for parameter

BB OUTPUT TYPE.
TIME Wall-clock time.
VARi Value of variable i. The index 0 corresponds to the first variable.

In addition, all outputs may be formatted using the C style. Possibilities and examples are
shown in the following table:

%e Scientific notation (mantise/exponent) using e character.
%E Scientific notation (mantise/exponent) using E character.
%f Decimal floating point.
%g Use the shorter of %e or %f.
%G Use the shorter of %E or %f.

%d or i Integer rounded value.

The number of columns (width) and the precision may also be indicated using also the C style
as in the following examples:

format width precision
%f auto auto

%5.4f 5 4
%5f 5 auto
%.4f auto 4
%.f auto 0

For example, ‘DISPLAY STATS BBE & ($SOL,) & OBJ \\’ displays lines similar to ‘1
& (10.34 , 5.58) & -703.4734809 \\’, which may be directed copied into LATEX ta-
bles. A similar example with formatting may be ‘DISPLAY STATS BBE & ($%5.1fSOL,) &
$%.2EOBJ$ \\’ which gives ‘1 & ($ 10.3$, $ 5.6$) & $-7.03E+02$ \\’. In case the user
wants to explicitely display the ’%’ character, it must be entered using ’\%’.

Default values are ‘DISPLAY STATS BBE OBJ’ and ‘DISPLAY STATS OBJ’ for single and biob-
jective optimization, respectively (there is no need to enter OBJ twice in order for the two objective
values to be displayed).

To write these outputs into the file output.txt, simply add the file name as first argument of
STAT FILE: for example ‘STATS FILE output.txt BBE (SOL) OBJ’.

31

5.4.8 Fixed variables parameter FIXED VARIABLE

This parameter is used to fix some variables to a value. This value is optional if at least one starting
point is defined. The parameter may be entered with several types of arguments:

• A string indicating a text file containing n values. Variables will be fixed to the values that
are not defined with the character ‘-’.

• A vector of n values with format (v0 v1 ... vn-1). Again, character ‘-’ may be used for
free variables.

• An index range if at least one starting point has been defined (see 5.4.14 for practical examples
of index ranges).

• An index range and a real value, with format ‘FIXED VARIABLE i-j v’: variables i to j will
be fixed to the value v (i-j may be replaced by i).

5.4.9 Mesh and poll size parameters

The initial mesh size parameter ∆m
0 [18] is decided by INITIAL MESH SIZE. In order to achieve

the scaling between variables, Nomad considers the mesh size parameter as a vector of n ele-
ments. Note that a more explicit scaling method is available with the parameter SCALING (see
Section 5.4.11). The same logic applies to the poll size parameter ∆p

k. If d0 is a positive real value,
INITIAL MESH SIZE may be entered with the following formats:

• INITIAL MESH SIZE d0: initial mesh size for all variables.

• INITIAL MESH SIZE (d0 d1 ... dn-1): for all variables (‘-’ may be used, and defaults
will be considered).

• INITIAL MESH SIZE i d0: initial for variable i.

• INITIAL MESH SIZE i-j d0: initial for variables i to j.

The minimum mesh size ∆m
min and the minimum poll size ∆p

min (stopping criteria) may be
defined the same way via parameters MIN MESH SIZE and MIN POLL SIZE. All values may also be
preceded by ‘r’ to indicate a value relative to the bounds. For example, ‘INITIAL MESH SIZE
r0.1’ means that ∆m

0 = (ub − lb)/10 with lb, ub ∈ Rn and lb ≤ x ≤ ub for all x ∈ X. Default is
r0.1 for bounded variables and 1.0 otherwise.

5.4.10 Opportunistic strategy

The opportunistic strategy consists in terminating the evaluations of a list of trial points as soon as
an improved value is found. This strategy is decided with the parameter OPPORTUNISTIC EVAL and
applies to both the poll and search steps. For the LH and Cache searches, the strategy may be chosen
independently with OPPORTUNISTIC LH and OPPORTUNISTIC CACHE SEARCH. If these parameters are
not defined, the parameter OPPORTUNISTIC EVAL applies to the LH and Cache searches. Other
defaults are considered for biobjective optimization (see 6.2).

If the opportunistic strategy is enabled, some additional options may be defined via the following
parameters:

• OPPORTUNISTIC MIN NB SUCCESS i: do not terminate before i successes.

32

• OPPORTUNISTIC MIN EVAL i: do not terminate before i evaluations.

• OPPORTUNISTIC MIN F IMPRVMT r: terminate only if f is reduced by r%.

• OPPORTUNISTIC LUCKY EVAL yes/no: perform an additional blackbox evaluation after an im-
provement.

5.4.11 Scaling parameter SCALING

Scaling in Nomad is automatically achieved via the mesh and poll size parameters which are vectors
with one value per variable. However, this method relies on the existence of bounds. For the case
when no bounds are available, or simply to give the user more control on the scaling, the parameter
SCALING has been introduced in the version 3.4.

The parameter takes variable indexes and values as arguments. During the algorithm, variables
are multiplied by their associated value before an evaluation and the call to NOMAD::Evaluator::ev-
al x(). The variables are unscaled after the evaluation.

All Nomad outputs (including files) display unscaled values. All variable-related parameters
(bounds, starting points, fixed variables) must be specified without scaling. In a parameters file,
the scaling is entered similarly to bounds or fixed variables. It is possible to specify a scaling for
some variables and none for others. Enter the command nomad -h scaling for more details about
the use of SCALING.

5.4.12 Temporary directory parameter TMP DIR

If Nomad is installed on a network, with the batch mode use, the cost of read/write files will be
high if no local temporary directory is defined. On Linux/Unix/Mac OS X systems, the directory
/tmp is local and we advise the user to define ‘TMP DIR /tmp’.

5.4.13 Group of variable parameter VARIABLE GROUP

This parameter may be entered several times to define more than one group of variables. Variables
in a group may be of different types (except for categorical variables). To define some partic-
ular types of directions or a particular Halton seed for this group, use the Nomad library and
NOMAD::Parameters::set VARIABLE GROUP(). In addition to the groups defined by parameters,
Nomad creates one group for all continuous, integer, and binary variables, and one group for cate-
gorical variables. If a group contains only binary variables, directions of type NOMAD::GPS BINARY
will be automatically used.

5.4.14 Starting point parameter X0

Parameter X0 indicates the starting point of the algorithm. Several starting points may be pro-
posed by entering this parameter several times. If no starting point is indicated, Nomad considers
the best evaluated point from an existing cache file (parameter CACHE FILE) or from an initial
Latin-Hypercube search (argument p0 of LH SEARCH). The X0 parameter may take several types of
arguments:

• A string indicating an existing cache file, containing several points (they can be already
evaluated or not). This file may be the same as the one indicated with CACHE FILE. If so, this
file will be updated during the program execution, otherwise the file will not be modified.

33

• A string indicating a text file containing the coordinates of one or several points (values are
separated by spaces or line breaks).

• n real values with format (v0 v1 ... vn-1).

• Two integers and one real:

– ‘X0 i v’: (i+1)th coordinate set to v.

– ‘X0 i-j v’: coordinates i to j set to v.

– ‘X0 * v’: all coordinates set to v.

• One integer, another integer (or index range) and one real: the same as above except that the
first integer k refers to the (k+1)th starting point.

The following example with n = 3 corresponds to the two starting points (5 0 0) and (−5 1 1):

X0 * 0.0
X0 0 5.0
X0 1 * 1.0
X0 1 0 -5.0

6 Special functionalities

6.1 Categorical variables

Categorical variables are discrete variables that can take a finite number of values. These are not
integer or binary variables as there is no ordering property amongst the different values that can
take the variables. To decide these values and to define a neighborhood structure, a user written
procedure must be provided.

The algorithm used by Nomad to treat such variables is defined in references [1, 8, 9, 15, 45]
and works as follows.

6.1.1 Algorithm

At the end of an iteration, if no improvement has been made, a special step occurs, the extended poll.
The extended poll first calls the user-provided procedure defining the neighborhood of categorical
variables. The procedure returns a list of points that have been defined as neighbors of the current
iterate. These points are called the extended poll points. The functions defining the problem are
then evaluated at each of these points and the objective values are compared to the current best
value.

If the difference between the objective value at the current iterate and at a extended poll point is
less than a parameter called the extended poll trigger, this extended poll point is called an extended
poll center and a new Mads run is performed from this point. This run is called an extend poll
descent and occurs on meshes that cannot be reduced more than the mesh of the beginning of the
extended poll. If the opportunistic strategy is active, then the different extended poll descents are
stopped as soon as a new success is achieved.

If surrogates are available, they can be used to evaluate the neighbors and during the extended
poll descent. The true functions will then be evaluated only on the most promising points. With
surrogates, the extended poll costs at most the same number of true evaluations than the number
of neighbors determined by the user-provided procedure.

34

6.1.2 Categorical variables with Nomad

We suggest the reader to follow this section along with the reading of the example located in
examples/advanced/categorical illustrating a simple mixed variable problem optimization. Deal-
ing with such problems in Nomad implies the use of the library mode to define the categorical
variables neighborhoods, although it is still possible to use a parameters file and separated blackbox
executables.

Several steps are necessary. First the BB INPUT TYPE parameter must be defined with the value
‘C’ to identify categorical variables.

Then the library mode is needed to define the procedure for the categorical variable neighbor-
hoods. This procedure corresponds to the virtual method NOMAD::Extended Poll::construct ex-
tended points() and the user must design its own NOMAD::Extended Poll subclass in which
construct extended points() is coded. This method takes as argument a point (the current
iterate) and constructs the list of extended poll points (the neighbors of the current iterate). These
points are registered with the method NOMAD::Extended Poll::add extended poll point(). In
its main function, the user gives its own NOMAD::Extended Poll object to the NOMAD::Mads object
used to optimize the problem. If no NOMAD::Extended Poll is provided to the NOMAD::Mads object,
the program will generate an error.

An important feature of Nomad about the handling of categorical variables is its ability to
treat points with a variable number of variables. This behavior often happens in mixed variable
problems, for example when a categorical variable indicates the number of continuous variables.

To deal with this, Nomad uses the concept of signature, implemented in the NOMAD::Signature
class. Each point in the algorithm possesses a signature, indicating the characteristics related to
the variables. These characteristics are the number of variables, the types of the variables, their
bounds, their scaling, fixed and periodic variables, and some information on the initial mesh size
parameter for each variable.

In the user-provide NOMAD::Extended Poll subclass, for each extended poll point, a signature
must be provided. If the extended poll point have the same number of variables than the current
iterate, the signature of the current iterate can be used. Otherwise, a new creature must be created
and the user is responsible for dealing with the associated memory allocations and deallocations.
See the NOMAD::Signature class for details about creating signatures.

The number of outputs of the evaluations must remain constant: if a problem has been defined
with one objective and two constraints, even if the number of variables can change, each evaluation
should return three values.

The parameter DIMENSION has still to be defined, and it corresponds to the number of variables
of the provided starting points. For these starting points, the NOMAD::Parameters class will au-
tomatically create a standard signature. If no starting point is provided, the standard signature
cannot be created, and a Latin-Hypercube search cannot be executed because it has no reference
for defining values for categorical variables. So not providing starting points with mixed variable
problems is not allowed.

The main parameter for mixed variable optimization is the extended poll trigger. Its value is
indicated with the parameter EXTENDED POLL TRIGGER, and may be given as a relative value. The
extended poll trigger is used to compare the objective values at an extended poll point y and at
the current iterate xk. If f(y) < f(xk)+trigger, then y becomes an extended poll center from
which a Mads run is performed. The default trigger value is r0.2, meaning that an extended
poll point will become an extended poll center if f(y) is less than f(xk) + f(xk) × 20%. See the
function NOMAD::Extended Poll::check trigger() for the details of this test and for the cases
where infeasible points or surrogate evaluations are considered.

35

Finally, note that the parameter EXTENDED POLL ENABLED can simply disable the extended poll.
In this case, categorical variable are simply fixed.

6.2 Biobjective optimization

Nomad performs biobjective optimization through the BiMads algorithm described in [26]. Han-
dling of more than two objective functions will be implemented in future versions.

The BiMads algorithm solves biobjective problems of the form

min
x∈Ω

F (x) =
(
f1(x), f2(x)

)
. (2)

The algorithm launches successive runs of Mads on single-objective reformulations of the prob-
lem. An approximation of the Pareto front, or the list of points that are dominant following the
definition of [26], is constructed with the evaluations performed during these Mads runs.

Two considerations must be taken into account when generating Pareto fronts: the quality of
approximation of the dominant points and the repartition of these points. The quality of approxi-
mation may be measured with the surf criterion that gives the ratio of the area under the graph
of the front relatively to a box enclosing all points (small values indicate a good front).

The quality of the coverage of the Pareto front is measured by the δ criterion, which corresponds
to the largest distance between two successive Pareto points.

To define that a problem has two objectives, two arguments of the parameter BB OUTPUT TYPE
must be set to OBJ. Then, Nomad will automatically run the BiMads algorithm. Additional
parameters are:

• MULTI F BOUNDS f1 min f1 max f2 min f2 max (real values): these 4 values are necessary to
compute the surf criterion. If not entered or if not valid (for example if f1 min is too big),
then surf is not computed.

• MULTI FORMULATION (string): single-objective reformulation [27]. This is how Nomad com-
putes one value from the two objective values. The argument must be in {NORMALIZED,
PRODUCT, DIST L1, DIST L2, DIST LINF} (DIST LINF and NORMALIZED are equivalent). The
default formulation is PRODUCT when VNS is not used, and DIST L2 otherwise.

• MULTI NB MADS RUNS (integer): the number of single-objective Mads runs.

• MULTI OVERALL BB EVAL (integer): the maximum number of blackbox evaluations over all
Mads runs.

• MULTI USE DELTA CRIT (bool, default to no): use or not a stopping criterion based on the δ
measure.

Default values are considered if these parameters are not entered. All other Mads parameters
are considered and apply to single Mads runs, with some adaptations:

• The MAX BB EVAL parameter corresponds to the maximum number of blackbox evaluations for
one Mads run.

• The F TARGET parameter is adapted to biobjective: it must be given with the two values z1

and z2. If a point x is generated such that f1(x) ≤ z1 and f2(x) ≤ z2, then the algorithm
terminates.

36

• Latin-Hypercube (LH) search (LH SEARCH p 0 p 1): in single-objective optimization, p 0 and
p 1 correspond to the initial number of search points and to the number of search points at
each iteration, respectively. In the biobjective context, p 0 is the number of initial search
points generated in the first Mads run, and p 1 is the number of points for the second Mads
run. If no LH search is defined by the user, and if only MULTI OVERALL BB EVAL is defined,
then a default LH search is performed. Moreover, this default LH search is non-opportunistic
(OPPORTUNISTIC LH set to no).

• The parameter SOLUTION FILE is disabled.

The Nomad solution represents an approximation of the Pareto front and is accessible via the
DISPLAY STATS or STATS FILE parameters. If DISPLAY DEGREE is greater than 1, then the two
measures surf and δ are displayed.

For a given budget of blackbox evaluations (MULTI OVERALL BB EVAL), if the quality of approxi-
mation is desired (small value for surf), then single Mads optimizations must terminate after more
severe criteria (for example a large number of blackbox evaluations, via MAX BB EVAL). If a better
repartition of the points is desired (small value for δ), then the number of Mads runs should be
larger, with less severe stopping criteria on single-objective optimizations.

6.3 Sensitivity analysis

Getting an optimizer is often insufficient for engineers. Two tools are available in the Nomad pack-
age to perform sensitivity analyses for constraints, which is a useful tool to grasp more knowledge
and see which constraints are important and which may be relaxed or tighten. What is generated by
these tools is the data necessary to plot objective versus constraint graphs that help to understand
the sensitivity. Details on the sensitivity analysis with blackboxes and some theoretical results on
the smooth case may be consulted in reference [23].

The tools are available in directory $NOMAD HOME/tools/SENSITIVITY. The first program is
called cache inspect and performs the simple analysis which consists in inspecting the cache
produced after the execution of Nomad on a constrained problem (the CACHE FILE parameter must
be set). The necessary inputs of this tool are a cache file and two blackbox output indexes: one for
the objective function, and one for the studied constraint. This last index may refer to a lower or
an upper bound: in that case a file containing the bound values must be indicated. The program
displays three columns with the values of the studied constraint cj(x) and of the objective f(x), and
a 0/1 flag indicating whether or not the couple (cj(x), f(x)) is nondominated in the sense of the
dominance notion of [26]. An optional parameter allows to display only nondominated points. These
values may be plotted for example with a MATLAB script (one is available in the cache inspect
directory).

The second program, called detailed analysis, performs the detailed analysis. With this tool,
the original problem with constraint cj(x) ≤ 0 is replaced with the biobjective problem

min
x∈Ωj

(cj(x), f(x))

s.t. cj ≤ cj(x) ≤ cj

where Ωj is the feasible set Ω minus the constraint. The use of the BiMads algorithm allows
to focus explicitely on the studied constraint in order to obtain a more precise sensitivity. The
program takes as inputs a parameters file, the constraint and objective indexes, and a cache file.
The latter may be empty or not at the beginning of the execution, and it will be updated with
the new evaluations. The updated cache file is in fact the output of the program and it may be

37

inspected with the cache inspect tool in order to get the data for the sensitivity graphs. The cj

and cj values used to bound the value of cj(x) may also be specified as input to the tool, as well as
a maximum number of evaluations that bypasses the one inside the parameters file. Both programs
may be executed without any input which result in the display of the required inputs description.

The typical way of using these tools is as follows: after a single run of Mads, the user uses the
simple analysis in order to get a fast and free preview of the sensitivity. After that it is possible to
get a more precise analysis on one or several constraints of interest using the detailed analysis, to
the cost of additional evaluations.

6.4 Variable Neighborhood Search (VNS)

This search strategy is described in [12]. It is based on the Variable Neighborhood Search meta-
heuristic [49, 50] as a search strategy to escape local minima. VNS should only be used for problems
with several such local optima. It will cost some additional evaluations, since each search performs
another Mads run from a perturbed starting point. Though, it will be a lot cheaper if a surrogate is
provided via parameter HAS SGTE or SGTE EXE. We advise the user not to use VNS with biobjective
optimization, as the BiMads algorithm already performs multiple Mads runs.

In order to use the VNS search, which is disabled by default, the user has to define the parameter
VNS SEARCH, with a boolean or a real. This expected real value is the VNS trigger, which corresponds
to the maximum desired ratio of VNS blackbox evaluations over the total number of blackbox
evaluations. For example, a value of 0.75 means that Nomad will try to perform a maximum of
75% blackbox evaluations within the VNS search. If a boolean is given as value to VNS SEARCH,
then a default of 0.75 is taken for the VNS trigger.

From a technical point of view, VNS is coded as a NOMAD::Search sub-class, and it is a good
example of how a user-search may be implemented. See files $NOMAD HOME/src/VNS Search.*pp
for details.

6.5 Parallel versions

Three parallel versions of the algorithm have been developed, namely p-Mads, Coop-Mads, and
Psd-Mads. While p-Mads is directly implemented into Nomad, the two others are programs
using the Nomad scalar library, and are located in the tools directory. These parallel versions are
developed with MPI [52] under a master/slaves paradigm.

When creating blackbox problems it is important to keep in mind that the blackboxes will be
called in parallel. So it is crucial that intermediary files possess different names: unique identifiers
must be used. For that purpose, in library mode, in your custom eval x() function, use the unique
tag of the trial points with the method NOMAD::Eval Point::get tag(). It is also possible to use
NOMAD::get pid() to generate a unique identifier. In batch mode, Nomad may communicate the
seed and the tag of a point to the blackbox executable with the parameters BB INPUT INCLUDE SEED
and BB INPUT INCLUDE TAG (see Section 5.2.2).

The user must be aware of the random aspect induced by the parallel versions. Even if de-
terministic directions such as OrthoMads are used, two parallel runs may not have the same
outputs. Tests have suggested that p-Mads will give similar results than the scalar version, but
much faster. The quality of the results may sometimes be less due to the fact that the usually
efficient opportunistic strategy is not exploited as well as in the scalar version. However, the more
evolved Coop-Mads strategy seems to give better results than the scalar version, and faster. The
efficiency of the Psd-Mads algorithm is more noticeable on large problems (more than 20 and up
to '500 variables) on which the other versions are not efficient.

38

A short description of the methods is given in the following sections, and for a more complete
description as well as for numerical results, please consult [40].

6.5.1 The p-Mads method

p-Mads is the basic parallel version of the Mads algorithm where each list of trial points is simply
evaluated in parallel. There are two versions of this method: first the synchronous version where an
iteration is over only when all evaluations in progress are finished. With this strategy, some processes
may be idle. The other version is the asynchronous method which consists in interrupting the
iteration as soon a new success is made. If there are some evaluations in progress, these are not
terminated. If these evaluations lead to successes after they terminate, then the algorithm will
consider them and go back to these ‘old’ points. This version allows no process to be idle. The
synchronous and asynchronous versions may be chosen via the parameter ASYNCHRONOUS whose
default is yes.

The p-Mads executable is named nomad.MPI or nomad MPI.exe depending on the operating
system and is located in the bin directory. It can be executed with the mpirun or mpiexec commands
with the following format under Linux:

mpirun -np p $NOMAD_HOME/bin/nomad.MPI param.txt

where p is the number of processes and param.txt is a parameters file with the same format as for
the scalar version. If you have a number c of processors, then it is suggested to choose np to be equal
to c + 1 (one master and c slaves). It may also be argued that np be proportional to the number
of polling directions. For example, for a problem with n = 3 variables and 2n polling directions,
each poll is going to generate 6 trial points, and on a 8-processors machine, chosing np=7 may be a
better choice than np=9.

6.5.2 The Coop-Mads method

The idea behind the Coop-Mads method is to run several Mads instances in parallel with different
seeds so that no one has the same behavior.

A special process, called the cache server, replaces the usual master process. It implements
a parallel version of the cache allowing each process to query if the evaluation at a given point
has already been performed. This forbids any double evaluation. The cache server allows also the
processes to perform the cache search, a special search consisting in retrieving, at each Mads
iteration, the currently best known point.

The program given in the tools directory implements a simple version of the method where
only one type of directions is used with different seeds: LT-Mads or OrthoMads, with a different
random seed or a different Halton seed.

This program is not precompiled and the user must compile it as any other code using the
Nomad library. Makefiles for X systems and Windows are provided. Usage of the program is as
follows:

mpirun -np p $NOMAD_HOME/tools/COOP-MADS/coopmads param.txt

as for p-Mads. Since the cache server is not demanding on computational time, the user can choose
np to be the number of available processors plus one.

39

6.5.3 The Psd-Mads method

Psd-Mads corresponds to the parallel space decomposition of Mads described in [21]. The method
aims at solving larger problems than the scalar version of Nomad. While Nomad is in general
efficient on problems for problems up to ' 20 variables, Psd-Mads has solved problems up to 500
variables.

In Psd-Mads, each slave process has the responsibility for a small number of variables on
which a Mads algorithm is performed. These subproblems are decided by the master process. In
the program given in the Nomad package, as in the original paper, these groups of variables are
chosen randomly, without any specific strategy. Concerning other aspects, the program given here
is a simplified version of the one used for the SIOPT article. A cache server is also used as in
Coop-Mads to forbid double evaluations. A special slave, called the pollster, works on all the
variables, but with a reduced number of directions. The pollster ensures the convergence of the
algorithm.

Psd-Mads must be compiled exactly as Coop-Mads, with the available makefile, and it exe-
cutes with the command:

mpirun -np p $NOMAD_HOME/tools/PSD-MADS/psdmads param.txt bbe ns

where bbe is the maximal number of evaluations performed by each slave and ns is the number of
variables considered by the slaves. So far, tests suggested that small values for these two parameters
lead to good performance. In [21] and [40], bbe=10 and ns=2 are considered. The suggested strategy
for np consists in setting it to the number of processors plus two (master and cache server are not
demanding).

Future research include the design of evolved strategies in order to choose smart groups of
variables on which slaves focus.

7 Release notes

7.1 Version 3.4

This new version implements parallelism with the Message Passing Interface (MPI [52]). Three
parallel versions are described in Section 6.5. Two minor revisions (3.4.1 and 3.4.2) have been
released since the version 3.4.0 (see 7.1.3).

7.1.1 Major changes

• Parallelism: Three parallel algorithms are now available. See Section 6.5 for details.

• All Nomad types and classes are now included in the namespace NOMAD. Consequently enu-
meration types and constants have their names changed from X to NOMAD::X.

• A documentation has been constructed in the HTML format with the doxygen documentation
generator. It is available from the Nomad website at www.gerad.ca/nomad/doxygen/html.

• Nomad is now distributed under the GNU Lesser General Public License (LGPL). The license
can be found as a text file in the src directory or at www.gnu.org/licenses.

40

http://www.doxygen.org
http://www.gerad.ca/nomad
http://www.gerad.ca/nomad/doxygen/html
http://www.gnu.org/licenses

7.1.2 Minor changes

• The installation under Mac OS X has been modified. It is no more an installation program
but rather a disk image (.dmg). The installation script for X systems has also been improved.

• The program displays have been simplified. See Section 5.3.

• A new parameter SCALING allowing the scaling of the variables. See Section 5.4.11.

• A new search based on the cache has been developed. This search is performed by the Coop-
Mads method described in Section 6.5.2. The new associated parameters are CACHE SEARCH
and OPPORTUNISTIC CACHE SEARCH.

• A starting point file can now describe several starting points.

• The default value of the parameter SEED has been modified from 0 to NONE.

• In library mode, calls to the user-defined function eval x() are now included into a try block.
See Section 4.1 for precisions.

• Prototype for the user-defined function NOMAD::Evaluator::update iteration() has been
modified and now allows the user to stop the algorithm.

• The examples directory has been reorganized and the tools directory has been added.

• Most of the examples may be executed in parallel.

• Compatibility with the AMPL [41] format. See Section 2.4.

7.1.3 Specific changes for versions 3.4.1 and 3.4.2

• Tool for sensitivity analysis (see Section 6.3).

• Output display formats of real values (see Section 5.4.7).

• Better behavior with integer variables.

• New parameters UNDEF STR and INF STR (characters for undefined values and infinity, see
Section 5.3.2).

• Bug corrections.

7.1.4 List of modified classes or methods

• New classes NOMAD::Slave and NOMAD::Display.

• New method for computing Halton seeds: NOMAD::Directions::compute halton seed().

• New convenient way of computing mesh and poll sizes with NOMAD::Mesh::get delta m()
and NOMAD::Mesh::get delta p().

• Prototypes of methods add eval point() and eval list of points() from the class NOMAD
::Evaluator Control have changed.

41

• New functions NOMAD::begin() and NOMAD::end() that must be called at the beginning and
at the end of programs using the Nomad library. The new NOMAD::Slave::stop slaves()
method must also be called at the end of a program calling the parallel Nomad library.

• NOMAD::Search objects no longer need a NOMAD::Evaluator Control object during their
construction. Instead, use mads.get evaluator control() with the mads argument given to
NOMAD::Search::search().

• NOMAD::Evaluator::get p() has been removed and replaced by the protected member NOMAD
::Evaluator:: p().

7.1.5 List of main changes for programs using the Nomad library

This list summarizes the main changes for a program linking with the previous versions of the
Nomad library to work with the new version. Some other minor changes may also be necessary.
For example, some prototypes of the functions described in Section 4.3.1 may have changed. We
refer the user to the numerous examples illustrating these changes in the examples directory.

• Add the statement ‘using namespace NOMAD;’ or use ‘NOMAD::’ in front of all the Nomad
types. Change the constants or enumeration types from ‘ X ’ to ‘NOMAD::X’. For example, if
you described the objective output with ‘ OBJ ’, then change it to ‘NOMAD::OBJ’ or to ‘OBJ’
if you added ‘using namespace NOMAD;’.

• Declare a NOMAD::Display object for the displays. This object is provided only to the
NOMAD::Parameters constructor, and no more to the other Nomad main classes such as
NOMAD::Mads, NOMAD::Evaluator, or NOMAD::Search.

• Change the main function prototype from ‘int main (void)’ to ‘int main (int argc,
char** argv)’.

• Add the NOMAD::begin() and NOMAD::end() functions. Add also NOMAD::Slaves::stop sla-
ves() at the end of the program if it uses the parallel library.

7.2 Previous versions

7.2.1 Version 3.3

• Handling of categorical variables for mixed variable problems (MVP). See Section 6.1.

7.2.2 Version 3.2

• Variable Neighborhood Search (VNS) described in Section 6.4.

• Installers for X systems.

• Help on parameters included in the executable: the command ‘nomad -h keyword’ dis-
plays help on the parameters related to keyword. Typing only ‘nomad -h’ or ‘nomad -help’
displays all the available help: a complete description of all parameters. Also, ‘nomad -i’
or‘nomad -info’ displays information on the current release, and ‘nomad -v’ displays the
current version.

42

7.2.3 Version 3.1

• Biobjective optimization: see Section 6.2.

• Periodic variables: if some variable are periodic, this may be indicated via parameter
PERIODIC VARIABLE. Bounds must be defined for these variables. The Mads algorithm
adapted to periodic variables is described in [24].

• Groups of variables can be defined with the parameter VARIABLE GROUP. At every Mads
poll, different directions will be generated for each group. For example, for a location problem,
if groups correspond to spatial objects, these will be moved one at a time.

7.3 Future versions

Future algorithm developments include:

• Adaptive surrogates and use of the surrogate management framework [31].

• Multi-Mads: multi-objective variant of Mads [26], with 3 and more objective functions.

• Use of simplex gradients [34, 35].

Acknowledgments

The developers of Nomad wish to thank Florian Chambon, Mohamed Sylla and Quentin Reynaud,
all from ISIMA, for their contribution to the project during Summer internships, and to Anthony
Guillou and Dominique Orban for their help with configure and AMPL, and their suggestions.
Thanks also to Annie Angers, Maud Bay, Eve Bélisle, Vincent Garnier, Michal Kvasnicka, Alexan-
der Lutz, Rosa-Maria Torres-Calderon, Christophe Tribes, and an anonymous user for their tests,
feedback, and various help. Finally, many thanks to the TOMS anonymous referees for their useful
comments which helped a lot to improve the code and the text of [38].

Related publications

[1] M. A. Abramson. Mixed variable optimization of a load-bearing thermal insulation system
using a filter pattern search algorithm. Optimization and Engineering, 5(2):157–177, 2004.

[2] M. A. Abramson. Second-order behavior of pattern search. SIAM Journal on Optimization,
16(2):315–330, 2005.

[3] M. A. Abramson and C. Audet. Convergence of mesh adaptive direct search to second-order
stationary points. SIAM Journal on Optimization, 17(2):606–619, 2006.

[4] M. A. Abramson, C. Audet, G. Couture, J. E. Dennis, Jr., and S. Le Digabel. The NOMAD
project. Software available at http://www.gerad.ca/nomad.

[5] M. A. Abramson, C. Audet, and J. E. Dennis, Jr. Generalized pattern searches with derivative
information. Mathematical Programming, Series B, 100:3–25, 2004.

[6] M. A. Abramson, C. Audet, J. E. Dennis, Jr., and S. Le Digabel. OrthoMADS: A deterministic
MADS instance with orthogonal directions. SIAM Journal on Optimization, 20(2):948–966,
2009.

43

http://www.isima.fr
http://www.gerad.ca/nomad

[7] M. A. Abramson, O. A. Brezhneva, J. E. Dennis Jr., and R. L. Pingel. Pattern search in the
presence of degenerate linear constraints. Optimization Methods and Software, 23(3):297–319,
2008.

[8] M.A. Abramson, C. Audet, J.W. Chrissis, and J.G. Walston. Mesh adaptive direct search
algorithms for mixed variable optimization. Optimization Letters, 3(1):35–47, January 2009.

[9] M.A. Abramson, C. Audet, and J. E. Dennis, Jr. Filter pattern search algorithms for mixed
variable constrained optimization problems. Pacific Journal on Optimization, 3(3):477–500,
2007.

[10] C. Audet. Convergence Results for Pattern Search Algorithms are Tight. Optimization and
Engineering, 5(2):101–122, 2004.

[11] C. Audet, V. Béchard, and J. Chaouki. Spent potliner treatment process optimization using a
MADS algorithm. Optimization and Engineering, 9(2):143–160, 2007.

[12] C. Audet, V. Béchard, and S. Le Digabel. Nonsmooth optimization through mesh adaptive
direct search and variable neighborhood search. Journal of Global Optimization, 41(2):299–318,
June 2008.

[13] C. Audet, A. J. Booker, J. E. Dennis, Jr., P. D. Frank, and D. W. Moore. A surrogate-model-
based method for constrained optimization. Presented at the 8th AIAA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization, 2000.

[14] C. Audet, A. L. Custódio, and J. E. Dennis, Jr. Erratum: Mesh adaptive direct search algo-
rithms for constrained optimization. SIAM Journal on Optimization, 18(4):1501–1503, 2008.

[15] C. Audet and J. E. Dennis, Jr. Pattern search algorithms for mixed variable programming.
SIAM Journal on Optimization, 11(3):573–594, 2000.

[16] C. Audet and J. E. Dennis, Jr. Analysis of generalized pattern searches. SIAM Journal on
Optimization, 13(3):889–903, 2003.

[17] C. Audet and J. E. Dennis, Jr. A pattern Search Filter Method for Nonlinear Programming
without Derivatives. SIAM Journal on Optimization, 14(4):980–1010, 2004.

[18] C. Audet and J. E. Dennis, Jr. Mesh adaptive direct search algorithms for constrained opti-
mization. SIAM Journal on Optimization, 17(1):188–217, 2006.

[19] C. Audet and J. E. Dennis, Jr. Nonlinear programming by mesh adaptive direct searches.
SIAG/Optimization Views-and-News, 17(1):2–11, 2006.

[20] C. Audet and J. E. Dennis, Jr. A Progressive Barrier for Derivative-Free Nonlinear Program-
ming. SIAM Journal on Optimization, 20(4):445–472, 2009.

[21] C. Audet, J. E. Dennis, Jr., and S. Le Digabel. Parallel space decomposition of the mesh
adaptive direct search algorithm. SIAM Journal on Optimization, 19(3):1150–1170, 2008.

[22] C. Audet, J. E. Dennis, Jr., and S. Le Digabel. Globalization strategies for mesh adaptive
direct search. Computational Optimization and Applications, 46(2):193–215, June 2010.

[23] C. Audet, J. E. Dennis, Jr., and S. Le Digabel. Sensitivity to constraints in blackbox optimiza-
tion. Technical Report G-2010-NA, Les cahiers du GERAD, 2010.

44

[24] C. Audet and S. Le Digabel. The mesh adaptive direct search algorithm for periodic variables.
Technical Report G-2009-23, Les cahiers du GERAD, 2009.

[25] C. Audet and D. Orban. Finding optimal algorithmic parameters using derivative-free opti-
mization. SIAM Journal on Optimization, 17(3):642–664, 2006.

[26] C. Audet, G. Savard, and W. Zghal. Multiobjective optimization through a series of single-
objective formulations. SIAM Journal on Optimization, 19(1):188–210, 2008.

[27] C. Audet, G. Savard, and W. Zghal. A mesh adaptive direct search algorithm for multiobjective
optimization. European Journal of Operational Research, 204(3):545–556, 2010.

[28] A. J. Booker, E. J. Cramer, P. D. Frank, J. M. Gablonsky, and J. E. Dennis, Jr. Movars: Mul-
tidisciplinary optimization via adaptive response surfaces. AIAA Paper 2007–1927, Presented
at the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, Honolulu, 2007.

[29] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. W. Moore, and D. B. Serafini. Managing
surrogate objectives to optimize a helicopter rotor design – further experiments. AIAA Paper
1998–4717, Presented at the 8th AIAA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, St. Louis, 1998.

[30] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, and V. Torczon. Optimization
using surrogate objectives on a helicopter test example. In J. Borggaard, J. Burns, E. Cliff,
and S. Schreck, editors, Optimal Design and Control, Progress in Systems and Control Theory,
pages 49–58, Cambridge, Massachusetts, 1998. Birkhäuser.

[31] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Tros-
set. A rigorous framework for optimization of expensive functions by surrogates. Structural
Optimization, 17(1):1–13, February 1999.

[32] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A Users’ Guide. The Scientific Press,
Danvers, Massachusetts, 1988.

[33] E. J. Cramer, J. E. Dennis, Jr., P. D. Frank, R. M. Lewis, and G. R. Shubin. Problem for-
mulation for multidisciplinary optimization. In AIAA Symposium on Multidisciplinary Design
Optimization, September 1993.

[34] A. L. Custódio, J. E. Dennis, Jr., and L. N. Vicente. Using simplex gradients of nonsmooth
functions in direct search methods. IMA Journal of Numerical Analysis, 28(4):770–784, 2008.

[35] A. L. Custódio and L. N. Vicente. Using sampling and simplex derivatives in pattern search
methods. SIAM Journal on Optimization, 18(2):537–555, May 2007.

[36] J. E. Dennis, Jr., C. J. Price, and I. D. Coope. Direct search methods for nonlinearly constrained
optimization using filters and frames. Optimization and Engineering, 5(2):123–144, June 2004.

[37] J. E. Dennis, Jr. and V. Torczon. Direct search methods on parallel machines. SIAM Journal
on Optimization, 1(4):448–474, November 1991.

[38] S. Le Digabel. NOMAD: Nonlinear optimization with the MADS algorithm. Technical Report
G-2009-39, Les cahiers du GERAD, 2009.

45

[39] S. Le Digabel. NOMAD user guide. Technical Report G-2009-37, Les cahiers du GERAD,
2009.

[40] S. Le Digabel, M.A. Abramson, C. Audet, and J. E. Dennis, Jr. Parallel versions of the MADS
algorithm for black-box optimization. In Optimization days, Montreal, May 2010. Slides
available at www.gerad.ca/Sebastien.Le.Digabel/talks/2010 JOPT 25mins.pdf.

[41] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical
Programming. Thomson/Brooks/Cole, Pacific Grove, California, second edition, 2003.

[42] K.R. Fowler, J.P. Reese, C.E. Kees, J.E. Dennis Jr., C.T. Kelley, C.T. Miller, C. Audet, A.J.
Booker, G. Couture, R.W. Darwin, M.W. Farthing, D.E. Finkel, J.M. Gablonsky, G. Gray, and
T.G. Kolda. Comparison of derivative-free optimization methods for groundwater supply and
hydraulic capture community problems. Advances in Water Resources, 31(5):743–757, May
2008.

[43] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr (and SifDec): a constrained and un-
constrained testing environment, revisited. ACM Transactions on Mathematical Software,
29(4):373–394, 2003.

[44] R. E. Hayes, F. H. Bertrand, C. Audet, and S. T. Kolaczkowski. Catalytic combustion kinetics:
Using a direct search algorithm to evaluate kinetic parameters from light-off curves. The
Canadian Journal of Chemical Engineering, 81(6):1192–1199, 2003.

[45] M. Kokkolaras, C. Audet, and J. E. Dennis, Jr. Mixed variable optimization of the number and
composition of heat intercepts in a thermal insulation system. Optimization and Engineering,
2(1):5–29, 2001.

[46] A. L. Marsden, M. Wang, J. E. Dennis, Jr., and P. Moin. Optimal aeroacoustic shape design
using the surrogate management framework. Optimization and Engineering, 5(2):235–262,
2004.

[47] A. L. Marsden, M. Wang, J. E. Dennis, Jr., and P. Moin. Suppression of airfoil vortex-shedding
noise via derivative-free optimization. Physics of Fluids, 16(10):L83–L86, 2004.

[48] A. L. Marsden, M. Wang, J. E. Dennis, Jr., and P. Moin. Trailing-edge noise reduction using
derivative-free optimization and large-eddy simulation. Journal of Fluid Mechanics, 572:13–36,
February 2007.

[49] N. Mladenović and P. Hansen. Variable neighborhood search. Computers and Operations
Research, 24(11):1097–1100, 1997.

[50] P. Hansen N. Mladenović. Variable neighborhood search: principles and applications. European
Journal of Operational Research, 130(3):449–467, 2001.

[51] M. S. Ouali, H. Aoudjit, and C. Audet. Optimisation des stratégies de maintenance. Journal
Européen des Systèmes Automatisés, 37(5):587–605, 2003.

[52] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI: The Complete
Reference. The MIT Press, Cambridge, Massachusetts, 1995.

[53] T. A. Sriver, J. W. Chrissis, and M. A. Abramson. Pattern search ranking and selection
algorithms for mixed variable stochastic optimization, 2004. Preprint.

46

	Table of contents
	Introduction
	Installation and examples
	Installation procedure
	Setting environment variables
	Manual compilation of the code
	X systems: Linux, Unix, and Mac OS X
	Windows with minGW
	Windows with Visual C++

	Examples
	Advanced examples
	Interface examples

	NOMAD batch mode
	Creation of a basic parameters file
	Basic instructions on blackbox programs

	NOMAD library mode
	Definition of the problem
	The main function
	Parameters
	Evaluator declaration and algorithm run
	Access to the solution and to optimization data

	Other functionalities of the library mode
	Automatic calls to user-defined functions
	Create groups of variables
	Multiple runs

	Parameters description
	Parameters describing the problem
	Basic
	Advanced

	Algorithmic parameters
	Basic
	Advanced

	Output parameters
	Basic
	Advanced

	Additional information for some parameters
	Executable parameters BB_EXE and SGTE_EXE
	Blackbox input parameter BB_INPUT_TYPE
	Blackbox output parameter BB_OUTPUT_TYPE
	Blackbox redirection parameter BB_REDIRECTION
	Bounds
	Direction types
	Output parameters DISPLAY_STATS and STATS_FILE
	Fixed variables parameter FIXED_VARIABLE
	Mesh and poll size parameters
	Opportunistic strategy
	Scaling parameter SCALING
	Temporary directory parameter TMP_DIR
	Group of variable parameter VARIABLE_GROUP
	Starting point parameter X0

	Special functionalities
	Categorical variables
	Algorithm
	Categorical variables with NOMAD

	Biobjective optimization
	Sensitivity analysis
	Variable Neighborhood Search (VNS)
	Parallel versions
	The p-Mads method
	The Coop-MADS method
	The PSD-MADS method

	Release notes
	Version 3.4
	Major changes
	Minor changes
	Specific changes for versions 3.4.1 and 3.4.2
	List of modified classes or methods
	List of main changes for programs using the NOMAD library

	Previous versions
	Version 3.3
	Version 3.2
	Version 3.1

	Future versions

	Related publications

