C ALGORITHM 741, COLLECTED ALGORITHMS FROM ACM. C THIS WORK PUBLISHED IN TRANSACTIONS ON MATHEMATICAL SOFTWARE, C VOL. 21, NO. 1, MARCH, 1995, P. 20-25. C c*** bbqr.f * Least Squares Solution of a * Linear, Bordered, Block-diagonal System of Equations * * This package of 6 subroutines solves by least squares an overdeter- * mined, full-rank, single-bordered, block-diagonal system of equations. * The system is solved in a sequential fashion, using a series of * orthogonal transformations in the form of Householder reflections. * For this documentation to make sense, the user must understand how * the terms "global" and "local" are used, for which see the * accompanying paper. A brief summary of the 6 routines follows: * * BBINIT - initializes the system. * BBQR - the primary decomposition routine. It is called at least * once for each local set and generates the R matrix in * the QR decomposition of the design matrix. * BBSLVG - uses the R matrix to solve for the global solution vector. * BBSLVL - uses the R matrix to solve for one local vector per call. * BBCOVG - uses R to compute the global covariance matrix. * BBCOVL - uses R to compute the local and local-global covariances. * * These routines are generally called in the order listed. * * The routines make heavy use of the BLAS packages and require the * following routines: * * Level 1 BLAS: SCOPY, SASUM, SNRM2, SDOT, SAXPY * Level 2 BLAS: SGEMV, SGER, STRMV * Level 3 BLAS: SGEMM, SSYMM, STRMM, STRSM * LAPACK: SLARFG, STRTRI, SLAPY2, XERBLA * * LAPACK (indirect calls): ILAENV, SLAMCH, STRTI2, LSAME * * Written by: R. Ray Sept. 1992 * * SUBROUTINE BBINIT( NG, NRHS, RG, LRG, RMS ) * * Function - initializes system by zeroing global part of R matrix. * * Arguments - * * NG (input) INTEGER * Number of global parameters, and the order of the RG matrix. * (If NG is not known exactly at the beginning of processing, * then this number should be the largest number expected.) * * NRHS (input) INTEGER * The number of right-hand-side vectors in this problem. * * RG (output) REAL array, dimension (LRG,NG) * The global part of the R matrix. It is triangular and its * strictly lower triangle is never accessed. * * LRG (input) INTEGER * First dimension of RG in the calling program. * Must be >= NG. * * RMS (output) REAL array, dimension NRHS * Will contain the least-squares rms residuals, is initialized * to zero by this routine. * INTEGER NG, NRHS, LRG REAL RG(LRG,*), RMS(*), ZERO PARAMETER (ZERO=0.0) INTEGER I, J * * check size of LRG * ----------------- IF (NG.GT.LRG) THEN CALL XERBLA( 'BBINIT', 4 ) RETURN ENDIF * zero out RG and RMS * ------------------- DO 100 J=1,NG DO 100 I=1,J RG(I,J) = ZERO 100 CONTINUE DO 200 J=1,NRHS RMS(J) = ZERO 200 CONTINUE RETURN END *======================================================================= SUBROUTINE BBQR( NG,NL,NRHS, ! <-- problem size * NROWS,AG,LAG,AL,LAL,Y,LY, ! <-- design matrix * RL,LRL,RG,LRG,T,LT,CL,LCL,CG,LCG, ! <-- R matrix * WORK,RMS,NEWSET ) ! <-- miscellaneous * * Function - process NROWS of the design matrix to compute or update * the QR decomposition for a particular local set. * Must be called at least once for each local set. * * Arguments - * * NG (input) INTEGER * Number of global parameters; the order of the RG matrix. * * NL (input) INTEGER * Number of local parameters in the current set; the order * of the RL matrix. * * NRHS (input) INTEGER * The number of right-hand-side vectors in this problem. * * NROWS (input) INTEGER * Number of rows of AG and AL to process during this call. * * AG (input/output) REAL array, dimension (LAG,NROWS) * Rectangular submatrix of global parameter partials, stored * by rows. On exit, the data are destroyed. * * LAG (input) INTEGER * First dimension of AG in calling program. Must be >= NG. * * AL (input/output) REAL array, dimension (LAL,NROWS) * Submatrix of local parameter partials, stored by rows, for * use in computing R. On exit, the data are destroyed. * * LAL (input) INTEGER * First dimension of AL in calling program. Must be >= NL. * * Y (input/output) REAL array, dimension (LY,NRHS) * Right-hand-side vectors containing the observations for use * in computing CG and CL. On exit, the data are destroyed. * * LY (input) INTEGER * First dimension of Y in calling program. Must be >= NROWS. * * RL (input/output) REAL array, dimension (LRL,NL) * Triangular part of the local R matrix for the current set of * local parameters. Its strictly lower triangle is not used. * It is initialized to zero if NEWSET = TRUE. * * LRL (input) INTEGER * First dimension of RL in calling program. Must be >= NL. * * RG (input/output) REAL array, dimension (LRG,NG) * The global part of the R matrix. It is upper triangular; * its strictly lower triangle is not accessed. * * LRG (input) INTEGER * First dimension of RG in calling program. Must be >= NG. * * T (input/output) REAL array, dimension (LT,NG). * NL x NG array containing the border block of R for the * current local set. Is initialized to zero if NEWSET = TRUE. * * LT (input) INTEGER * First dimension of T in calling program. Must be >= NL. * * CL (input/output) REAL array, dimension (NCL,NRHS) * Right-hand-side vectors of decomposed observation vectors, * for the current set of local parameters. * * LCL (input) INTEGER * First dimension of CL in calling program. Must be >= NL. * * CG (input/output) REAL array, dimension (NCG,NRHS) * Right-hand-side vectors of decomposed global vectors. * * LCG (input) INTEGER * First dimension of CG in calling program. Must be >= NG. * * WORK (workspace) REAL array, minimum size 2*(NL + NG). * * RMS (input/output) REAL array, dimension NRHS * Contains the least-squares rms residuals according to * the observation equations already processed. * * NEWSET (input) LOGICAL * Logical flag set to .FALSE. if this call is to process * observations from a local set previously used, in which * case, RL and T are updated; otherwise RL & T are initialized. * I.e., NEWSET = .TRUE. if the rows of AL are coming from a * diagonal block not previously accessed. * * Usage note - * Usually, the arrays RG,RL,T,CG,CL are not modified by the driver, * but RL,T,CL must be saved for each local set if routines BBSLVL or * BBCOVL are to be called later. * INTEGER NG, NL, NRHS, NROWS, LAG, LAL, LY INTEGER LRL, LRG, LT, LCL, LCG REAL AG(LAG,*), AL(LAL,*), Y(LY,*) REAL RL(LRL,*), RG(LRG,*), T(LT,*), CL(LCL,*), CG(LCG,*) REAL WORK(*), RMS(*) LOGICAL NEWSET * REAL ZERO, ONE, TAU, Q11, TEMP, FACT INTEGER I, J, NN, JR, NR, IT, IR, IW PARAMETER (ZERO=0.0, ONE=1.0) REAL SASUM, SDOT, SNRM2, SLAPY2 EXTERNAL SASUM, SDOT, SNRM2, SLAPY2 * * If these data are for a new set of local parms, zero RL & T * ----------------------------------------------------------- IF (NEWSET) THEN DO 30 J=1,NL DO 10 I=1,J RL(I,J) = ZERO 10 CONTINUE DO 20 I=1,NG T(J,I) = ZERO 20 CONTINUE 30 CONTINUE ENDIF * * Eliminate AL one column at a time * --------------------------------- JR = 1 NR = NROWS DO 50 J=1,NL NN = NL - J + 1 IF (RL(J,J).EQ.ZERO) THEN * * If Jth row of RL is empty, fill it * ---------------------------------- IF ( SASUM(NN,RL(J,J),LRL).EQ.ZERO .AND. * SASUM(NG,T(J,1),LT).EQ.ZERO ) THEN CALL SCOPY( NN, AL(J,JR), 1, RL(J,J), LRL ) CALL SCOPY( NG, AG(1,JR), 1, T(J,1), LT ) CALL SCOPY( NRHS, Y(JR,1), LY, CL(J,1), LCL ) NR = NR - 1 JR = JR + 1 IF (NR.EQ.0) RETURN ENDIF ENDIF * * Determine Householder vector to eliminate Jth column of AL * ---------------------------------------------------------- CALL SLARFG( NR+1, RL(J,J), AL(J,JR), LAL, TAU ) IF (TAU.EQ.ZERO) GO TO 50 Q11 = ONE - TAU * Update RL, T, CL, & remainder of AL * ----------------------------------- IT = 1 IR = IT + NG IW = IR + NN - 1 CALL SCOPY( NG, T(J,1), LT, WORK(IT), 1 ) IF (J.LT.NL) THEN CALL SCOPY( NN-1, RL(J,J+1), LRL, WORK(IR), 1 ) * * Update Jth row of RL * -------------------- CALL SGEMV( 'N', NN-1, NR, -TAU, AL(J+1,JR), LAL, * AL(J,JR), LAL, Q11, RL(J,J+1), LRL ) * * Update remaining columns of AL * ------------------------------ CALL SGEMV( 'N', NN-1, NR, ONE, AL(J+1,JR), LAL, * AL(J,JR), LAL, ZERO, WORK(IW), 1 ) CALL SGER( NN-1, NR, -TAU, WORK(IW), 1, * AL(J,JR), LAL, AL(J+1,JR), LAL ) CALL SGER( NN-1, NR, -TAU, WORK(IR), 1, * AL(J,JR), LAL, AL(J+1,JR), LAL ) ENDIF * * Update Jth row of T * ------------------- CALL SGEMV( 'N', NG, NR, -TAU, AG(1,JR), LAG, * AL(J,JR), LAL, Q11, T(J,1), LT ) * * Update AG * --------- CALL SGEMV( 'N', NG, NR, ONE, AG(1,JR), LAG, * AL(J,JR), LAL, ZERO, WORK(IW), 1 ) CALL SGER( NG, NR, -TAU, WORK(IW), 1, * AL(J,JR), LAL, AG(1,JR), LAG ) CALL SGER( NG, NR, -TAU, WORK(IT), 1, * AL(J,JR), LAL, AG(1,JR), LAG ) * * Update right-hand-side vectors * ------------------------------ DO 40 I=1,NRHS TEMP = SDOT( NR, AL(J,JR), LAL, Y(JR,I), 1 ) FACT = -TAU*(CL(J,I) + TEMP) CL(J,I) = Q11*CL(J,I) - TAU*TEMP CALL SAXPY( NR, FACT, AL(J,JR), LAL, Y(JR,I), 1 ) 40 CONTINUE 50 CONTINUE * * Eliminate AG one column at a time * --------------------------------- DO 70 J=1,NG NN = NG - J + 1 IF (RG(J,J).EQ.ZERO) THEN * * If Jth row of RG is empty, fill it * ---------------------------------- IF ( SASUM(NN,RG(J,J),LRG).EQ.ZERO ) THEN CALL SCOPY( NN, AG(J,JR), 1, RG(J,J), LRG ) CALL SCOPY( NRHS, Y(JR,1), LY, CG(J,1), LCG ) NR = NR - 1 JR = JR + 1 IF (NR.EQ.0) RETURN ENDIF ENDIF * * Determine Householder vector to eliminate Jth column of AG * ---------------------------------------------------------- CALL SLARFG( NR+1, RG(J,J), AG(J,JR), LAG, TAU ) IF (TAU.EQ.ZERO) GO TO 70 Q11 = ONE - TAU * * Update RG & remainder of AL * --------------------------- IF (J.LT.NG) THEN IR = 1 IW = IR + NN - 1 CALL SCOPY( NN-1, RG(J,J+1), LRG, WORK(IR), 1 ) * * Update Jth row of RG * -------------------- CALL SGEMV( 'N', NN-1, NR, -TAU, AG(J+1,JR), LAG, * AG(J,JR), LAG, Q11, RG(J,J+1), LRG ) * * Update remaining columns of AG * ------------------------------ CALL SGEMV( 'N', NN-1, NR, ONE, AG(J+1,JR), LAG, * AG(J,JR), LAG, ZERO, WORK(IW), 1 ) CALL SGER( NN-1, NR, -TAU, WORK(IW), 1, * AG(J,JR), LAG, AG(J+1,JR), LAG ) CALL SGER( NN-1, NR, -TAU, WORK(IR), 1, * AG(J,JR), LAG, AG(J+1,JR), LAG ) ENDIF * * Update right-hand-side vectors * ------------------------------ DO 60 I=1,NRHS TEMP = SDOT( NR, AG(J,JR), LAG, Y(JR,I), 1 ) FACT = -TAU*(CG(J,I) + TEMP) CG(J,I) = Q11*CG(J,I) - TAU*TEMP CALL SAXPY( NR, FACT, AG(J,JR), LAG, Y(JR,I), 1 ) 60 CONTINUE 70 CONTINUE * * Update rms of residuals * ----------------------- DO 80 I=1,NRHS TEMP = SNRM2( NR, Y(JR,I), 1 ) RMS(I) = SLAPY2( RMS(I), TEMP ) 80 CONTINUE RETURN END *======================================================================= SUBROUTINE BBSLVG( NG, NRHS, RG, LRG, CG, LCG, INFO ) * * Function - solves for the global parameters after decomposition * has been completed. * * Arguments - * * NG (input) INTEGER * Number of global parameters, and the order of the RG matrix. * * NRHS (input) INTEGER * The number of right-hand-side vectors in this problem. * * RG (input) REAL array, dimension (LRG,NG) * The global part of the triangular R matrix as output by BBQR. * * LRG (input) INTEGER * First dimension of RG in the calling program. * * CG (input/output) REAL array, dimension (LCG,NRHS) * On entry, contains the right-hand-side vectors of the * global part of the decomposed design matrix. * On exit, contains the NRHS solution vectors for the * global parameters. * * LCG (input) INTEGER * First dimension of CG in calling program. Must be >= NG. * * INFO (output) INTEGER * Error flag; 0 denotes successful exit. * If > 0, a zero was detected along the diagonal of RG. * The matrix is singular and no solution is computed. * If < 0, an error was detected in the calling arguments. * * INTEGER LRG, LCG, NG, NRHS, INFO REAL RG(LRG,*), CG(LCG,*) REAL ZERO, ONE PARAMETER (ZERO=0.0, ONE=1.0) INTEGER I * * Check some of the arguments * --------------------------- INFO = 0 IF (NG.GT.LRG) THEN INFO = -4 ELSE IF (NG.GT.LCG) THEN INFO = -6 ENDIF IF (INFO.NE.0) THEN CALL XERBLA( 'BBSLVG', -INFO ) RETURN ENDIF * * Check that RG matrix is not singular * ------------------------------------ DO 10 I=1,NG IF (RG(I,I).EQ.ZERO) THEN INFO = I RETURN ENDIF 10 CONTINUE * * Compute solutions via level-3 BLAS routine * ------------------------------------------ IF (NRHS.LT.1) RETURN CALL STRSM( 'L', 'U', 'N', 'N', NG, NRHS, ONE, RG, LRG, * CG, LCG ) * RETURN END *======================================================================= SUBROUTINE BBSLVL( NG ,NL, NRHS, RL, LRL, T, LT, * CL, LCL, XG, LXG, INFO ) * * Function - solves for the local parameters for one local set. * * Arguments - * * NG (input) INTEGER * Number of global parameters; the order of the RG matrix. * * NL (input) INTEGER * Number of local parameters in this set; the order of RL. * * NRHS (input) INTEGER * The number of right-hand-side vectors in this problem. * * RL (input) REAL array, dimension (LRL,NL) * The local part of the triangular R matrix for one set of * local parameters, as output by BBQR. * * LRL (input) INTEGER * First dimension of RL in calling program. Must be >= NL. * * T (input) REAL array, dimension (LT,NG) * Contains one border block in the R matrix, corresponding to * the current set of local parameters, as output by BBQR. * * LT (input) INTEGER * First dimension of T in calling program. Must be >= NL. * * CL (input/output) REAL array, dimension (LCL,NRHS) * On entry, contains the right-hand-side vectors of one * local part of the decomposed observation equations. * On exit, contains the NRHS solution vectors for the * current local parameters. * * LCL (input) INTEGER * First dimension of CL in calling program. Must be >= NL. * * XG (input) REAL array, dimension (LXG,NRHS) * Contains the global solution vectors, as returned by BBSLVG. * * LXG (input) INTEGER * First dimension of XG in calling program. Must be >= NG. * * INFO (output) INTEGER * Error flag; 0 denotes successful exit. * If > 0, a zero was detected along the diagonal of RL. * The matrix is singular and no solution was computed. * If < 0, an error was detected in the calling arguments. * * INTEGER NG, NL, NRHS, LRL, LT, LCL, LXG, INFO REAL RL(LRL,*), T(LT,*), CL(LCL,*), XG(LXG,*) REAL ZERO, ONE PARAMETER (ZERO=0.0, ONE=1.0) INTEGER I * * Check some of the arguments * --------------------------- INFO = 0 IF (NL.GT.LRL) THEN INFO = -5 ELSE IF (NL.GT.LT) THEN INFO = -7 ELSE IF (NL.GT.LCL) THEN INFO = -9 ELSE IF (NG.GT.LXG) THEN INFO = -11 ENDIF IF (INFO.NE.0) THEN CALL XERBLA( 'BBSLVG', -INFO ) RETURN ENDIF * * Check that RL matrix is not singular * ------------------------------------ IF (NL.EQ.0) RETURN DO 10 I=1,NL IF (RL(I,I).EQ.ZERO) THEN INFO = I RETURN ENDIF 10 CONTINUE * * Subtract T*XG from CL * --------------------- CALL SGEMM( 'N', 'N', NL, NRHS, NG, -ONE, T, LT, XG, LXG, * ONE, CL, LCL ) * * Solve RL*XL = CL by back substitution * ------------------------------------- CALL STRSM( 'L', 'U', 'N', 'N', NL, NRHS, ONE, RL, LRL, * CL, LCL ) * RETURN END *======================================================================= SUBROUTINE BBCOVG( NG, RG, LRG, WORK, INFO ) * * Function - computes the global covariance matrix. * * Arguments - * * NG (input) INTEGER * Number of global parameters; the order of the RG matrix. * * RG (input/output) REAL array, dimension (LRG,NG) * On entry, RG contains the global part of the R matrix. * On exit, it contains the upper triangle of the symmetric * covariance matrix for the global parameters. * The strictly lower triangle of RG is never accessed. * * LRG (input) INTEGER * First dimension of RG in the calling program. * * WORK (workspace) REAL array, minimum size NG. * * INFO (output) INTEGER * Error flag; 0 denotes successful exit. * If > 0, a zero was detected along the diagonal of RG. * The matrix is singular and no covariance is computed. * If < 0, an error was detected in the calling arguments. * INTEGER NG, LRG, INFO REAL RG(LRG,*), WORK(*) INTEGER I, NN * * Compute inverse of RG * --------------------- CALL STRTRI( 'U', 'N', NG, RG, LRG, INFO ) IF (INFO.NE.0) RETURN * * Compute inverse times its transpose * ----------------------------------- DO 100 I=1,NG NN = NG - I + 1 CALL SCOPY( NN, RG(I,I), LRG, WORK, 1 ) CALL STRMV( 'U', 'N', 'N', NN, RG(I,I), LRG, WORK, 1 ) CALL SCOPY( NN, WORK, 1, RG(I,I), LRG ) 100 CONTINUE * RETURN END *======================================================================= SUBROUTINE BBCOVL( NG, NL, RL, LRL, T, LT, CVG, LCVG, WORK, INFO ) * * Function - computes the local and local-global covariances for one * local set. * * Arguments - * * NG (input) INTEGER * Number of global parameters, and the order of the RG matrix. * * NL (input) INTEGER * Number of local parameters in this set; the order of RL. * * RL (input/output) REAL array, dimension (LRL,NL) * On entry, contains the upper triangular local-parameter * part of the R matrix, as output by BBQR, for this set of * local parameters. * On exit, it contains the upper triangle of the symmetric * covariance matrix for this same set of local parameters. * The strictly lower triangle of RL is never accessed. * * LRL (input) INTEGER * First dimension of RL in calling program. Must be >= NL. * * T (input/output) REAL array, dimension (LT,NG) * On entry, contains one border block in the R matrix, * corresponding to this set of local parameters, as output * by BBQR. * On exit, contains the local-global covariances for this * local set. * * LT (input) INTEGER * First dimension of T in calling program. Must be >= NL. * * CVG (input) REAL array, dimension (LCVG,NG) * Upper triangular matrix of global covariances, as output * by BBCOVG. * * LCVG (input) INTEGER * First dimension of CVG in calling program. * Must be >= NG. * * WORK (workspace) REAL array, minimum size (NG + 1)*NL. * * INFO (output) INTEGER * Error flag; 0 denotes successful exit. * If > 0, a zero was detected along the diagonal of RL. * The matrix is singular and no covariances are computed. * If < 0, an error was detected in the calling arguments. * * INTEGER NG, NL, LRL, LT, LCVG, INFO REAL RL(LRL,*), T(LT,*), CVG(LCVG,*), WORK(*) REAL ZERO, ONE PARAMETER (ZERO=0.0, ONE=1.0) INTEGER I, J, NN, IW * * Compute inverse of RL * --------------------- CALL STRTRI( 'U', 'N', NL, RL, LRL, INFO ) IF (INFO.NE.0) RETURN * * Compute Inv(RL) * T and store in WORK * ------------------------------------- DO 10 J=1,NG CALL SCOPY( NL, T(1,J), 1, WORK((J-1)*NL+1), 1 ) 10 CONTINUE CALL STRMM( 'L', 'U', 'N', 'N', NL, NG, ONE, RL, LRL, WORK, NL ) * * Compute global-local cross-covariances and store in T * ----------------------------------------------------- CALL SSYMM( 'R', 'U', NL, NG, -ONE, CVG, LCVG, WORK, NL, * ZERO, T, LT ) * * Compute local covariance matrix row by row * ------------------------------------------ IW = NG*NL + 1 DO 20 I=1,NL NN = NL - I + 1 CALL SCOPY( NN, RL(I,I), LRL, WORK(IW), 1 ) CALL STRMV( 'U', 'N', 'N', NN, RL(I,I), LRL, WORK(IW), 1 ) CALL SCOPY( NN, WORK(IW), 1, RL(I,I), LRL ) CALL SGEMV( 'N', NN, NG, -ONE, WORK(I), NL, T(I,1), LT, * ONE, RL(I,I), LRL ) 20 CONTINUE * RETURN END c*** bbtest.f PROGRAM BBTEST * * Example test driver for BBQR * * This program solves a system of 20 equations (via least squares) * for 3 global parameters and 2 sets of local parameters, each set * containing 2 parameters. * There are 10 observation equations corresponding to each local set. * There are 2 right-hand-side vectors, one being an exact solution. * First the system is solved using straightforward calls to * LAPACK routines for a full (dense) matrix. These results * may then be compared to the BBQR,BBSLVx,BBCOVx results. * * R. Ray Oct 1992 * * NP - number of observation equations * N - number of unknowns for full-matrix case * NG - number of global parameters to solve for * NL - maximum number of local parameters in any one set * ------------------------------------------------------ PARAMETER (NP=20,N=7,NG=3,NL=2,NRHS=2) * arrays for full-matrix computations: * ------------------------------------ PARAMETER (LWORK=NP*64+2*NP+2*NG) DIMENSION A(NP,N),Y(NP,NRHS),X(N),P(N,NP),WORK(LWORK),B(NP,NRHS) DIMENSION COV(N,N) * arrays for BBQR global data * --------------------------- DIMENSION CG(NG,NRHS),AG(NG,NP),RG(NG,NG) * arrays for BBQR local data * (last index is for 2 local sets) * -------------------------------- DIMENSION AL(NL,NP/2,2),CL(NL,NRHS,2),RL(NL,NL,2) DIMENSION TGL(NL,NG,2),RMS(2) * * True solution: DATA X/ 1.0, -0.5, 0.5, -2.0, -1.2, 1.2, 1.0/ * * Design matrix of partial derivatives * (10 equations for each local set, with total of 7 unknowns) * ------------------------------------ DATA P/ 1., 1., 0., 0., 0., 0., 0., * 0., 1., 0., 0., 1., 0., 0., * 2., -1., 0., 0., 1., 1.,-1., * 2., 2., 0., 0., 2., 1., 1., * 3., 2., 0., 0., 2.,-1., 0., * -1., -1., 0., 0., 2.,-2., 1., * -1., 0., 0., 0., -2.,-2., 1., * -2., -2., 0., 0., -2.,-3., 3., * -2., -1., 0., 0., 3., 5., 2., * 1., -1., 0., 0., 4., 1., 3., * 0., 0., 0., 0., 0., 1., 0., * 0., 0., 0., 1., 1., 0., 0., * 0., 0., 2., 0., 1., 1.,-1., * 0., 0., 2.,-1., 2., 1., 1., * 0., 0., 1., 1., 2.,-1., 0., * 0., 0., -1., 3., 2.,-2., 1., * 0., 0., 3., 0., -2.,-2., 1., * 0., 0., -3.,-1., -2.,-3., 3., * 0., 0., -2., 2., 3., 5., 2., * 0., 0., -2.,-2., 4., 1., 3. / * Build & solve full-matrix system * -------------------------------- DO 40 J=1,NP B(J,1) = SDOT(N,P(1,J),1,X,1) B(J,2) = B(J,1) + 0.1 DO 30 I=1,N A(J,I) = P(I,J) 30 CONTINUE CALL SSYR( 'U',N,1.,P(1,J),1,COV,N ) 40 CONTINUE CALL SGELS( 'N',NP,N,NRHS,A,NP,B,NP,WORK,LWORK,INFO ) RMS(1) = SNRM2( NP-N, B(N+1,1), 1 ) RMS(2) = SNRM2( NP-N, B(N+1,2), 1 ) CALL SPOTRF( 'U',N,COV,N,INFO ) CALL SPOTRI( 'U',N,COV,N,INFO ) WRITE(6,50) 50 FORMAT(/' True R'' matrix:'/) DO 60 J=1,N 60 WRITE(6,100) (A(I,J),I=1,J) WRITE(6,65) 65 FORMAT(/' True covariance:'/) DO 66 J=1,N 66 WRITE(6,100) (COV(I,J),I=1,J) WRITE(6,70) WRITE(6,75) (B(I,1),I=1,N) WRITE(6,75) (B(I,2),I=1,N) 70 FORMAT(/' True solution vectors:') 75 FORMAT(/1X,8F10.3) WRITE(6,80) RMS 80 FORMAT(/' True residual rms:',F10.3,' and',F10.3) 100 FORMAT(1X,8F10.3) * Build BBQR 'observations' * ------------------------- DO 120 J=1,NP Y(J,1) = SDOT(N,P(1,J),1,X,1) Y(J,2) = Y(J,1) + 0.1 DO 110 I=1,NG AG(I,J) = P(2*NL+I,J) 110 CONTINUE 120 CONTINUE DO 140 J=1,NP/2 DO 130 I=1,NL AL(I,J,1) = P(I,J) AL(I,J,2) = P(I+NL,J+NP/2) 130 CONTINUE 140 CONTINUE * Test BBQR on same data * ----------------------- *-----Initialize the system CALL BBINIT( NG, NRHS, RG, NG, RMS ) *-----Process all 10 equations for 1st local set CALL BBQR( NG,NL,NRHS, 10,AG,NG,AL,NL,Y,NP, * RL,NL,RG,NG,TGL,NL,CL,NL,CG,NG, * WORK,RMS,.TRUE. ) WRITE(6,*) 'Set 1 processed.' *-----Process 10 equations for 2nd local set, one equation at a time CALL BBQR( NG,NL,NRHS, 1,AG(1,11),NG,AL(1,1,2),NL,Y(11,1),NP, * RL(1,1,2),NL,RG,NG,TGL(1,1,2),NL,CL(1,1,2),NL,CG,NG, * WORK,RMS,.TRUE. ) DO 200 J=2,10 CALL BBQR(NG,NL,NRHS,1,AG(1,10+J),NG,AL(1,J,2),NL,Y(10+J,1),NP, * RL(1,1,2),NL,RG,NG,TGL(1,1,2),NL,CL(1,1,2),NL,CG,NG, * WORK,RMS,.FALSE. ) 200 CONTINUE WRITE(6,*) 'Set 2 processed.' WRITE(6,210) 210 FORMAT(/' Results for BBQR:'//' R'' matrix:') WRITE(6,*) 'Global:' DO 220 J=1,NG 220 WRITE(6,100) (RG(I,J),I=1,J) DO 230 K=1,2 WRITE(6,222) K 222 FORMAT(' Local set',I3,':') DO 225 J=1,NL 225 WRITE(6,100) (RL(I,J,K),I=1,J) DO 227 J=1,NG 227 WRITE(6,100) (TGL(I,J,K),I=1,NL) 230 CONTINUE * Compute global & local solution vectors * --------------------------------------- CALL BBSLVG( NG, NRHS, RG, NG, CG, NG, INFO ) CALL BBSLVL( NG,NL,NRHS,RL(1,1,1),NL,TGL(1,1,1),NL, * CL(1,1,1),NL,CG,NG,INFO ) CALL BBSLVL( NG,NL,NRHS,RL(1,1,2),NL,TGL(1,1,2),NL, * CL(1,1,2),NL,CG,NG,INFO ) WRITE(6,240) WRITE(6,75) (CG(I,1),I=1,NG) WRITE(6,75) (CG(I,2),I=1,NG) 240 FORMAT(/' Global solution vectors:') WRITE(6,270) WRITE(6,75) CL(1,1,1),CL(2,1,1) WRITE(6,75) CL(1,2,1),CL(2,2,1) 270 FORMAT(/' Solution vectors for local set #1:') WRITE(6,290) WRITE(6,75) CL(1,1,2),CL(2,1,2) WRITE(6,75) CL(1,2,2),CL(2,2,2) 290 FORMAT(/' Solution vectors for local set #2:') WRITE(6,245) RMS 245 FORMAT(/' Residual rms:',2F10.3) * Compute covariances * ------------------- CALL BBCOVG( NG, RG, NG, WORK, INFO ) CALL BBCOVL( NG, NL, RL, NL, TGL, NL, RG, NG, WORK, INFO ) CALL BBCOVL( NG, NL, RL(1,1,2), NL, TGL(1,1,2), NL, RG, NG, * WORK, INFO ) WRITE(6,250) 250 FORMAT(/' Global covariance matrix:'/) DO 260 J=1,NG 260 WRITE(6,100) (RG(I,J),I=1,J) DO 300 K=1,2 WRITE(6,280) K 280 FORMAT(/' Local covariance matrices for set #',I1,':'/) WRITE(6,100) RL(1,1,K) WRITE(6,100) RL(1,2,K),RL(2,2,K) DO 293 J=1,NG 293 WRITE(6,100) TGL(1,J,K),TGL(2,J,K) 300 CONTINUE STOP END c*** support.f real function sasum(n,sx,incx) c c takes the sum of the absolute values. c uses unrolled loops for increment equal to one. c jack dongarra, linpack, 3/11/78. c real sx(1),stemp integer i,incx,m,mp1,n,nincx c sasum = 0.0e0 stemp = 0.0e0 if(n.le.0)return if(incx.eq.1)go to 20 c c code for increment not equal to 1 c nincx = n*incx do 10 i = 1,nincx,incx stemp = stemp + abs(sx(i)) 10 continue sasum = stemp return c c code for increment equal to 1 c c c clean-up loop c 20 m = mod(n,6) if( m .eq. 0 ) go to 40 do 30 i = 1,m stemp = stemp + abs(sx(i)) 30 continue if( n .lt. 6 ) go to 60 40 mp1 = m + 1 do 50 i = mp1,n,6 stemp = stemp + abs(sx(i)) + abs(sx(i + 1)) + abs(sx(i + 2)) * + abs(sx(i + 3)) + abs(sx(i + 4)) + abs(sx(i + 5)) 50 continue 60 sasum = stemp return end subroutine saxpy(n,sa,sx,incx,sy,incy) c c constant times a vector plus a vector. c uses unrolled loop for increments equal to one. c jack dongarra, linpack, 3/11/78. c real sx(1),sy(1),sa integer i,incx,incy,ix,iy,m,mp1,n c if(n.le.0)return if (sa .eq. 0.0) return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n sy(iy) = sy(iy) + sa*sx(ix) ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,4) if( m .eq. 0 ) go to 40 do 30 i = 1,m sy(i) = sy(i) + sa*sx(i) 30 continue if( n .lt. 4 ) return 40 mp1 = m + 1 do 50 i = mp1,n,4 sy(i) = sy(i) + sa*sx(i) sy(i + 1) = sy(i + 1) + sa*sx(i + 1) sy(i + 2) = sy(i + 2) + sa*sx(i + 2) sy(i + 3) = sy(i + 3) + sa*sx(i + 3) 50 continue return end subroutine scopy(n,sx,incx,sy,incy) c c copies a vector, x, to a vector, y. c uses unrolled loops for increments equal to 1. c jack dongarra, linpack, 3/11/78. c real sx(1),sy(1) integer i,incx,incy,ix,iy,m,mp1,n c if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n sy(iy) = sx(ix) ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,7) if( m .eq. 0 ) go to 40 do 30 i = 1,m sy(i) = sx(i) 30 continue if( n .lt. 7 ) return 40 mp1 = m + 1 do 50 i = mp1,n,7 sy(i) = sx(i) sy(i + 1) = sx(i + 1) sy(i + 2) = sx(i + 2) sy(i + 3) = sx(i + 3) sy(i + 4) = sx(i + 4) sy(i + 5) = sx(i + 5) sy(i + 6) = sx(i + 6) 50 continue return end real function sdot(n,sx,incx,sy,incy) c c forms the dot product of two vectors. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. c real sx(1),sy(1),stemp integer i,incx,incy,ix,iy,m,mp1,n c stemp = 0.0e0 sdot = 0.0e0 if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n stemp = stemp + sx(ix)*sy(iy) ix = ix + incx iy = iy + incy 10 continue sdot = stemp return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,5) if( m .eq. 0 ) go to 40 do 30 i = 1,m stemp = stemp + sx(i)*sy(i) 30 continue if( n .lt. 5 ) go to 60 40 mp1 = m + 1 do 50 i = mp1,n,5 stemp = stemp + sx(i)*sy(i) + sx(i + 1)*sy(i + 1) + * sx(i + 2)*sy(i + 2) + sx(i + 3)*sy(i + 3) + sx(i + 4)*sy(i + 4) 50 continue 60 sdot = stemp return end real function snrm2 ( n, sx, incx) integer next real sx(1), cutlo, cuthi, hitest, sum, xmax, zero, one data zero, one /0.0e0, 1.0e0/ c c euclidean norm of the n-vector stored in sx() with storage c increment incx . c if n .le. 0 return with result = 0. c if n .ge. 1 then incx must be .ge. 1 c c c.l.lawson, 1978 jan 08 c c four phase method using two built-in constants that are c hopefully applicable to all machines. c cutlo = maximum of sqrt(u/eps) over all known machines. c cuthi = minimum of sqrt(v) over all known machines. c where c eps = smallest no. such that eps + 1. .gt. 1. c u = smallest positive no. (underflow limit) c v = largest no. (overflow limit) c c brief outline of algorithm.. c c phase 1 scans zero components. c move to phase 2 when a component is nonzero and .le. cutlo c move to phase 3 when a component is .gt. cutlo c move to phase 4 when a component is .ge. cuthi/m c where m = n for x() real and m = 2*n for complex. c c values for cutlo and cuthi.. c from the environmental parameters listed in the imsl converter c document the limiting values are as follows.. c cutlo, s.p. u/eps = 2**(-102) for honeywell. close seconds are c univac and dec at 2**(-103) c thus cutlo = 2**(-51) = 4.44089e-16 c cuthi, s.p. v = 2**127 for univac, honeywell, and dec. c thus cuthi = 2**(63.5) = 1.30438e19 c cutlo, d.p. u/eps = 2**(-67) for honeywell and dec. c thus cutlo = 2**(-33.5) = 8.23181d-11 c cuthi, d.p. same as s.p. cuthi = 1.30438d19 c data cutlo, cuthi / 8.232d-11, 1.304d19 / c data cutlo, cuthi / 4.441e-16, 1.304e19 / data cutlo, cuthi / 4.441e-16, 1.304e19 / c if(n .gt. 0) go to 10 snrm2 = zero go to 300 c 10 assign 30 to next sum = zero nn = n * incx c begin main loop i = 1 20 go to next,(30, 50, 70, 110) 30 if( abs(sx(i)) .gt. cutlo) go to 85 assign 50 to next xmax = zero c c phase 1. sum is zero c 50 if( sx(i) .eq. zero) go to 200 if( abs(sx(i)) .gt. cutlo) go to 85 c c prepare for phase 2. assign 70 to next go to 105 c c prepare for phase 4. c 100 i = j assign 110 to next sum = (sum / sx(i)) / sx(i) 105 xmax = abs(sx(i)) go to 115 c c phase 2. sum is small. c scale to avoid destructive underflow. c 70 if( abs(sx(i)) .gt. cutlo ) go to 75 c c common code for phases 2 and 4. c in phase 4 sum is large. scale to avoid overflow. c 110 if( abs(sx(i)) .le. xmax ) go to 115 sum = one + sum * (xmax / sx(i))**2 xmax = abs(sx(i)) go to 200 c 115 sum = sum + (sx(i)/xmax)**2 go to 200 c c c prepare for phase 3. c 75 sum = (sum * xmax) * xmax c c c for real or d.p. set hitest = cuthi/n c for complex set hitest = cuthi/(2*n) c 85 hitest = cuthi/float( n ) c c phase 3. sum is mid-range. no scaling. c do 95 j =i,nn,incx if(abs(sx(j)) .ge. hitest) go to 100 95 sum = sum + sx(j)**2 snrm2 = sqrt( sum ) go to 300 c 200 continue i = i + incx if ( i .le. nn ) go to 20 c c end of main loop. c c compute square root and adjust for scaling. c snrm2 = xmax * sqrt(sum) 300 continue return end subroutine sscal(n,sa,sx,incx) c c scales a vector by a constant. c uses unrolled loops for increment equal to 1. c jack dongarra, linpack, 3/11/78. c real sa,sx(1) integer i,incx,m,mp1,n,nincx c if(n.le.0)return if(incx.eq.1)go to 20 c c code for increment not equal to 1 c nincx = n*incx do 10 i = 1,nincx,incx sx(i) = sa*sx(i) 10 continue return c c code for increment equal to 1 c c c clean-up loop c 20 m = mod(n,5) if( m .eq. 0 ) go to 40 do 30 i = 1,m sx(i) = sa*sx(i) 30 continue if( n .lt. 5 ) return 40 mp1 = m + 1 do 50 i = mp1,n,5 sx(i) = sa*sx(i) sx(i + 1) = sa*sx(i + 1) sx(i + 2) = sa*sx(i + 2) sx(i + 3) = sa*sx(i + 3) sx(i + 4) = sa*sx(i + 4) 50 continue return end SUBROUTINE SGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, $ BETA, Y, INCY ) * .. Scalar Arguments .. REAL ALPHA, BETA INTEGER INCX, INCY, LDA, M, N CHARACTER*1 TRANS * .. Array Arguments .. REAL A( LDA, * ), X( * ), Y( * ) * .. * * Purpose * ======= * * SGEMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n matrix. * * Parameters * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A'*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * X - REAL array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - REAL array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry with BETA non-zero, the incremented array Y * must contain the vector y. On exit, Y is overwritten by the * updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. REAL ONE , ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. Local Scalars .. REAL TEMP INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 1 ELSE IF( M.LT.0 )THEN INFO = 2 ELSE IF( N.LT.0 )THEN INFO = 3 ELSE IF( LDA.LT.MAX( 1, M ) )THEN INFO = 6 ELSE IF( INCX.EQ.0 )THEN INFO = 8 ELSE IF( INCY.EQ.0 )THEN INFO = 11 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'SGEMV ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) $ RETURN * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF( LSAME( TRANS, 'N' ) )THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF( INCX.GT.0 )THEN KX = 1 ELSE KX = 1 - ( LENX - 1 )*INCX END IF IF( INCY.GT.0 )THEN KY = 1 ELSE KY = 1 - ( LENY - 1 )*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * * First form y := beta*y. * IF( BETA.NE.ONE )THEN IF( INCY.EQ.1 )THEN IF( BETA.EQ.ZERO )THEN DO 10, I = 1, LENY Y( I ) = ZERO 10 CONTINUE ELSE DO 20, I = 1, LENY Y( I ) = BETA*Y( I ) 20 CONTINUE END IF ELSE IY = KY IF( BETA.EQ.ZERO )THEN DO 30, I = 1, LENY Y( IY ) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40, I = 1, LENY Y( IY ) = BETA*Y( IY ) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF( ALPHA.EQ.ZERO ) $ RETURN IF( LSAME( TRANS, 'N' ) )THEN * * Form y := alpha*A*x + y. * JX = KX IF( INCY.EQ.1 )THEN DO 60, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) DO 50, I = 1, M Y( I ) = Y( I ) + TEMP*A( I, J ) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) IY = KY DO 70, I = 1, M Y( IY ) = Y( IY ) + TEMP*A( I, J ) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF ELSE * * Form y := alpha*A'*x + y. * JY = KY IF( INCX.EQ.1 )THEN DO 100, J = 1, N TEMP = ZERO DO 90, I = 1, M TEMP = TEMP + A( I, J )*X( I ) 90 CONTINUE Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY 100 CONTINUE ELSE DO 120, J = 1, N TEMP = ZERO IX = KX DO 110, I = 1, M TEMP = TEMP + A( I, J )*X( IX ) IX = IX + INCX 110 CONTINUE Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of SGEMV . * END SUBROUTINE SGER ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) * .. Scalar Arguments .. REAL ALPHA INTEGER INCX, INCY, LDA, M, N * .. Array Arguments .. REAL A( LDA, * ), X( * ), Y( * ) * .. * * Purpose * ======= * * SGER performs the rank 1 operation * * A := alpha*x*y' + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. * * Parameters * ========== * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( m - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the m * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. On exit, A is * overwritten by the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. Local Scalars .. REAL TEMP INTEGER I, INFO, IX, J, JY, KX * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( M.LT.0 )THEN INFO = 1 ELSE IF( N.LT.0 )THEN INFO = 2 ELSE IF( INCX.EQ.0 )THEN INFO = 5 ELSE IF( INCY.EQ.0 )THEN INFO = 7 ELSE IF( LDA.LT.MAX( 1, M ) )THEN INFO = 9 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'SGER ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) ) $ RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF( INCY.GT.0 )THEN JY = 1 ELSE JY = 1 - ( N - 1 )*INCY END IF IF( INCX.EQ.1 )THEN DO 20, J = 1, N IF( Y( JY ).NE.ZERO )THEN TEMP = ALPHA*Y( JY ) DO 10, I = 1, M A( I, J ) = A( I, J ) + X( I )*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF( INCX.GT.0 )THEN KX = 1 ELSE KX = 1 - ( M - 1 )*INCX END IF DO 40, J = 1, N IF( Y( JY ).NE.ZERO )THEN TEMP = ALPHA*Y( JY ) IX = KX DO 30, I = 1, M A( I, J ) = A( I, J ) + X( IX )*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF * RETURN * * End of SGER . * END SUBROUTINE SSYR ( UPLO, N, ALPHA, X, INCX, A, LDA ) * .. Scalar Arguments .. REAL ALPHA INTEGER INCX, LDA, N CHARACTER*1 UPLO * .. Array Arguments .. REAL A( LDA, * ), X( * ) * .. * * Purpose * ======= * * SSYR performs the symmetric rank 1 operation * * A := alpha*x*x' + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n symmetric matrix. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. Local Scalars .. REAL TEMP INTEGER I, INFO, IX, J, JX, KX * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( UPLO, 'U' ).AND. $ .NOT.LSAME( UPLO, 'L' ) )THEN INFO = 1 ELSE IF( N.LT.0 )THEN INFO = 2 ELSE IF( INCX.EQ.0 )THEN INFO = 5 ELSE IF( LDA.LT.MAX( 1, N ) )THEN INFO = 7 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'SSYR ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) ) $ RETURN * * Set the start point in X if the increment is not unity. * IF( INCX.LE.0 )THEN KX = 1 - ( N - 1 )*INCX ELSE IF( INCX.NE.1 )THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF( LSAME( UPLO, 'U' ) )THEN * * Form A when A is stored in upper triangle. * IF( INCX.EQ.1 )THEN DO 20, J = 1, N IF( X( J ).NE.ZERO )THEN TEMP = ALPHA*X( J ) DO 10, I = 1, J A( I, J ) = A( I, J ) + X( I )*TEMP 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX DO 40, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) IX = KX DO 30, I = 1, J A( I, J ) = A( I, J ) + X( IX )*TEMP IX = IX + INCX 30 CONTINUE END IF JX = JX + INCX 40 CONTINUE END IF ELSE * * Form A when A is stored in lower triangle. * IF( INCX.EQ.1 )THEN DO 60, J = 1, N IF( X( J ).NE.ZERO )THEN TEMP = ALPHA*X( J ) DO 50, I = J, N A( I, J ) = A( I, J ) + X( I )*TEMP 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) IX = JX DO 70, I = J, N A( I, J ) = A( I, J ) + X( IX )*TEMP IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF * RETURN * * End of SSYR . * END SUBROUTINE STRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) * .. Scalar Arguments .. INTEGER INCX, LDA, N CHARACTER*1 DIAG, TRANS, UPLO * .. Array Arguments .. REAL A( LDA, * ), X( * ) * .. * * Purpose * ======= * * STRMV performs one of the matrix-vector operations * * x := A*x, or x := A'*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A'*x. * * TRANS = 'C' or 'c' x := A'*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. Local Scalars .. REAL TEMP INTEGER I, INFO, IX, J, JX, KX LOGICAL NOUNIT * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( UPLO , 'U' ).AND. $ .NOT.LSAME( UPLO , 'L' ) )THEN INFO = 1 ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 2 ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. $ .NOT.LSAME( DIAG , 'N' ) )THEN INFO = 3 ELSE IF( N.LT.0 )THEN INFO = 4 ELSE IF( LDA.LT.MAX( 1, N ) )THEN INFO = 6 ELSE IF( INCX.EQ.0 )THEN INFO = 8 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'STRMV ', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * NOUNIT = LSAME( DIAG, 'N' ) * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF( INCX.LE.0 )THEN KX = 1 - ( N - 1 )*INCX ELSE IF( INCX.NE.1 )THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF( LSAME( TRANS, 'N' ) )THEN * * Form x := A*x. * IF( LSAME( UPLO, 'U' ) )THEN IF( INCX.EQ.1 )THEN DO 20, J = 1, N IF( X( J ).NE.ZERO )THEN TEMP = X( J ) DO 10, I = 1, J - 1 X( I ) = X( I ) + TEMP*A( I, J ) 10 CONTINUE IF( NOUNIT ) $ X( J ) = X( J )*A( J, J ) END IF 20 CONTINUE ELSE JX = KX DO 40, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = X( JX ) IX = KX DO 30, I = 1, J - 1 X( IX ) = X( IX ) + TEMP*A( I, J ) IX = IX + INCX 30 CONTINUE IF( NOUNIT ) $ X( JX ) = X( JX )*A( J, J ) END IF JX = JX + INCX 40 CONTINUE END IF ELSE IF( INCX.EQ.1 )THEN DO 60, J = N, 1, -1 IF( X( J ).NE.ZERO )THEN TEMP = X( J ) DO 50, I = N, J + 1, -1 X( I ) = X( I ) + TEMP*A( I, J ) 50 CONTINUE IF( NOUNIT ) $ X( J ) = X( J )*A( J, J ) END IF 60 CONTINUE ELSE KX = KX + ( N - 1 )*INCX JX = KX DO 80, J = N, 1, -1 IF( X( JX ).NE.ZERO )THEN TEMP = X( JX ) IX = KX DO 70, I = N, J + 1, -1 X( IX ) = X( IX ) + TEMP*A( I, J ) IX = IX - INCX 70 CONTINUE IF( NOUNIT ) $ X( JX ) = X( JX )*A( J, J ) END IF JX = JX - INCX 80 CONTINUE END IF END IF ELSE * * Form x := A'*x. * IF( LSAME( UPLO, 'U' ) )THEN IF( INCX.EQ.1 )THEN DO 100, J = N, 1, -1 TEMP = X( J ) IF( NOUNIT ) $ TEMP = TEMP*A( J, J ) DO 90, I = J - 1, 1, -1 TEMP = TEMP + A( I, J )*X( I ) 90 CONTINUE X( J ) = TEMP 100 CONTINUE ELSE JX = KX + ( N - 1 )*INCX DO 120, J = N, 1, -1 TEMP = X( JX ) IX = JX IF( NOUNIT ) $ TEMP = TEMP*A( J, J ) DO 110, I = J - 1, 1, -1 IX = IX - INCX TEMP = TEMP + A( I, J )*X( IX ) 110 CONTINUE X( JX ) = TEMP JX = JX - INCX 120 CONTINUE END IF ELSE IF( INCX.EQ.1 )THEN DO 140, J = 1, N TEMP = X( J ) IF( NOUNIT ) $ TEMP = TEMP*A( J, J ) DO 130, I = J + 1, N TEMP = TEMP + A( I, J )*X( I ) 130 CONTINUE X( J ) = TEMP 140 CONTINUE ELSE JX = KX DO 160, J = 1, N TEMP = X( JX ) IX = JX IF( NOUNIT ) $ TEMP = TEMP*A( J, J ) DO 150, I = J + 1, N IX = IX + INCX TEMP = TEMP + A( I, J )*X( IX ) 150 CONTINUE X( JX ) = TEMP JX = JX + INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of STRMV . * END SUBROUTINE SGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, $ BETA, C, LDC ) * .. Scalar Arguments .. CHARACTER*1 TRANSA, TRANSB INTEGER M, N, K, LDA, LDB, LDC REAL ALPHA, BETA * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), C( LDC, * ) * .. * * Purpose * ======= * * SGEMM performs one of the matrix-matrix operations * * C := alpha*op( A )*op( B ) + beta*C, * * where op( X ) is one of * * op( X ) = X or op( X ) = X', * * alpha and beta are scalars, and A, B and C are matrices, with op( A ) * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. * * Parameters * ========== * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n', op( A ) = A. * * TRANSA = 'T' or 't', op( A ) = A'. * * TRANSA = 'C' or 'c', op( A ) = A'. * * Unchanged on exit. * * TRANSB - CHARACTER*1. * On entry, TRANSB specifies the form of op( B ) to be used in * the matrix multiplication as follows: * * TRANSB = 'N' or 'n', op( B ) = B. * * TRANSB = 'T' or 't', op( B ) = B'. * * TRANSB = 'C' or 'c', op( B ) = B'. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix * op( A ) and of the matrix C. M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix * op( B ) and the number of columns of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry, K specifies the number of columns of the matrix * op( A ) and the number of rows of the matrix op( B ). K must * be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, ka ), where ka is * k when TRANSA = 'N' or 'n', and is m otherwise. * Before entry with TRANSA = 'N' or 'n', the leading m by k * part of the array A must contain the matrix A, otherwise * the leading k by m part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANSA = 'N' or 'n' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, k ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, kb ), where kb is * n when TRANSB = 'N' or 'n', and is k otherwise. * Before entry with TRANSB = 'N' or 'n', the leading k by n * part of the array B must contain the matrix B, otherwise * the leading n by k part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANSB = 'N' or 'n' then * LDB must be at least max( 1, k ), otherwise LDB must be at * least max( 1, n ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - REAL array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n matrix * ( alpha*op( A )*op( B ) + beta*C ). * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. Local Scalars .. LOGICAL NOTA, NOTB INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB REAL TEMP * .. Parameters .. REAL ONE , ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Executable Statements .. * * Set NOTA and NOTB as true if A and B respectively are not * transposed and set NROWA, NCOLA and NROWB as the number of rows * and columns of A and the number of rows of B respectively. * NOTA = LSAME( TRANSA, 'N' ) NOTB = LSAME( TRANSB, 'N' ) IF( NOTA )THEN NROWA = M NCOLA = K ELSE NROWA = K NCOLA = M END IF IF( NOTB )THEN NROWB = K ELSE NROWB = N END IF * * Test the input parameters. * INFO = 0 IF( ( .NOT.NOTA ).AND. $ ( .NOT.LSAME( TRANSA, 'C' ) ).AND. $ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN INFO = 1 ELSE IF( ( .NOT.NOTB ).AND. $ ( .NOT.LSAME( TRANSB, 'C' ) ).AND. $ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN INFO = 2 ELSE IF( M .LT.0 )THEN INFO = 3 ELSE IF( N .LT.0 )THEN INFO = 4 ELSE IF( K .LT.0 )THEN INFO = 5 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 8 ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN INFO = 10 ELSE IF( LDC.LT.MAX( 1, M ) )THEN INFO = 13 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'SGEMM ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) $ RETURN * * And if alpha.eq.zero. * IF( ALPHA.EQ.ZERO )THEN IF( BETA.EQ.ZERO )THEN DO 20, J = 1, N DO 10, I = 1, M C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40, J = 1, N DO 30, I = 1, M C( I, J ) = BETA*C( I, J ) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF( NOTB )THEN IF( NOTA )THEN * * Form C := alpha*A*B + beta*C. * DO 90, J = 1, N IF( BETA.EQ.ZERO )THEN DO 50, I = 1, M C( I, J ) = ZERO 50 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 60, I = 1, M C( I, J ) = BETA*C( I, J ) 60 CONTINUE END IF DO 80, L = 1, K IF( B( L, J ).NE.ZERO )THEN TEMP = ALPHA*B( L, J ) DO 70, I = 1, M C( I, J ) = C( I, J ) + TEMP*A( I, L ) 70 CONTINUE END IF 80 CONTINUE 90 CONTINUE ELSE * * Form C := alpha*A'*B + beta*C * DO 120, J = 1, N DO 110, I = 1, M TEMP = ZERO DO 100, L = 1, K TEMP = TEMP + A( L, I )*B( L, J ) 100 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 110 CONTINUE 120 CONTINUE END IF ELSE IF( NOTA )THEN * * Form C := alpha*A*B' + beta*C * DO 170, J = 1, N IF( BETA.EQ.ZERO )THEN DO 130, I = 1, M C( I, J ) = ZERO 130 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 140, I = 1, M C( I, J ) = BETA*C( I, J ) 140 CONTINUE END IF DO 160, L = 1, K IF( B( J, L ).NE.ZERO )THEN TEMP = ALPHA*B( J, L ) DO 150, I = 1, M C( I, J ) = C( I, J ) + TEMP*A( I, L ) 150 CONTINUE END IF 160 CONTINUE 170 CONTINUE ELSE * * Form C := alpha*A'*B' + beta*C * DO 200, J = 1, N DO 190, I = 1, M TEMP = ZERO DO 180, L = 1, K TEMP = TEMP + A( L, I )*B( J, L ) 180 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 190 CONTINUE 200 CONTINUE END IF END IF * RETURN * * End of SGEMM . * END SUBROUTINE SSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, $ BETA, C, LDC ) * .. Scalar Arguments .. CHARACTER*1 SIDE, UPLO INTEGER M, N, LDA, LDB, LDC REAL ALPHA, BETA * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), C( LDC, * ) * .. * * Purpose * ======= * * SSYMM performs one of the matrix-matrix operations * * C := alpha*A*B + beta*C, * * or * * C := alpha*B*A + beta*C, * * where alpha and beta are scalars, A is a symmetric matrix and B and * C are m by n matrices. * * Parameters * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether the symmetric matrix A * appears on the left or right in the operation as follows: * * SIDE = 'L' or 'l' C := alpha*A*B + beta*C, * * SIDE = 'R' or 'r' C := alpha*B*A + beta*C, * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the symmetric matrix A is to be * referenced as follows: * * UPLO = 'U' or 'u' Only the upper triangular part of the * symmetric matrix is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of the * symmetric matrix is to be referenced. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix C. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix C. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, ka ), where ka is * m when SIDE = 'L' or 'l' and is n otherwise. * Before entry with SIDE = 'L' or 'l', the m by m part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading m by m upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading m by m lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Before entry with SIDE = 'R' or 'r', the n by n part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading n by n upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading n by n lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, n ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - REAL array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n updated * matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. Local Scalars .. LOGICAL UPPER INTEGER I, INFO, J, K, NROWA REAL TEMP1, TEMP2 * .. Parameters .. REAL ONE , ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Executable Statements .. * * Set NROWA as the number of rows of A. * IF( LSAME( SIDE, 'L' ) )THEN NROWA = M ELSE NROWA = N END IF UPPER = LSAME( UPLO, 'U' ) * * Test the input parameters. * INFO = 0 IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND. $ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN INFO = 1 ELSE IF( ( .NOT.UPPER ).AND. $ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN INFO = 2 ELSE IF( M .LT.0 )THEN INFO = 3 ELSE IF( N .LT.0 )THEN INFO = 4 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 7 ELSE IF( LDB.LT.MAX( 1, M ) )THEN INFO = 9 ELSE IF( LDC.LT.MAX( 1, M ) )THEN INFO = 12 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'SSYMM ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) $ RETURN * * And when alpha.eq.zero. * IF( ALPHA.EQ.ZERO )THEN IF( BETA.EQ.ZERO )THEN DO 20, J = 1, N DO 10, I = 1, M C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40, J = 1, N DO 30, I = 1, M C( I, J ) = BETA*C( I, J ) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF( LSAME( SIDE, 'L' ) )THEN * * Form C := alpha*A*B + beta*C. * IF( UPPER )THEN DO 70, J = 1, N DO 60, I = 1, M TEMP1 = ALPHA*B( I, J ) TEMP2 = ZERO DO 50, K = 1, I - 1 C( K, J ) = C( K, J ) + TEMP1 *A( K, I ) TEMP2 = TEMP2 + B( K, J )*A( K, I ) 50 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2 ELSE C( I, J ) = BETA *C( I, J ) + $ TEMP1*A( I, I ) + ALPHA*TEMP2 END IF 60 CONTINUE 70 CONTINUE ELSE DO 100, J = 1, N DO 90, I = M, 1, -1 TEMP1 = ALPHA*B( I, J ) TEMP2 = ZERO DO 80, K = I + 1, M C( K, J ) = C( K, J ) + TEMP1 *A( K, I ) TEMP2 = TEMP2 + B( K, J )*A( K, I ) 80 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2 ELSE C( I, J ) = BETA *C( I, J ) + $ TEMP1*A( I, I ) + ALPHA*TEMP2 END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form C := alpha*B*A + beta*C. * DO 170, J = 1, N TEMP1 = ALPHA*A( J, J ) IF( BETA.EQ.ZERO )THEN DO 110, I = 1, M C( I, J ) = TEMP1*B( I, J ) 110 CONTINUE ELSE DO 120, I = 1, M C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J ) 120 CONTINUE END IF DO 140, K = 1, J - 1 IF( UPPER )THEN TEMP1 = ALPHA*A( K, J ) ELSE TEMP1 = ALPHA*A( J, K ) END IF DO 130, I = 1, M C( I, J ) = C( I, J ) + TEMP1*B( I, K ) 130 CONTINUE 140 CONTINUE DO 160, K = J + 1, N IF( UPPER )THEN TEMP1 = ALPHA*A( J, K ) ELSE TEMP1 = ALPHA*A( K, J ) END IF DO 150, I = 1, M C( I, J ) = C( I, J ) + TEMP1*B( I, K ) 150 CONTINUE 160 CONTINUE 170 CONTINUE END IF * RETURN * * End of SSYMM . * END SUBROUTINE STRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, $ B, LDB ) * .. Scalar Arguments .. CHARACTER*1 SIDE, UPLO, TRANSA, DIAG INTEGER M, N, LDA, LDB REAL ALPHA * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ) * .. * * Purpose * ======= * * STRMM performs one of the matrix-matrix operations * * B := alpha*op( A )*B, or B := alpha*B*op( A ), * * where alpha is a scalar, B is an m by n matrix, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A'. * * Parameters * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) multiplies B from * the left or right as follows: * * SIDE = 'L' or 'l' B := alpha*op( A )*B. * * SIDE = 'R' or 'r' B := alpha*B*op( A ). * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A'. * * TRANSA = 'C' or 'c' op( A ) = A'. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B, and on exit is overwritten by the * transformed matrix. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. Local Scalars .. LOGICAL LSIDE, NOUNIT, UPPER INTEGER I, INFO, J, K, NROWA REAL TEMP * .. Parameters .. REAL ONE , ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Executable Statements .. * * Test the input parameters. * LSIDE = LSAME( SIDE , 'L' ) IF( LSIDE )THEN NROWA = M ELSE NROWA = N END IF NOUNIT = LSAME( DIAG , 'N' ) UPPER = LSAME( UPLO , 'U' ) * INFO = 0 IF( ( .NOT.LSIDE ).AND. $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN INFO = 1 ELSE IF( ( .NOT.UPPER ).AND. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN INFO = 2 ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND. $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND. $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN INFO = 3 ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND. $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN INFO = 4 ELSE IF( M .LT.0 )THEN INFO = 5 ELSE IF( N .LT.0 )THEN INFO = 6 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 9 ELSE IF( LDB.LT.MAX( 1, M ) )THEN INFO = 11 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'STRMM ', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * * And when alpha.eq.zero. * IF( ALPHA.EQ.ZERO )THEN DO 20, J = 1, N DO 10, I = 1, M B( I, J ) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF( LSIDE )THEN IF( LSAME( TRANSA, 'N' ) )THEN * * Form B := alpha*A*B. * IF( UPPER )THEN DO 50, J = 1, N DO 40, K = 1, M IF( B( K, J ).NE.ZERO )THEN TEMP = ALPHA*B( K, J ) DO 30, I = 1, K - 1 B( I, J ) = B( I, J ) + TEMP*A( I, K ) 30 CONTINUE IF( NOUNIT ) $ TEMP = TEMP*A( K, K ) B( K, J ) = TEMP END IF 40 CONTINUE 50 CONTINUE ELSE DO 80, J = 1, N DO 70 K = M, 1, -1 IF( B( K, J ).NE.ZERO )THEN TEMP = ALPHA*B( K, J ) B( K, J ) = TEMP IF( NOUNIT ) $ B( K, J ) = B( K, J )*A( K, K ) DO 60, I = K + 1, M B( I, J ) = B( I, J ) + TEMP*A( I, K ) 60 CONTINUE END IF 70 CONTINUE 80 CONTINUE END IF ELSE * * Form B := alpha*B*A'. * IF( UPPER )THEN DO 110, J = 1, N DO 100, I = M, 1, -1 TEMP = B( I, J ) IF( NOUNIT ) $ TEMP = TEMP*A( I, I ) DO 90, K = 1, I - 1 TEMP = TEMP + A( K, I )*B( K, J ) 90 CONTINUE B( I, J ) = ALPHA*TEMP 100 CONTINUE 110 CONTINUE ELSE DO 140, J = 1, N DO 130, I = 1, M TEMP = B( I, J ) IF( NOUNIT ) $ TEMP = TEMP*A( I, I ) DO 120, K = I + 1, M TEMP = TEMP + A( K, I )*B( K, J ) 120 CONTINUE B( I, J ) = ALPHA*TEMP 130 CONTINUE 140 CONTINUE END IF END IF ELSE IF( LSAME( TRANSA, 'N' ) )THEN * * Form B := alpha*B*A. * IF( UPPER )THEN DO 180, J = N, 1, -1 TEMP = ALPHA IF( NOUNIT ) $ TEMP = TEMP*A( J, J ) DO 150, I = 1, M B( I, J ) = TEMP*B( I, J ) 150 CONTINUE DO 170, K = 1, J - 1 IF( A( K, J ).NE.ZERO )THEN TEMP = ALPHA*A( K, J ) DO 160, I = 1, M B( I, J ) = B( I, J ) + TEMP*B( I, K ) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE ELSE DO 220, J = 1, N TEMP = ALPHA IF( NOUNIT ) $ TEMP = TEMP*A( J, J ) DO 190, I = 1, M B( I, J ) = TEMP*B( I, J ) 190 CONTINUE DO 210, K = J + 1, N IF( A( K, J ).NE.ZERO )THEN TEMP = ALPHA*A( K, J ) DO 200, I = 1, M B( I, J ) = B( I, J ) + TEMP*B( I, K ) 200 CONTINUE END IF 210 CONTINUE 220 CONTINUE END IF ELSE * * Form B := alpha*B*A'. * IF( UPPER )THEN DO 260, K = 1, N DO 240, J = 1, K - 1 IF( A( J, K ).NE.ZERO )THEN TEMP = ALPHA*A( J, K ) DO 230, I = 1, M B( I, J ) = B( I, J ) + TEMP*B( I, K ) 230 CONTINUE END IF 240 CONTINUE TEMP = ALPHA IF( NOUNIT ) $ TEMP = TEMP*A( K, K ) IF( TEMP.NE.ONE )THEN DO 250, I = 1, M B( I, K ) = TEMP*B( I, K ) 250 CONTINUE END IF 260 CONTINUE ELSE DO 300, K = N, 1, -1 DO 280, J = K + 1, N IF( A( J, K ).NE.ZERO )THEN TEMP = ALPHA*A( J, K ) DO 270, I = 1, M B( I, J ) = B( I, J ) + TEMP*B( I, K ) 270 CONTINUE END IF 280 CONTINUE TEMP = ALPHA IF( NOUNIT ) $ TEMP = TEMP*A( K, K ) IF( TEMP.NE.ONE )THEN DO 290, I = 1, M B( I, K ) = TEMP*B( I, K ) 290 CONTINUE END IF 300 CONTINUE END IF END IF END IF * RETURN * * End of STRMM . * END SUBROUTINE STRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, $ B, LDB ) * .. Scalar Arguments .. CHARACTER*1 SIDE, UPLO, TRANSA, DIAG INTEGER M, N, LDA, LDB REAL ALPHA * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ) * .. * * Purpose * ======= * * STRSM solves one of the matrix equations * * op( A )*X = alpha*B, or X*op( A ) = alpha*B, * * where alpha is a scalar, X and B are m by n matrices, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A'. * * The matrix X is overwritten on B. * * Parameters * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) appears on the left * or right of X as follows: * * SIDE = 'L' or 'l' op( A )*X = alpha*B. * * SIDE = 'R' or 'r' X*op( A ) = alpha*B. * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A'. * * TRANSA = 'C' or 'c' op( A ) = A'. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the right-hand side matrix B, and on exit is * overwritten by the solution matrix X. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * * Level 3 Blas routine. * * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. Local Scalars .. LOGICAL LSIDE, NOUNIT, UPPER INTEGER I, INFO, J, K, NROWA REAL TEMP * .. Parameters .. REAL ONE , ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Executable Statements .. * * Test the input parameters. * LSIDE = LSAME( SIDE , 'L' ) IF( LSIDE )THEN NROWA = M ELSE NROWA = N END IF NOUNIT = LSAME( DIAG , 'N' ) UPPER = LSAME( UPLO , 'U' ) * INFO = 0 IF( ( .NOT.LSIDE ).AND. $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN INFO = 1 ELSE IF( ( .NOT.UPPER ).AND. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN INFO = 2 ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND. $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND. $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN INFO = 3 ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND. $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN INFO = 4 ELSE IF( M .LT.0 )THEN INFO = 5 ELSE IF( N .LT.0 )THEN INFO = 6 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 9 ELSE IF( LDB.LT.MAX( 1, M ) )THEN INFO = 11 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'STRSM ', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * * And when alpha.eq.zero. * IF( ALPHA.EQ.ZERO )THEN DO 20, J = 1, N DO 10, I = 1, M B( I, J ) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF( LSIDE )THEN IF( LSAME( TRANSA, 'N' ) )THEN * * Form B := alpha*inv( A )*B. * IF( UPPER )THEN DO 60, J = 1, N IF( ALPHA.NE.ONE )THEN DO 30, I = 1, M B( I, J ) = ALPHA*B( I, J ) 30 CONTINUE END IF DO 50, K = M, 1, -1 IF( B( K, J ).NE.ZERO )THEN IF( NOUNIT ) $ B( K, J ) = B( K, J )/A( K, K ) DO 40, I = 1, K - 1 B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) 40 CONTINUE END IF 50 CONTINUE 60 CONTINUE ELSE DO 100, J = 1, N IF( ALPHA.NE.ONE )THEN DO 70, I = 1, M B( I, J ) = ALPHA*B( I, J ) 70 CONTINUE END IF DO 90 K = 1, M IF( B( K, J ).NE.ZERO )THEN IF( NOUNIT ) $ B( K, J ) = B( K, J )/A( K, K ) DO 80, I = K + 1, M B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) 80 CONTINUE END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form B := alpha*inv( A' )*B. * IF( UPPER )THEN DO 130, J = 1, N DO 120, I = 1, M TEMP = ALPHA*B( I, J ) DO 110, K = 1, I - 1 TEMP = TEMP - A( K, I )*B( K, J ) 110 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( I, I ) B( I, J ) = TEMP 120 CONTINUE 130 CONTINUE ELSE DO 160, J = 1, N DO 150, I = M, 1, -1 TEMP = ALPHA*B( I, J ) DO 140, K = I + 1, M TEMP = TEMP - A( K, I )*B( K, J ) 140 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( I, I ) B( I, J ) = TEMP 150 CONTINUE 160 CONTINUE END IF END IF ELSE IF( LSAME( TRANSA, 'N' ) )THEN * * Form B := alpha*B*inv( A ). * IF( UPPER )THEN DO 210, J = 1, N IF( ALPHA.NE.ONE )THEN DO 170, I = 1, M B( I, J ) = ALPHA*B( I, J ) 170 CONTINUE END IF DO 190, K = 1, J - 1 IF( A( K, J ).NE.ZERO )THEN DO 180, I = 1, M B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) 180 CONTINUE END IF 190 CONTINUE IF( NOUNIT )THEN TEMP = ONE/A( J, J ) DO 200, I = 1, M B( I, J ) = TEMP*B( I, J ) 200 CONTINUE END IF 210 CONTINUE ELSE DO 260, J = N, 1, -1 IF( ALPHA.NE.ONE )THEN DO 220, I = 1, M B( I, J ) = ALPHA*B( I, J ) 220 CONTINUE END IF DO 240, K = J + 1, N IF( A( K, J ).NE.ZERO )THEN DO 230, I = 1, M B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) 230 CONTINUE END IF 240 CONTINUE IF( NOUNIT )THEN TEMP = ONE/A( J, J ) DO 250, I = 1, M B( I, J ) = TEMP*B( I, J ) 250 CONTINUE END IF 260 CONTINUE END IF ELSE * * Form B := alpha*B*inv( A' ). * IF( UPPER )THEN DO 310, K = N, 1, -1 IF( NOUNIT )THEN TEMP = ONE/A( K, K ) DO 270, I = 1, M B( I, K ) = TEMP*B( I, K ) 270 CONTINUE END IF DO 290, J = 1, K - 1 IF( A( J, K ).NE.ZERO )THEN TEMP = A( J, K ) DO 280, I = 1, M B( I, J ) = B( I, J ) - TEMP*B( I, K ) 280 CONTINUE END IF 290 CONTINUE IF( ALPHA.NE.ONE )THEN DO 300, I = 1, M B( I, K ) = ALPHA*B( I, K ) 300 CONTINUE END IF 310 CONTINUE ELSE DO 360, K = 1, N IF( NOUNIT )THEN TEMP = ONE/A( K, K ) DO 320, I = 1, M B( I, K ) = TEMP*B( I, K ) 320 CONTINUE END IF DO 340, J = K + 1, N IF( A( J, K ).NE.ZERO )THEN TEMP = A( J, K ) DO 330, I = 1, M B( I, J ) = B( I, J ) - TEMP*B( I, K ) 330 CONTINUE END IF 340 CONTINUE IF( ALPHA.NE.ONE )THEN DO 350, I = 1, M B( I, K ) = ALPHA*B( I, K ) 350 CONTINUE END IF 360 CONTINUE END IF END IF END IF * RETURN * * End of STRSM . * END SUBROUTINE SSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA, $ BETA, C, LDC ) * .. Scalar Arguments .. CHARACTER*1 UPLO, TRANS INTEGER N, K, LDA, LDC REAL ALPHA, BETA * .. Array Arguments .. REAL A( LDA, * ), C( LDC, * ) * .. * * Purpose * ======= * * SSYRK performs one of the symmetric rank k operations * * C := alpha*A*A' + beta*C, * * or * * C := alpha*A'*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A is an n by k matrix in the first case and a k by n matrix * in the second case. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. * * TRANS = 'T' or 't' C := alpha*A'*A + beta*C. * * TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrix A, and on entry with * TRANS = 'T' or 't' or 'C' or 'c', K specifies the number * of rows of the matrix A. K must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - REAL array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. Local Scalars .. LOGICAL UPPER INTEGER I, INFO, J, L, NROWA REAL TEMP * .. Parameters .. REAL ONE , ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Executable Statements .. * * Test the input parameters. * IF( LSAME( TRANS, 'N' ) )THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME( UPLO, 'U' ) * INFO = 0 IF( ( .NOT.UPPER ).AND. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN INFO = 1 ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND. $ ( .NOT.LSAME( TRANS, 'T' ) ).AND. $ ( .NOT.LSAME( TRANS, 'C' ) ) )THEN INFO = 2 ELSE IF( N .LT.0 )THEN INFO = 3 ELSE IF( K .LT.0 )THEN INFO = 4 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 7 ELSE IF( LDC.LT.MAX( 1, N ) )THEN INFO = 10 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'SSYRK ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( N.EQ.0 ).OR. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) $ RETURN * * And when alpha.eq.zero. * IF( ALPHA.EQ.ZERO )THEN IF( UPPER )THEN IF( BETA.EQ.ZERO )THEN DO 20, J = 1, N DO 10, I = 1, J C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40, J = 1, N DO 30, I = 1, J C( I, J ) = BETA*C( I, J ) 30 CONTINUE 40 CONTINUE END IF ELSE IF( BETA.EQ.ZERO )THEN DO 60, J = 1, N DO 50, I = J, N C( I, J ) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80, J = 1, N DO 70, I = J, N C( I, J ) = BETA*C( I, J ) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF( LSAME( TRANS, 'N' ) )THEN * * Form C := alpha*A*A' + beta*C. * IF( UPPER )THEN DO 130, J = 1, N IF( BETA.EQ.ZERO )THEN DO 90, I = 1, J C( I, J ) = ZERO 90 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 100, I = 1, J C( I, J ) = BETA*C( I, J ) 100 CONTINUE END IF DO 120, L = 1, K IF( A( J, L ).NE.ZERO )THEN TEMP = ALPHA*A( J, L ) DO 110, I = 1, J C( I, J ) = C( I, J ) + TEMP*A( I, L ) 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE ELSE DO 180, J = 1, N IF( BETA.EQ.ZERO )THEN DO 140, I = J, N C( I, J ) = ZERO 140 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 150, I = J, N C( I, J ) = BETA*C( I, J ) 150 CONTINUE END IF DO 170, L = 1, K IF( A( J, L ).NE.ZERO )THEN TEMP = ALPHA*A( J, L ) DO 160, I = J, N C( I, J ) = C( I, J ) + TEMP*A( I, L ) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A'*A + beta*C. * IF( UPPER )THEN DO 210, J = 1, N DO 200, I = 1, J TEMP = ZERO DO 190, L = 1, K TEMP = TEMP + A( L, I )*A( L, J ) 190 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 200 CONTINUE 210 CONTINUE ELSE DO 240, J = 1, N DO 230, I = J, N TEMP = ZERO DO 220, L = 1, K TEMP = TEMP + A( L, I )*A( L, J ) 220 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of SSYRK . * END SUBROUTINE SLAMC1( BETA, T, RND, IEEE1 ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. LOGICAL IEEE1, RND INTEGER BETA, T * .. * * Purpose * ======= * * SLAMC1 determines the machine parameters given by BETA, T, RND, and * IEEE1. * * Arguments * ========= * * BETA (output) INTEGER * The base of the machine. * * T (output) INTEGER * The number of ( BETA ) digits in the mantissa. * * RND (output) LOGICAL * Specifies whether proper rounding ( RND = .TRUE. ) or * chopping ( RND = .FALSE. ) occurs in addition. This may not * be a reliable guide to the way in which the machine performs * its arithmetic. * * IEEE1 (output) LOGICAL * Specifies whether rounding appears to be done in the IEEE * 'round to nearest' style. * * Further Details * =============== * * The routine is based on the routine ENVRON by Malcolm and * incorporates suggestions by Gentleman and Marovich. See * * Malcolm M. A. (1972) Algorithms to reveal properties of * floating-point arithmetic. Comms. of the ACM, 15, 949-951. * * Gentleman W. M. and Marovich S. B. (1974) More on algorithms * that reveal properties of floating point arithmetic units. * Comms. of the ACM, 17, 276-277. * * * .. Local Scalars .. LOGICAL FIRST, LIEEE1, LRND INTEGER LBETA, LT REAL A, B, C, F, ONE, QTR, SAVEC, T1, T2 * .. * .. External Functions .. REAL SLAMC3 EXTERNAL SLAMC3 * .. * .. Save statement .. SAVE FIRST, LIEEE1, LBETA, LRND, LT * .. * .. Data statements .. DATA FIRST / .TRUE. / * .. * .. Executable Statements .. * IF( FIRST ) THEN FIRST = .FALSE. ONE = 1 * * LBETA, LIEEE1, LT and LRND are the local values of BETA, * IEEE1, T and RND. * * Throughout this routine we use the function SLAMC3 to ensure * that relevant values are stored and not held in registers, or * are not affected by optimizers. * * Compute a = 2.0**m with the smallest positive integer m such * that * * fl( a + 1.0 ) = a. * A = 1 C = 1 * *+ WHILE( C.EQ.ONE )LOOP 10 CONTINUE IF( C.EQ.ONE ) THEN A = 2*A C = SLAMC3( A, ONE ) C = SLAMC3( C, -A ) GO TO 10 END IF *+ END WHILE * * Now compute b = 2.0**m with the smallest positive integer m * such that * * fl( a + b ) .gt. a. * B = 1 C = SLAMC3( A, B ) * *+ WHILE( C.EQ.A )LOOP 20 CONTINUE IF( C.EQ.A ) THEN B = 2*B C = SLAMC3( A, B ) GO TO 20 END IF *+ END WHILE * * Now compute the base. a and c are neighbouring floating point * numbers in the interval ( beta**t, beta**( t + 1 ) ) and so * their difference is beta. Adding 0.25 to c is to ensure that it * is truncated to beta and not ( beta - 1 ). * QTR = ONE / 4 SAVEC = C C = SLAMC3( C, -A ) LBETA = C + QTR * * Now determine whether rounding or chopping occurs, by adding a * bit less than beta/2 and a bit more than beta/2 to a. * B = LBETA F = SLAMC3( B / 2, -B / 100 ) C = SLAMC3( F, A ) IF( C.EQ.A ) THEN LRND = .TRUE. ELSE LRND = .FALSE. END IF F = SLAMC3( B / 2, B / 100 ) C = SLAMC3( F, A ) IF( ( LRND ) .AND. ( C.EQ.A ) ) $ LRND = .FALSE. * * Try and decide whether rounding is done in the IEEE 'round to * nearest' style. B/2 is half a unit in the last place of the two * numbers A and SAVEC. Furthermore, A is even, i.e. has last bit * zero, and SAVEC is odd. Thus adding B/2 to A should not change * A, but adding B/2 to SAVEC should change SAVEC. * T1 = SLAMC3( B / 2, A ) T2 = SLAMC3( B / 2, SAVEC ) LIEEE1 = ( T1.EQ.A ) .AND. ( T2.GT.SAVEC ) .AND. LRND * * Now find the mantissa, t. It should be the integer part of * log to the base beta of a, however it is safer to determine t * by powering. So we find t as the smallest positive integer for * which * * fl( beta**t + 1.0 ) = 1.0. * LT = 0 A = 1 C = 1 * *+ WHILE( C.EQ.ONE )LOOP 30 CONTINUE IF( C.EQ.ONE ) THEN LT = LT + 1 A = A*LBETA C = SLAMC3( A, ONE ) C = SLAMC3( C, -A ) GO TO 30 END IF *+ END WHILE * END IF * BETA = LBETA T = LT RND = LRND IEEE1 = LIEEE1 RETURN * * End of SLAMC1 * END * ************************************************************************ * SUBROUTINE SLAMC2( BETA, T, RND, EPS, EMIN, RMIN, EMAX, RMAX ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. LOGICAL RND INTEGER BETA, EMAX, EMIN, T REAL EPS, RMAX, RMIN * .. * * Purpose * ======= * * SLAMC2 determines the machine parameters specified in its argument * list. * * Arguments * ========= * * BETA (output) INTEGER * The base of the machine. * * T (output) INTEGER * The number of ( BETA ) digits in the mantissa. * * RND (output) LOGICAL * Specifies whether proper rounding ( RND = .TRUE. ) or * chopping ( RND = .FALSE. ) occurs in addition. This may not * be a reliable guide to the way in which the machine performs * its arithmetic. * * EPS (output) REAL * The smallest positive number such that * * fl( 1.0 - EPS ) .LT. 1.0, * * where fl denotes the computed value. * * EMIN (output) INTEGER * The minimum exponent before (gradual) underflow occurs. * * RMIN (output) REAL * The smallest normalized number for the machine, given by * BASE**( EMIN - 1 ), where BASE is the floating point value * of BETA. * * EMAX (output) INTEGER * The maximum exponent before overflow occurs. * * RMAX (output) REAL * The largest positive number for the machine, given by * BASE**EMAX * ( 1 - EPS ), where BASE is the floating point * value of BETA. * * Further Details * =============== * * The computation of EPS is based on a routine PARANOIA by * W. Kahan of the University of California at Berkeley. * * * .. Local Scalars .. LOGICAL FIRST, IEEE, IWARN, LIEEE1, LRND INTEGER GNMIN, GPMIN, I, LBETA, LEMAX, LEMIN, LT, $ NGNMIN, NGPMIN REAL A, B, C, HALF, LEPS, LRMAX, LRMIN, ONE, RBASE, $ SIXTH, SMALL, THIRD, TWO, ZERO * .. * .. External Functions .. REAL SLAMC3 EXTERNAL SLAMC3 * .. * .. External Subroutines .. EXTERNAL SLAMC1, SLAMC4, SLAMC5 * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. * .. Save statement .. SAVE FIRST, IWARN, LBETA, LEMAX, LEMIN, LEPS, LRMAX, $ LRMIN, LT * .. * .. Data statements .. DATA FIRST / .TRUE. / , IWARN / .FALSE. / * .. * .. Executable Statements .. * IF( FIRST ) THEN FIRST = .FALSE. ZERO = 0 ONE = 1 TWO = 2 * * LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of * BETA, T, RND, EPS, EMIN and RMIN. * * Throughout this routine we use the function SLAMC3 to ensure * that relevant values are stored and not held in registers, or * are not affected by optimizers. * * SLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1. * CALL SLAMC1( LBETA, LT, LRND, LIEEE1 ) * * Start to find EPS. * B = LBETA A = B**( -LT ) LEPS = A * * Try some tricks to see whether or not this is the correct EPS. * B = TWO / 3 HALF = ONE / 2 SIXTH = SLAMC3( B, -HALF ) THIRD = SLAMC3( SIXTH, SIXTH ) B = SLAMC3( THIRD, -HALF ) B = SLAMC3( B, SIXTH ) B = ABS( B ) IF( B.LT.LEPS ) $ B = LEPS * LEPS = 1 * *+ WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP 10 CONTINUE IF( ( LEPS.GT.B ) .AND. ( B.GT.ZERO ) ) THEN LEPS = B C = SLAMC3( HALF*LEPS, ( TWO**5 )*( LEPS**2 ) ) C = SLAMC3( HALF, -C ) B = SLAMC3( HALF, C ) C = SLAMC3( HALF, -B ) B = SLAMC3( HALF, C ) GO TO 10 END IF *+ END WHILE * IF( A.LT.LEPS ) $ LEPS = A * * Computation of EPS complete. * * Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3)). * Keep dividing A by BETA until (gradual) underflow occurs. This * is detected when we cannot recover the previous A. * RBASE = ONE / LBETA SMALL = ONE DO 20 I = 1, 3 SMALL = SLAMC3( SMALL*RBASE, ZERO ) 20 CONTINUE A = SLAMC3( ONE, SMALL ) CALL SLAMC4( NGPMIN, ONE, LBETA ) CALL SLAMC4( NGNMIN, -ONE, LBETA ) CALL SLAMC4( GPMIN, A, LBETA ) CALL SLAMC4( GNMIN, -A, LBETA ) IEEE = .FALSE. * IF( ( NGPMIN.EQ.NGNMIN ) .AND. ( GPMIN.EQ.GNMIN ) ) THEN IF( NGPMIN.EQ.GPMIN ) THEN LEMIN = NGPMIN * ( Non twos-complement machines, no gradual underflow; * e.g., VAX ) ELSE IF( ( GPMIN-NGPMIN ).EQ.3 ) THEN LEMIN = NGPMIN - 1 + LT IEEE = .TRUE. * ( Non twos-complement machines, with gradual underflow; * e.g., IEEE standard followers ) ELSE LEMIN = MIN( NGPMIN, GPMIN ) * ( A guess; no known machine ) IWARN = .TRUE. END IF * ELSE IF( ( NGPMIN.EQ.GPMIN ) .AND. ( NGNMIN.EQ.GNMIN ) ) THEN IF( ABS( NGPMIN-NGNMIN ).EQ.1 ) THEN LEMIN = MAX( NGPMIN, NGNMIN ) * ( Twos-complement machines, no gradual underflow; * e.g., CYBER 205 ) ELSE LEMIN = MIN( NGPMIN, NGNMIN ) * ( A guess; no known machine ) IWARN = .TRUE. END IF * ELSE IF( ( ABS( NGPMIN-NGNMIN ).EQ.1 ) .AND. $ ( GPMIN.EQ.GNMIN ) ) THEN IF( ( GPMIN-MIN( NGPMIN, NGNMIN ) ).EQ.3 ) THEN LEMIN = MAX( NGPMIN, NGNMIN ) - 1 + LT * ( Twos-complement machines with gradual underflow; * no known machine ) ELSE LEMIN = MIN( NGPMIN, NGNMIN ) * ( A guess; no known machine ) IWARN = .TRUE. END IF * ELSE LEMIN = MIN( NGPMIN, NGNMIN, GPMIN, GNMIN ) * ( A guess; no known machine ) IWARN = .TRUE. END IF *** * Comment out this if block if EMIN is ok IF( IWARN ) THEN FIRST = .TRUE. WRITE( 6, FMT = 9999 )LEMIN END IF *** * * Assume IEEE arithmetic if we found denormalised numbers above, * or if arithmetic seems to round in the IEEE style, determined * in routine SLAMC1. A true IEEE machine should have both things * true; however, faulty machines may have one or the other. * IEEE = IEEE .OR. LIEEE1 * * Compute RMIN by successive division by BETA. We could compute * RMIN as BASE**( EMIN - 1 ), but some machines underflow during * this computation. * LRMIN = 1 DO 30 I = 1, 1 - LEMIN LRMIN = SLAMC3( LRMIN*RBASE, ZERO ) 30 CONTINUE * * Finally, call SLAMC5 to compute EMAX and RMAX. * CALL SLAMC5( LBETA, LT, LEMIN, IEEE, LEMAX, LRMAX ) END IF * BETA = LBETA T = LT RND = LRND EPS = LEPS EMIN = LEMIN RMIN = LRMIN EMAX = LEMAX RMAX = LRMAX * RETURN * 9999 FORMAT( / / ' WARNING. The value EMIN may be incorrect:-', $ ' EMIN = ', I8, / $ ' If, after inspection, the value EMIN looks', $ ' acceptable please comment out ', $ / ' the IF block as marked within the code of routine', $ ' SLAMC2,', / ' otherwise supply EMIN explicitly.', / ) * * End of SLAMC2 * END * ************************************************************************ * REAL FUNCTION SLAMC3( A, B ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. REAL A, B * .. * * Purpose * ======= * * SLAMC3 is intended to force A and B to be stored prior to doing * the addition of A and B , for use in situations where optimizers * might hold one of these in a register. * * Arguments * ========= * * A, B (input) REAL * The values A and B. * * * .. Executable Statements .. * SLAMC3 = A + B * RETURN * * End of SLAMC3 * END * ************************************************************************ * SUBROUTINE SLAMC4( EMIN, START, BASE ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. INTEGER BASE, EMIN REAL START * .. * * Purpose * ======= * * SLAMC4 is a service routine for SLAMC2. * * Arguments * ========= * * EMIN (output) EMIN * The minimum exponent before (gradual) underflow, computed by * setting A = START and dividing by BASE until the previous A * can not be recovered. * * START (input) REAL * The starting point for determining EMIN. * * BASE (input) INTEGER * The base of the machine. * * * .. Local Scalars .. INTEGER I REAL A, B1, B2, C1, C2, D1, D2, ONE, RBASE, ZERO * .. * .. External Functions .. REAL SLAMC3 EXTERNAL SLAMC3 * .. * .. Executable Statements .. * A = START ONE = 1 RBASE = ONE / BASE ZERO = 0 EMIN = 1 B1 = SLAMC3( A*RBASE, ZERO ) C1 = A C2 = A D1 = A D2 = A *+ WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND. * $ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP 10 CONTINUE IF( ( C1.EQ.A ) .AND. ( C2.EQ.A ) .AND. ( D1.EQ.A ) .AND. $ ( D2.EQ.A ) ) THEN EMIN = EMIN - 1 A = B1 B1 = SLAMC3( A / BASE, ZERO ) C1 = SLAMC3( B1*BASE, ZERO ) D1 = ZERO DO 20 I = 1, BASE D1 = D1 + B1 20 CONTINUE B2 = SLAMC3( A*RBASE, ZERO ) C2 = SLAMC3( B2 / RBASE, ZERO ) D2 = ZERO DO 30 I = 1, BASE D2 = D2 + B2 30 CONTINUE GO TO 10 END IF *+ END WHILE * RETURN * * End of SLAMC4 * END * ************************************************************************ * SUBROUTINE SLAMC5( BETA, P, EMIN, IEEE, EMAX, RMAX ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. LOGICAL IEEE INTEGER BETA, EMAX, EMIN, P REAL RMAX * .. * * Purpose * ======= * * SLAMC5 attempts to compute RMAX, the largest machine floating-point * number, without overflow. It assumes that EMAX + abs(EMIN) sum * approximately to a power of 2. It will fail on machines where this * assumption does not hold, for example, the Cyber 205 (EMIN = -28625, * EMAX = 28718). It will also fail if the value supplied for EMIN is * too large (i.e. too close to zero), probably with overflow. * * Arguments * ========= * * BETA (input) INTEGER * The base of floating-point arithmetic. * * P (input) INTEGER * The number of base BETA digits in the mantissa of a * floating-point value. * * EMIN (input) INTEGER * The minimum exponent before (gradual) underflow. * * IEEE (input) LOGICAL * A logical flag specifying whether or not the arithmetic * system is thought to comply with the IEEE standard. * * EMAX (output) INTEGER * The largest exponent before overflow * * RMAX (output) REAL * The largest machine floating-point number. * * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. INTEGER EXBITS, EXPSUM, I, LEXP, NBITS, TRY, UEXP REAL OLDY, RECBAS, Y, Z * .. * .. External Functions .. REAL SLAMC3 EXTERNAL SLAMC3 * .. * .. Intrinsic Functions .. INTRINSIC MOD * .. * .. Executable Statements .. * * First compute LEXP and UEXP, two powers of 2 that bound * abs(EMIN). We then assume that EMAX + abs(EMIN) will sum * approximately to the bound that is closest to abs(EMIN). * (EMAX is the exponent of the required number RMAX). * LEXP = 1 EXBITS = 1 10 CONTINUE TRY = LEXP*2 IF( TRY.LE.( -EMIN ) ) THEN LEXP = TRY EXBITS = EXBITS + 1 GO TO 10 END IF IF( LEXP.EQ.-EMIN ) THEN UEXP = LEXP ELSE UEXP = TRY EXBITS = EXBITS + 1 END IF * * Now -LEXP is less than or equal to EMIN, and -UEXP is greater * than or equal to EMIN. EXBITS is the number of bits needed to * store the exponent. * IF( ( UEXP+EMIN ).GT.( -LEXP-EMIN ) ) THEN EXPSUM = 2*LEXP ELSE EXPSUM = 2*UEXP END IF * * EXPSUM is the exponent range, approximately equal to * EMAX - EMIN + 1 . * EMAX = EXPSUM + EMIN - 1 NBITS = 1 + EXBITS + P * * NBITS is the total number of bits needed to store a * floating-point number. * IF( ( MOD( NBITS, 2 ).EQ.1 ) .AND. ( BETA.EQ.2 ) ) THEN * * Either there are an odd number of bits used to store a * floating-point number, which is unlikely, or some bits are * not used in the representation of numbers, which is possible, * (e.g. Cray machines) or the mantissa has an implicit bit, * (e.g. IEEE machines, Dec Vax machines), which is perhaps the * most likely. We have to assume the last alternative. * If this is true, then we need to reduce EMAX by one because * there must be some way of representing zero in an implicit-bit * system. On machines like Cray, we are reducing EMAX by one * unnecessarily. * EMAX = EMAX - 1 END IF * IF( IEEE ) THEN * * Assume we are on an IEEE machine which reserves one exponent * for infinity and NaN. * EMAX = EMAX - 1 END IF * * Now create RMAX, the largest machine number, which should * be equal to (1.0 - BETA**(-P)) * BETA**EMAX . * * First compute 1.0 - BETA**(-P), being careful that the * result is less than 1.0 . * RECBAS = ONE / BETA Z = BETA - ONE Y = ZERO DO 20 I = 1, P Z = Z*RECBAS IF( Y.LT.ONE ) $ OLDY = Y Y = SLAMC3( Y, Z ) 20 CONTINUE IF( Y.GE.ONE ) $ Y = OLDY * * Now multiply by BETA**EMAX to get RMAX. * DO 30 I = 1, EMAX Y = SLAMC3( Y*BETA, ZERO ) 30 CONTINUE * RMAX = Y RETURN * * End of SLAMC5 * END REAL FUNCTION SLAMCH( CMACH ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER CMACH * .. * * Purpose * ======= * * SLAMCH determines single precision machine parameters. * * Arguments * ========= * * CMACH (input) CHARACTER*1 * Specifies the value to be returned by SLAMCH: * = 'E' or 'e', SLAMCH := eps * = 'S' or 's , SLAMCH := sfmin * = 'B' or 'b', SLAMCH := base * = 'P' or 'p', SLAMCH := eps*base * = 'N' or 'n', SLAMCH := t * = 'R' or 'r', SLAMCH := rnd * = 'M' or 'm', SLAMCH := emin * = 'U' or 'u', SLAMCH := rmin * = 'L' or 'l', SLAMCH := emax * = 'O' or 'o', SLAMCH := rmax * * where * * eps = relative machine precision * sfmin = safe minimum, such that 1/sfmin does not overflow * base = base of the machine * prec = eps*base * t = number of (base) digits in the mantissa * rnd = 1.0 when rounding occurs in addition, 0.0 otherwise * emin = minimum exponent before (gradual) underflow * rmin = underflow threshold - base**(emin-1) * emax = largest exponent before overflow * rmax = overflow threshold - (base**emax)*(1-eps) * * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. LOGICAL FIRST, LRND INTEGER BETA, IMAX, IMIN, IT REAL BASE, EMAX, EMIN, EPS, PREC, RMACH, RMAX, RMIN, $ RND, SFMIN, SMALL, T * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL SLAMC2 * .. * .. Save statement .. SAVE FIRST, EPS, SFMIN, BASE, T, RND, EMIN, RMIN, $ EMAX, RMAX, PREC * .. * .. Data statements .. DATA FIRST / .TRUE. / * .. * .. Executable Statements .. * IF( FIRST ) THEN FIRST = .FALSE. CALL SLAMC2( BETA, IT, LRND, EPS, IMIN, RMIN, IMAX, RMAX ) BASE = BETA T = IT IF( LRND ) THEN RND = ONE EPS = ( BASE**( 1-IT ) ) / 2 ELSE RND = ZERO EPS = BASE**( 1-IT ) END IF PREC = EPS*BASE EMIN = IMIN EMAX = IMAX SFMIN = RMIN SMALL = ONE / RMAX IF( SMALL.GE.SFMIN ) THEN * * Use SMALL plus a bit, to avoid the possibility of rounding * causing overflow when computing 1/sfmin. * SFMIN = SMALL*( ONE+EPS ) END IF END IF * IF( LSAME( CMACH, 'E' ) ) THEN RMACH = EPS ELSE IF( LSAME( CMACH, 'S' ) ) THEN RMACH = SFMIN ELSE IF( LSAME( CMACH, 'B' ) ) THEN RMACH = BASE ELSE IF( LSAME( CMACH, 'P' ) ) THEN RMACH = PREC ELSE IF( LSAME( CMACH, 'N' ) ) THEN RMACH = T ELSE IF( LSAME( CMACH, 'R' ) ) THEN RMACH = RND ELSE IF( LSAME( CMACH, 'M' ) ) THEN RMACH = EMIN ELSE IF( LSAME( CMACH, 'U' ) ) THEN RMACH = RMIN ELSE IF( LSAME( CMACH, 'L' ) ) THEN RMACH = EMAX ELSE IF( LSAME( CMACH, 'O' ) ) THEN RMACH = RMAX END IF * SLAMCH = RMACH RETURN * * End of SLAMCH * END REAL FUNCTION SLAPY2( X, Y ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. REAL X, Y * .. * * Purpose * ======= * * SLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary * overflow. * * Arguments * ========= * * X (input) REAL * Y (input) REAL * X and Y specify the values x and y. * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E0 ) REAL ONE PARAMETER ( ONE = 1.0E0 ) * .. * .. Local Scalars .. REAL W, XABS, YABS, Z * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT * .. * .. Executable Statements .. * XABS = ABS( X ) YABS = ABS( Y ) W = MAX( XABS, YABS ) Z = MIN( XABS, YABS ) IF( Z.EQ.ZERO ) THEN SLAPY2 = W ELSE SLAPY2 = W*SQRT( ONE+( Z / W )**2 ) END IF RETURN * * End of SLAPY2 * END SUBROUTINE SLARFG( N, ALPHA, X, INCX, TAU ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. INTEGER INCX, N REAL ALPHA, TAU * .. * .. Array Arguments .. REAL X( * ) * .. * * Purpose * ======= * * SLARFG generates a real elementary reflector H of order n, such * that * * H * ( alpha ) = ( beta ), H' * H = I. * ( x ) ( 0 ) * * where alpha and beta are scalars, and x is an (n-1)-element real * vector. H is represented in the form * * H = I - tau * ( 1 ) * ( 1 v' ) , * ( v ) * * where tau is a real scalar and v is a real (n-1)-element * vector. * * If the elements of x are all zero, then tau = 0 and H is taken to be * the unit matrix. * * Otherwise 1 <= tau <= 2. * * Arguments * ========= * * N (input) INTEGER * The order of the elementary reflector. * * ALPHA (input/output) REAL * On entry, the value alpha. * On exit, it is overwritten with the value beta. * * X (input/output) REAL array, dimension * (1+(N-2)*abs(INCX)) * On entry, the vector x. * On exit, it is overwritten with the vector v. * * INCX (input) INTEGER * The increment between elements of X. INCX <> 0. * * TAU (output) REAL * The value tau. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER J, KNT REAL BETA, RSAFMN, SAFMIN, XNORM * .. * .. External Functions .. REAL SLAMCH, SLAPY2, SNRM2 EXTERNAL SLAMCH, SLAPY2, SNRM2 * .. * .. Intrinsic Functions .. INTRINSIC ABS, SIGN * .. * .. External Subroutines .. EXTERNAL SSCAL * .. * .. Executable Statements .. * IF( N.LE.1 ) THEN TAU = ZERO RETURN END IF * XNORM = SNRM2( N-1, X, INCX ) * IF( XNORM.EQ.ZERO ) THEN * * H = I * TAU = ZERO ELSE * * general case * BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA ) SAFMIN = SLAMCH( 'S' ) IF( ABS( BETA ).LT.SAFMIN ) THEN * * XNORM, BETA may be inaccurate; scale X and recompute them * RSAFMN = ONE / SAFMIN KNT = 0 10 CONTINUE KNT = KNT + 1 CALL SSCAL( N-1, RSAFMN, X, INCX ) BETA = BETA*RSAFMN ALPHA = ALPHA*RSAFMN IF( ABS( BETA ).LT.SAFMIN ) $ GO TO 10 * * New BETA is at most 1, at least SAFMIN * XNORM = SNRM2( N-1, X, INCX ) BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA ) TAU = ( BETA-ALPHA ) / BETA CALL SSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX ) * * If ALPHA is subnormal, it may lose relative accuracy * ALPHA = BETA DO 20 J = 1, KNT ALPHA = ALPHA*SAFMIN 20 CONTINUE ELSE TAU = ( BETA-ALPHA ) / BETA CALL SSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX ) ALPHA = BETA END IF END IF * RETURN * * End of SLARFG * END SUBROUTINE SGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, $ INFO ) * * -- LAPACK driver routine (version 1.0a) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * June 30, 1992 * * .. Scalar Arguments .. CHARACTER TRANS INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS * .. * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), WORK( LWORK ) * .. * * Purpose * ======= * * SGELS solves square or over- and underdetermined linear systems * involving the m-by-n matrix A and the right-hand side B * using orthogonal reductions. It is assumed that A has full rank. * * Cases: * * 1) m >= n, TRANS = 'N': * Solve the least-squares problem min|| A*X - B ||. * Computing A = [ Q1, Q2 ] [ R ] n * n m-n [ 0 ] m-n * the least-squares solution is X = inv(R) * Q1' * B. * A is overwritten by its QR factorization * and B is overwritten by [ X ] * [ RS ] * where RS = Q2'*B. The residual B - A*X is Q2*RS. * * 2) m >= n, TRANS = 'T': * Solve the underdetermined system A' * X = B. * Computing A = [ Q1, Q2 ] [ R ] n * n m-n [ 0 ] m-n * the minimum-norm solution is X = Q1 * inv(R') * B. * A is overwritten by its QR factorization, B is overwritten by X. * * 3) m < n, TRANS = 'N': * Solve the underdetermined system A * X = B. * Computing A = [ L , 0] [ Q1 ] m * m n-m [ Q2 ] n-m * the minimum-norm solution is X = Q1' * inv(L) * B. * A is overwritten by its LQ factorization, B is overwritten by X. * * 4) m < n, TRANS = 'T': * Solve the least-squares problem min|| A'*X - B ||. * Computing A = [ L , 0] [ Q1 ] m * m n-m [ Q2 ] n-m * the least-squares solution is X = inv(L') * Q1 * B. * A is overwritten by its LQ factorization * and B is overwritten by [ X ] * [ RS ] * where RS = Q2*B. The residual B - A*X is Q2'*RS. * * Arguments * ========= * * TRANS (input) CHARACTER * If TRANS = 'N', we compute the minimum-norm or least-squares * solution A * X = B. * If TRANS = 'T', we compute the minimum-norm or least-squares * solution A' * X = B. * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right-hand sides. NRHS >=0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the M by N matrix A. * On exit, * if M >= N, A has been overwritten by its QR factorization. * if M < N, A has been overwritten by its LQ factorization. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * B (input/output) REAL array, dimension (LDB,NRHS) * on entry, * if TRANS = 'N', the M by NRHS right-hand side. * if TRANS = 'T', the N by NRHS right-hand side. * on exit, * if M >= N and TRANS = 'N', the first N rows of B * contain the least-squares solution, the * remaining M - N rows the residual. * if M >= N and TRANS = 'T', B contains the M by NRHS * minimum-norm solution. * if M < N and TRANS = 'N', B contains the N by NRHS * minimum-norm solution. * if M < N and TRANS = 'T', the first M rows of B * contain the least-squares solution, the * remaining N - M rows the residual. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= MAX(1,M,N). * * WORK (workspace) REAL array, dimension (LWORK) * on output, work(1) contains the workspace length required * for optimum efficiency * * LWORK (input) INTEGER * The dimension of the array WORK. * LWORK >= MN + MAX(1,M,N,NRHS) where MN = min(M,N). * The block algorithm will not be used unless * LWORK >= MN + MAX(1,M,N,NRHS) * NB * where NB is the block size for this environment. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. LOGICAL TPSD INTEGER BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE REAL ANRM, BIGNUM, BNRM, SMLNUM * .. * .. Local Arrays .. REAL RWORK( 1 ) * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV REAL SLAMCH, SLANGE EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE * .. * .. External Subroutines .. EXTERNAL SGELQF, SGEQRF, SLABAD, SLASCL, SLASET, SORMLQ, $ SORMQR, STRSM, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Executable Statements .. * * Test the input arguments. * INFO = 0 MN = MIN( M, N ) IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN INFO = -1 ELSE IF( M.LT.0 ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( NRHS.LT.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -6 ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN INFO = -8 ELSE IF( LWORK.LT.MAX( 1, MN+MAX( M, N, NRHS ) ) ) THEN INFO = -10 END IF * * Figure out optimal block size * IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN * TPSD = .TRUE. IF( LSAME( TRANS, 'N' ) ) $ TPSD = .FALSE. * IF( M.GE.N ) THEN NB = ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 ) IF( TPSD ) THEN NB = MAX( NB, ILAENV( 1, 'SORMQR', 'LN', M, NRHS, N, $ -1 ) ) ELSE NB = MAX( NB, ILAENV( 1, 'SORMQR', 'LT', M, NRHS, N, $ -1 ) ) END IF ELSE NB = ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 ) IF( TPSD ) THEN NB = MAX( NB, ILAENV( 1, 'SORMLQ', 'LT', N, NRHS, M, $ -1 ) ) ELSE NB = MAX( NB, ILAENV( 1, 'SORMLQ', 'LN', N, NRHS, M, $ -1 ) ) END IF END IF * WSIZE = MN + MAX( M, N, NRHS )*NB WORK( 1 ) = REAL( WSIZE ) * END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGELS ', -INFO ) RETURN END IF * * Quick return if possible * IF( MIN( M, N, NRHS ).EQ.0 ) THEN CALL SLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) RETURN END IF * * Get machine parameters * SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' ) BIGNUM = ONE / SMLNUM CALL SLABAD( SMLNUM, BIGNUM ) * * Scale A, B if max entry outside range [SMLNUM,BIGNUM] * ANRM = SLANGE( 'M', M, N, A, LDA, RWORK ) IASCL = 0 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN * * Scale matrix norm up to SMLNUM * CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) IASCL = 1 ELSE IF( ANRM.GT.BIGNUM ) THEN * * Scale matrix norm down to BIGNUM * CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) IASCL = 2 ELSE IF( ANRM.EQ.ZERO ) THEN * * Matrix all zero. Return zero solution. * CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) GO TO 50 END IF * BROW = M IF( TPSD ) $ BROW = N BNRM = SLANGE( 'M', BROW, NRHS, B, LDB, RWORK ) IBSCL = 0 IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN * * Scale matrix norm up to SMLNUM * CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB, $ INFO ) IBSCL = 1 ELSE IF( BNRM.GT.BIGNUM ) THEN * * Scale matrix norm down to BIGNUM * CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB, $ INFO ) IBSCL = 2 END IF * IF( M.GE.N ) THEN * * compute QR factorization of A * CALL SGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN, $ INFO ) * * workspace at least N, optimally N*NB * IF( .NOT.TPSD ) THEN * * Least-Squares Problem min || A * X - B || * * B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) * CALL SORMQR( 'Left', 'Transpose', M, NRHS, N, A, LDA, $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN, $ INFO ) * * workspace at least NRHS, optimally NRHS*NB * * B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) * CALL STRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N, $ NRHS, ONE, A, LDA, B, LDB ) * SCLLEN = N * ELSE * * Overdetermined system of equations A' * X = B * * B(1:N,1:NRHS) := inv(R') * B(1:N,1:NRHS) * CALL STRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', N, $ NRHS, ONE, A, LDA, B, LDB ) * * B(N+1:M,1:NRHS) = ZERO * DO 20 J = 1, NRHS DO 10 I = N + 1, M B( I, J ) = ZERO 10 CONTINUE 20 CONTINUE * * B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) * CALL SORMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA, $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN, $ INFO ) * * workspace at least NRHS, optimally NRHS*NB * SCLLEN = M * END IF * ELSE * * Compute LQ factorization of A * CALL SGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN, $ INFO ) * * workspace at least M, optimally M*NB. * IF( .NOT.TPSD ) THEN * * underdetermined system of equations A * X = B * * B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) * CALL STRSM( 'Left', 'Lower', 'No transpose', 'Non-unit', M, $ NRHS, ONE, A, LDA, B, LDB ) * * B(M+1:N,1:NRHS) = 0 * DO 40 J = 1, NRHS DO 30 I = M + 1, N B( I, J ) = ZERO 30 CONTINUE 40 CONTINUE * * B(1:N,1:NRHS) := Q(1:N,:)' * B(1:M,1:NRHS) * CALL SORMLQ( 'Left', 'Transpose', N, NRHS, M, A, LDA, $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN, $ INFO ) * * workspace at least NRHS, optimally NRHS*NB * SCLLEN = N * ELSE * * overdetermined system min || A' * X - B || * * B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) * CALL SORMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA, $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN, $ INFO ) * * workspace at least NRHS, optimally NRHS*NB * * B(1:M,1:NRHS) := inv(L') * B(1:M,1:NRHS) * CALL STRSM( 'Left', 'Lower', 'Transpose', 'Non-unit', M, $ NRHS, ONE, A, LDA, B, LDB ) * SCLLEN = M * END IF * END IF * * Undo scaling * IF( IASCL.EQ.1 ) THEN CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB, $ INFO ) ELSE IF( IASCL.EQ.2 ) THEN CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB, $ INFO ) END IF IF( IBSCL.EQ.1 ) THEN CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB, $ INFO ) ELSE IF( IBSCL.EQ.2 ) THEN CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB, $ INFO ) END IF * 50 CONTINUE WORK( 1 ) = REAL( WSIZE ) * RETURN * * End of SGELS * END SUBROUTINE SPOTRF( UPLO, N, A, LDA, INFO ) * * -- LAPACK routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, N * .. * .. Array Arguments .. REAL A( LDA, * ) * .. * * Purpose * ======= * * SPOTRF computes the Cholesky factorization of a real symmetric * positive definite matrix A. * * The factorization has the form * A = U' * U , if UPLO = 'U', or * A = L * L', if UPLO = 'L', * where U is an upper triangular matrix and L is lower triangular. * * This is the block version of the algorithm, calling Level 3 BLAS. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * symmetric matrix A is stored. * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the symmetric matrix A. If UPLO = 'U', the leading * n by n upper triangular part of A contains the upper * triangular part of the matrix A, and the strictly lower * triangular part of A is not referenced. If UPLO = 'L', the * leading n by n lower triangular part of A contains the lower * triangular part of the matrix A, and the strictly upper * triangular part of A is not referenced. * * On exit, if INFO = 0, the factor U or L from the Cholesky * factorization A = U'*U or A = L*L'. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * > 0: if INFO = k, the leading minor of order k is not * positive definite, and the factorization could not be * completed. * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER J, JB, NB * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. External Subroutines .. EXTERNAL SGEMM, SPOTF2, SSYRK, STRSM, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SPOTRF', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Determine the block size for this environment. * NB = ILAENV( 1, 'SPOTRF', UPLO, N, -1, -1, -1 ) IF( NB.LE.1 .OR. NB.GE.N ) THEN * * Use unblocked code. * CALL SPOTF2( UPLO, N, A, LDA, INFO ) ELSE * * Use blocked code. * IF( UPPER ) THEN * * Compute the Cholesky factorization A = U'*U. * DO 10 J = 1, N, NB * * Update and factorize the current diagonal block and test * for non-positive-definiteness. * JB = MIN( NB, N-J+1 ) CALL SSYRK( 'Upper', 'Transpose', JB, J-1, -ONE, $ A( 1, J ), LDA, ONE, A( J, J ), LDA ) CALL SPOTF2( 'Upper', JB, A( J, J ), LDA, INFO ) IF( INFO.NE.0 ) $ GO TO 30 IF( J+JB.LE.N ) THEN * * Compute the current block row. * CALL SGEMM( 'Transpose', 'No transpose', JB, N-J-JB+1, $ J-1, -ONE, A( 1, J ), LDA, A( 1, J+JB ), $ LDA, ONE, A( J, J+JB ), LDA ) CALL STRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', $ JB, N-J-JB+1, ONE, A( J, J ), LDA, $ A( J, J+JB ), LDA ) END IF 10 CONTINUE * ELSE * * Compute the Cholesky factorization A = L*L'. * DO 20 J = 1, N, NB * * Update and factorize the current diagonal block and test * for non-positive-definiteness. * JB = MIN( NB, N-J+1 ) CALL SSYRK( 'Lower', 'No transpose', JB, J-1, -ONE, $ A( J, 1 ), LDA, ONE, A( J, J ), LDA ) CALL SPOTF2( 'Lower', JB, A( J, J ), LDA, INFO ) IF( INFO.NE.0 ) $ GO TO 30 IF( J+JB.LE.N ) THEN * * Compute the current block column. * CALL SGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB, $ J-1, -ONE, A( J+JB, 1 ), LDA, A( J, 1 ), $ LDA, ONE, A( J+JB, J ), LDA ) CALL STRSM( 'Right', 'Lower', 'Transpose', 'Non-unit', $ N-J-JB+1, JB, ONE, A( J, J ), LDA, $ A( J+JB, J ), LDA ) END IF 20 CONTINUE END IF END IF GO TO 40 * 30 CONTINUE INFO = INFO + J - 1 * 40 CONTINUE RETURN * * End of SPOTRF * END SUBROUTINE SPOTRI( UPLO, N, A, LDA, INFO ) * * -- LAPACK routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, N * .. * .. Array Arguments .. REAL A( LDA, * ) * .. * * Purpose * ======= * * SPOTRI computes the inverse of a real symmetric positive definite * matrix A using the Cholesky factorization A = U'*U or A = L*L' * computed by SPOTRF. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the factor stored in A is upper or lower * triangular. * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the triangular factor U or L from the Cholesky * factorization A = U'*U or A = L*L', as computed by SPOTRF. * On exit, the upper or lower triangle of the (symmetric) * inverse of A, overwriting the input factor U or L. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * > 0: if INFO = k, the (k,k) element of the factor U or L is * zero, and the inverse could not be computed. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL SLAUUM, STRTRI, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SPOTRI', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Invert the triangular Cholesky factor U or L. * CALL STRTRI( UPLO, 'Non-unit', N, A, LDA, INFO ) IF( INFO.GT.0 ) $ RETURN * * Form inv(U)*inv(U)' or inv(L)'*inv(L). * CALL SLAUUM( UPLO, N, A, LDA, INFO ) * RETURN * * End of SPOTRI * END SUBROUTINE SPOTF2( UPLO, N, A, LDA, INFO ) * * -- LAPACK routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, N * .. * .. Array Arguments .. REAL A( LDA, * ) * .. * * Purpose * ======= * * SPOTF2 computes the Cholesky factorization of a real symmetric * positive definite matrix A. * * The factorization has the form * A = U' * U , if UPLO = 'U', or * A = L * L', if UPLO = 'L', * where U is an upper triangular matrix and L is lower triangular. * * This is the unblocked version of the algorithm, calling Level 2 BLAS. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * symmetric matrix A is stored. * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the symmetric matrix A. If UPLO = 'U', the leading * n by n upper triangular part of A contains the upper * triangular part of the matrix A, and the strictly lower * triangular part of A is not referenced. If UPLO = 'L', the * leading n by n lower triangular part of A contains the lower * triangular part of the matrix A, and the strictly upper * triangular part of A is not referenced. * * On exit, if INFO = 0, the factor U or L from the Cholesky * factorization A = U'*U or A = L*L'. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * > 0: if INFO = k, the leading minor of order k is not * positive definite, and the factorization could not be * completed. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER J REAL AJJ * .. * .. External Functions .. LOGICAL LSAME REAL SDOT EXTERNAL LSAME, SDOT * .. * .. External Subroutines .. EXTERNAL SGEMV, SSCAL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SPOTF2', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * IF( UPPER ) THEN * * Compute the Cholesky factorization A = U'*U. * DO 10 J = 1, N * * Compute U(J,J) and test for non-positive-definiteness. * AJJ = A( J, J ) - SDOT( J-1, A( 1, J ), 1, A( 1, J ), 1 ) IF( AJJ.LE.ZERO ) THEN A( J, J ) = AJJ GO TO 30 END IF AJJ = SQRT( AJJ ) A( J, J ) = AJJ * * Compute elements J+1:N of row J. * IF( J.LT.N ) THEN CALL SGEMV( 'Transpose', J-1, N-J, -ONE, A( 1, J+1 ), $ LDA, A( 1, J ), 1, ONE, A( J, J+1 ), LDA ) CALL SSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA ) END IF 10 CONTINUE ELSE * * Compute the Cholesky factorization A = L*L'. * DO 20 J = 1, N * * Compute L(J,J) and test for non-positive-definiteness. * AJJ = A( J, J ) - SDOT( J-1, A( J, 1 ), LDA, A( J, 1 ), $ LDA ) IF( AJJ.LE.ZERO ) THEN A( J, J ) = AJJ GO TO 30 END IF AJJ = SQRT( AJJ ) A( J, J ) = AJJ * * Compute elements J+1:N of column J. * IF( J.LT.N ) THEN CALL SGEMV( 'No transpose', N-J, J-1, -ONE, A( J+1, 1 ), $ LDA, A( J, 1 ), LDA, ONE, A( J+1, J ), 1 ) CALL SSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 ) END IF 20 CONTINUE END IF GO TO 40 * 30 CONTINUE INFO = J * 40 CONTINUE RETURN * * End of SPOTF2 * END SUBROUTINE STRTI2( UPLO, DIAG, N, A, LDA, INFO ) * * -- LAPACK routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER DIAG, UPLO INTEGER INFO, LDA, N * .. * .. Array Arguments .. REAL A( LDA, * ) * .. * * Purpose * ======= * * STRTI2 computes the inverse of a real upper or lower triangular * matrix. * * This is the Level 2 BLAS version of the algorithm. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the matrix A is upper or lower triangular. * = 'U': Upper triangular * = 'L': Lower triangular * * DIAG (input) CHARACTER*1 * Specifies whether or not the matrix A is unit triangular. * = 'N': Non-unit triangular * = 'U': Unit triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the triangular matrix A. If UPLO = 'U', the * leading n by n upper triangular part of the array A contains * the upper triangular matrix, and the strictly lower * triangular part of A is not referenced. If UPLO = 'L', the * leading n by n lower triangular part of the array A contains * the lower triangular matrix, and the strictly upper * triangular part of A is not referenced. If DIAG = 'U', the * diagonal elements of A are also not referenced and are * assumed to be 1. * * On exit, the (triangular) inverse of the original matrix, in * the same storage format. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL NOUNIT, UPPER INTEGER J REAL AJJ * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL SSCAL, STRMV, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) NOUNIT = LSAME( DIAG, 'N' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'STRTI2', -INFO ) RETURN END IF * IF( UPPER ) THEN * * Compute inverse of upper triangular matrix. * DO 10 J = 1, N IF( NOUNIT ) THEN A( J, J ) = ONE / A( J, J ) AJJ = -A( J, J ) ELSE AJJ = -ONE END IF * * Compute elements 1:j-1 of j-th column. * CALL STRMV( 'Upper', 'No transpose', DIAG, J-1, A, LDA, $ A( 1, J ), 1 ) CALL SSCAL( J-1, AJJ, A( 1, J ), 1 ) 10 CONTINUE ELSE * * Compute inverse of lower triangular matrix. * DO 20 J = N, 1, -1 IF( NOUNIT ) THEN A( J, J ) = ONE / A( J, J ) AJJ = -A( J, J ) ELSE AJJ = -ONE END IF IF( J.LT.N ) THEN * * Compute elements j+1:n of j-th column. * CALL STRMV( 'Lower', 'No transpose', DIAG, N-J, $ A( J+1, J+1 ), LDA, A( J+1, J ), 1 ) CALL SSCAL( N-J, AJJ, A( J+1, J ), 1 ) END IF 20 CONTINUE END IF * RETURN * * End of STRTI2 * END SUBROUTINE STRTRI( UPLO, DIAG, N, A, LDA, INFO ) * * -- LAPACK routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER DIAG, UPLO INTEGER INFO, LDA, N * .. * .. Array Arguments .. REAL A( LDA, * ) * .. * * Purpose * ======= * * STRTRI computes the inverse of a real upper or lower triangular * matrix A. * * This is the Level 3 BLAS version of the algorithm. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the matrix A is upper or lower triangular. * = 'U': Upper triangular * = 'L': Lower triangular * * DIAG (input) CHARACTER*1 * Specifies whether or not the matrix A is unit triangular. * = 'N': Non-unit triangular * = 'U': Unit triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * * On entry, the triangular matrix A. If UPLO = 'U', the * leading n by n upper triangular part of the array A contains * the upper triangular matrix, and the strictly lower * triangular part of A is not referenced. If UPLO = 'L', the * leading n by n lower triangular part of the array A contains * the lower triangular matrix, and the strictly upper * triangular part of A is not referenced. If DIAG = 'U', the * diagonal elements of A are also not referenced and are * assumed to be 1. * * On exit, the (triangular) inverse of the original matrix, in * the same storage format. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * > 0: if INFO = k, A(k,k) is exactly zero. The triangular * matrix is singular and its inverse can not be computed. * < 0: if INFO = -k, the k-th argument had an illegal value * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. LOGICAL NOUNIT, UPPER INTEGER J, JB, NB, NN * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. External Subroutines .. EXTERNAL STRMM, STRSM, STRTI2, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) NOUNIT = LSAME( DIAG, 'N' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'STRTRI', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Check for singularity if non-unit. * IF( NOUNIT ) THEN DO 10 INFO = 1, N IF( A( INFO, INFO ).EQ.ZERO ) $ RETURN 10 CONTINUE INFO = 0 END IF * * Determine the block size for this environment. * NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 ) IF( NB.LE.1 .OR. NB.GE.N ) THEN * * Use unblocked code * CALL STRTI2( UPLO, DIAG, N, A, LDA, INFO ) ELSE * * Use blocked code * IF( UPPER ) THEN * * Compute inverse of upper triangular matrix * DO 20 J = 1, N, NB JB = MIN( NB, N-J+1 ) * * Compute rows 1:j-1 of current block column * CALL STRMM( 'Left', 'Upper', 'No transpose', DIAG, J-1, $ JB, ONE, A, LDA, A( 1, J ), LDA ) CALL STRSM( 'Right', 'Upper', 'No transpose', DIAG, J-1, $ JB, -ONE, A( J, J ), LDA, A( 1, J ), LDA ) * * Compute inverse of current diagonal block * CALL STRTI2( 'Upper', DIAG, JB, A( J, J ), LDA, INFO ) 20 CONTINUE ELSE * * Compute inverse of lower triangular matrix * NN = ( ( N-1 ) / NB )*NB + 1 DO 30 J = NN, 1, -NB JB = MIN( NB, N-J+1 ) IF( J+JB.LE.N ) THEN * * Compute rows j+jb:n of current block column * CALL STRMM( 'Left', 'Lower', 'No transpose', DIAG, $ N-J-JB+1, JB, ONE, A( J+JB, J+JB ), LDA, $ A( J+JB, J ), LDA ) CALL STRSM( 'Right', 'Lower', 'No transpose', DIAG, $ N-J-JB+1, JB, -ONE, A( J, J ), LDA, $ A( J+JB, J ), LDA ) END IF * * Compute inverse of current diagonal block * CALL STRTI2( 'Lower', DIAG, JB, A( J, J ), LDA, INFO ) 30 CONTINUE END IF END IF * RETURN * * End of STRTRI * END SUBROUTINE SLABAD( SMALL, LARGE ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. REAL LARGE, SMALL * .. * * Purpose * ======= * * SLABAD takes as input the values computed by SLAMCH for underflow and * overflow, and returns the square root of each of these values if the * log of LARGE is sufficiently large. This subroutine is intended to * identify machines with a large exponent range, such as the Crays, and * redefine the underflow and overflow limits to be the square roots of * the values computed by SLAMCH. This subroutine is needed because * SLAMCH does not compensate for poor arithmetic in the upper half of * the exponent range, as is found on a Cray. * * Arguments * ========= * * SMALL (input/output) REAL * On entry, the underflow threshold as computed by SLAMCH. * On exit, if LOG10(LARGE) is sufficiently large, the square * root of SMALL, otherwise unchanged. * * LARGE (input/output) REAL * On entry, the overflow threshold as computed by SLAMCH. * On exit, if LOG10(LARGE) is sufficiently large, the square * root of LARGE, otherwise unchanged. * * .. Intrinsic Functions .. INTRINSIC LOG10, SQRT * .. * .. Executable Statements .. * * If it looks like we're on a Cray, take the square root of * SMALL and LARGE to avoid overflow and underflow problems. * IF( LOG10( LARGE ).GT.2000. ) THEN SMALL = SQRT( SMALL ) LARGE = SQRT( LARGE ) END IF * RETURN * * End of SLABAD * END REAL FUNCTION SLANGE( NORM, M, N, A, LDA, WORK ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER NORM INTEGER LDA, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), WORK( * ) * .. * * Purpose * ======= * * SLANGE returns the value of the one norm, or the Frobenius norm, or * the infinity norm, or the element of largest absolute value of a * real matrix A. * * Description * =========== * * SLANGE returns the value * * SLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' * ( * ( norm1(A), NORM = '1', 'O' or 'o' * ( * ( normI(A), NORM = 'I' or 'i' * ( * ( normF(A), NORM = 'F', 'f', 'E' or 'e' * * where norm1 denotes the one norm of a matrix (maximum column sum), * normI denotes the infinity norm of a matrix (maximum row sum) and * normF denotes the Frobenius norm of a matrix (square root of sum of * squares). Note that max(abs(A(i,j))) is not a matrix norm. * * Arguments * ========= * * NORM (input) CHARACTER*1 * Specifies the value to be returned in SLANGE as described * above. * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. When M = 0, * SLANGE is set to zero. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. When N = 0, * SLANGE is set to zero. * * A (input) REAL array, dimension (LDA,N) * The m by n matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(M,1). * * WORK (workspace) REAL array, dimension (LWORK), * where LWORK >= M when NORM = 'I'; otherwise, WORK is not * referenced. * * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J REAL SCALE, SUM, VALUE * .. * .. External Subroutines .. EXTERNAL SLASSQ * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT * .. * .. Executable Statements .. * IF( MIN( M, N ).EQ.0 ) THEN VALUE = ZERO ELSE IF( LSAME( NORM, 'M' ) ) THEN * * Find max(abs(A(i,j))). * VALUE = ZERO DO 20 J = 1, N DO 10 I = 1, M VALUE = MAX( VALUE, ABS( A( I, J ) ) ) 10 CONTINUE 20 CONTINUE ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN * * Find norm1(A). * VALUE = ZERO DO 40 J = 1, N SUM = ZERO DO 30 I = 1, M SUM = SUM + ABS( A( I, J ) ) 30 CONTINUE VALUE = MAX( VALUE, SUM ) 40 CONTINUE ELSE IF( LSAME( NORM, 'I' ) ) THEN * * Find normI(A). * DO 50 I = 1, M WORK( I ) = ZERO 50 CONTINUE DO 70 J = 1, N DO 60 I = 1, M WORK( I ) = WORK( I ) + ABS( A( I, J ) ) 60 CONTINUE 70 CONTINUE VALUE = ZERO DO 80 I = 1, M VALUE = MAX( VALUE, WORK( I ) ) 80 CONTINUE ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). * SCALE = ZERO SUM = ONE DO 90 J = 1, N CALL SLASSQ( M, A( 1, J ), 1, SCALE, SUM ) 90 CONTINUE VALUE = SCALE*SQRT( SUM ) END IF * SLANGE = VALUE RETURN * * End of SLANGE * END SUBROUTINE SLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER TYPE INTEGER INFO, KL, KU, LDA, M, N REAL CFROM, CTO * .. * .. Array Arguments .. REAL A( LDA, * ) * .. * * Purpose * ======= * * SLASCL multiplies the M by N real matrix A by the real scalar * CTO/CFROM. This is done without over/underflow as long as the final * result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that * A may be full, upper triangular, lower triangular, upper Hessenberg, * or banded. * * Arguments * ========= * * TYPE (input) CHARACTER*1 * TYPE indices the storage type of the input matrix. * = 'G': A is a full matrix. * = 'L': A is a lower triangular matrix. * = 'U': A is an upper triangular matrix. * = 'H': A is an upper Hessenberg matrix. * = 'B': A is a symmetric band matrix with lower bandwidth KL * and upper bandwidth KU and with the only the lower * half stored. * = 'Q': A is a symmetric band matrix with lower bandwidth KL * and upper bandwidth KU and with the only the upper * half stored. * = 'Z': A is a band matrix with lower bandwidth KL and upper * bandwidth KU. * * KL (input) INTEGER * The lower bandwidth of A. Referenced only if TYPE = 'B', * 'Q' or 'Z'. * * KU (input) INTEGER * The upper bandwidth of A. Referenced only if TYPE = 'B', * 'Q' or 'Z'. * * CFROM (input) REAL * CTO (input) REAL * The matrix A is multiplied by CTO/CFROM. A(I,J) is computed * without over/underflow if the final result CTO*A(I,J)/CFROM * can be represented without over/underflow. CFROM must be * nonzero. * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,M) * The matrix to be multiplied by CTO/CFROM. See TYPE for the * storage type. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * INFO (output) INTEGER * 0 - successful exit * <0 - if INFO = -i, the i-th argument had an illegal value. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. LOGICAL DONE INTEGER I, ITYPE, J, K1, K2, K3, K4 REAL BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM * .. * .. External Functions .. LOGICAL LSAME REAL SLAMCH EXTERNAL LSAME, SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 * IF( LSAME( TYPE, 'G' ) ) THEN ITYPE = 0 ELSE IF( LSAME( TYPE, 'L' ) ) THEN ITYPE = 1 ELSE IF( LSAME( TYPE, 'U' ) ) THEN ITYPE = 2 ELSE IF( LSAME( TYPE, 'H' ) ) THEN ITYPE = 3 ELSE IF( LSAME( TYPE, 'B' ) ) THEN ITYPE = 4 ELSE IF( LSAME( TYPE, 'Q' ) ) THEN ITYPE = 5 ELSE IF( LSAME( TYPE, 'Z' ) ) THEN ITYPE = 6 ELSE ITYPE = -1 END IF * IF( ITYPE.EQ.-1 ) THEN INFO = -1 ELSE IF( CFROM.EQ.ZERO ) THEN INFO = -4 ELSE IF( M.LT.0 ) THEN INFO = -6 ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR. $ ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN INFO = -7 ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN INFO = -9 ELSE IF( ITYPE.GE.4 ) THEN IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN INFO = -2 ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR. $ ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) ) $ THEN INFO = -3 ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR. $ ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR. $ ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN INFO = -9 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLASCL', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. M.EQ.0 ) $ RETURN * * Get machine parameters * SMLNUM = SLAMCH( 'S' ) BIGNUM = ONE / SMLNUM * CFROMC = CFROM CTOC = CTO * 10 CONTINUE CFROM1 = CFROMC*SMLNUM CTO1 = CTOC / BIGNUM IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN MUL = SMLNUM DONE = .FALSE. CFROMC = CFROM1 ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN MUL = BIGNUM DONE = .FALSE. CTOC = CTO1 ELSE MUL = CTOC / CFROMC DONE = .TRUE. END IF * IF( ITYPE.EQ.0 ) THEN * * Full matrix * DO 30 J = 1, N DO 20 I = 1, M A( I, J ) = A( I, J )*MUL 20 CONTINUE 30 CONTINUE * ELSE IF( ITYPE.EQ.1 ) THEN * * Lower triangular matrix * DO 50 J = 1, N DO 40 I = J, M A( I, J ) = A( I, J )*MUL 40 CONTINUE 50 CONTINUE * ELSE IF( ITYPE.EQ.2 ) THEN * * Upper triangular matrix * DO 70 J = 1, N DO 60 I = 1, MIN( J, M ) A( I, J ) = A( I, J )*MUL 60 CONTINUE 70 CONTINUE * ELSE IF( ITYPE.EQ.3 ) THEN * * Upper Hessenberg matrix * DO 90 J = 1, N DO 80 I = 1, MIN( J+1, M ) A( I, J ) = A( I, J )*MUL 80 CONTINUE 90 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Lower half of a symmetric band matrix * K3 = KL + 1 K4 = N + 1 DO 110 J = 1, N DO 100 I = 1, MIN( K3, K4-J ) A( I, J ) = A( I, J )*MUL 100 CONTINUE 110 CONTINUE * ELSE IF( ITYPE.EQ.5 ) THEN * * Upper half of a symmetric band matrix * K1 = KU + 2 K3 = KU + 1 DO 130 J = 1, N DO 120 I = MAX( K1-J, 1 ), K3 A( I, J ) = A( I, J )*MUL 120 CONTINUE 130 CONTINUE * ELSE IF( ITYPE.EQ.6 ) THEN * * Band matrix * K1 = KL + KU + 2 K2 = KL + 1 K3 = 2*KL + KU + 1 K4 = KL + KU + 1 + M DO 150 J = 1, N DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J ) A( I, J ) = A( I, J )*MUL 140 CONTINUE 150 CONTINUE * END IF * IF( .NOT.DONE ) $ GO TO 10 * RETURN * * End of SLASCL * END SUBROUTINE SLASET( UPLO, M, N, ALPHA, BETA, A, LDA ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDA, M, N REAL ALPHA, BETA * .. * .. Array Arguments .. REAL A( LDA, * ) * .. * * Purpose * ======= * * SLASET initializes an m-by-n matrix A to BETA on the diagonal and * ALPHA on the offdiagonals. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies the part of the matrix A to be set. * = 'U': Upper triangular part is set; the strictly lower * triangular part of A is not changed. * = 'L': Lower triangular part is set; the strictly upper * triangular part of A is not changed. * Otherwise: All of the matrix A is set. * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * ALPHA (input) REAL * The constant to which the offdiagonal elements are to be set. * * BETA (input) REAL * The constant to which the diagonal elements are to be set. * * A (input/output) REAL array, dimension (LDA,N) * On exit, the leading m-by-n submatrix of A is set as follows: * * if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n, * if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n, * otherwise, A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j, * * and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n). * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * * .. Local Scalars .. INTEGER I, J * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Intrinsic Functions .. INTRINSIC MIN * .. * .. Executable Statements .. * IF( LSAME( UPLO, 'U' ) ) THEN * * Set the strictly upper triangular or trapezoidal part of the * array to ALPHA. * DO 20 J = 2, N DO 10 I = 1, MIN( J-1, M ) A( I, J ) = ALPHA 10 CONTINUE 20 CONTINUE * ELSE IF( LSAME( UPLO, 'L' ) ) THEN * * Set the strictly lower triangular or trapezoidal part of the * array to ALPHA. * DO 40 J = 1, MIN( M, N ) DO 30 I = J + 1, M A( I, J ) = ALPHA 30 CONTINUE 40 CONTINUE * ELSE * * Set the leading m-by-n submatrix to ALPHA. * DO 60 J = 1, N DO 50 I = 1, M A( I, J ) = ALPHA 50 CONTINUE 60 CONTINUE END IF * * Set the first min(M,N) diagonal elements to BETA. * DO 70 I = 1, MIN( M, N ) A( I, I ) = BETA 70 CONTINUE * RETURN * * End of SLASET * END SUBROUTINE SLAUU2( UPLO, N, A, LDA, INFO ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, N * .. * .. Array Arguments .. REAL A( LDA, * ) * .. * * Purpose * ======= * * SLAUU2 computes the product U * U' or L' * L, where the triangular * factor U or L is stored in the upper or lower triangular part of * the array A. * * If UPLO = 'U' or 'u' then the upper triangle of the result is stored, * overwriting the factor U in A. * If UPLO = 'L' or 'l' then the lower triangle of the result is stored, * overwriting the factor L in A. * * This is the unblocked form of the algorithm, calling Level 2 BLAS. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the triangular factor stored in the array A * is upper or lower triangular: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The order of the triangular factor U or L. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the triangular factor U or L. * On exit, if UPLO = 'U', the upper triangle of A is * overwritten with the upper triangle of the product U * U'; * if UPLO = 'L', the lower triangle of A is overwritten with * the lower triangle of the product L' * L. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER I REAL AII * .. * .. External Functions .. LOGICAL LSAME REAL SDOT EXTERNAL LSAME, SDOT * .. * .. External Subroutines .. EXTERNAL SGEMV, SSCAL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAUU2', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * IF( UPPER ) THEN * * Compute the product U * U'. * DO 10 I = 1, N AII = A( I, I ) IF( I.LT.N ) THEN A( I, I ) = SDOT( N-I+1, A( I, I ), LDA, A( I, I ), LDA ) CALL SGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ), $ LDA, A( I, I+1 ), LDA, AII, A( 1, I ), 1 ) ELSE CALL SSCAL( I, AII, A( 1, I ), 1 ) END IF 10 CONTINUE * ELSE * * Compute the product L' * L. * DO 20 I = 1, N AII = A( I, I ) IF( I.LT.N ) THEN A( I, I ) = SDOT( N-I+1, A( I, I ), 1, A( I, I ), 1 ) CALL SGEMV( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA, $ A( I+1, I ), 1, AII, A( I, 1 ), LDA ) ELSE CALL SSCAL( I, AII, A( I, 1 ), LDA ) END IF 20 CONTINUE END IF * RETURN * * End of SLAUU2 * END SUBROUTINE SLAUUM( UPLO, N, A, LDA, INFO ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, N * .. * .. Array Arguments .. REAL A( LDA, * ) * .. * * Purpose * ======= * * SLAUUM computes the product U * U' or L' * L, where the triangular * factor U or L is stored in the upper or lower triangular part of * the array A. * * If UPLO = 'U' or 'u' then the upper triangle of the result is stored, * overwriting the factor U in A. * If UPLO = 'L' or 'l' then the lower triangle of the result is stored, * overwriting the factor L in A. * * This is the blocked form of the algorithm, calling Level 3 BLAS. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the triangular factor stored in the array A * is upper or lower triangular: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The order of the triangular factor U or L. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the triangular factor U or L. * On exit, if UPLO = 'U', the upper triangle of A is * overwritten with the upper triangle of the product U * U'; * if UPLO = 'L', the lower triangle of A is overwritten with * the lower triangle of the product L' * L. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER I, IB, NB * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. External Subroutines .. EXTERNAL SGEMM, SLAUU2, SSYRK, STRMM, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAUUM', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Determine the block size for this environment. * NB = ILAENV( 1, 'SLAUUM', UPLO, N, -1, -1, -1 ) * IF( NB.LE.1 .OR. NB.GE.N ) THEN * * Use unblocked code * CALL SLAUU2( UPLO, N, A, LDA, INFO ) ELSE * * Use blocked code * IF( UPPER ) THEN * * Compute the product U * U'. * DO 10 I = 1, N, NB IB = MIN( NB, N-I+1 ) CALL STRMM( 'Right', 'Upper', 'Transpose', 'Non-unit', $ I-1, IB, ONE, A( I, I ), LDA, A( 1, I ), $ LDA ) CALL SLAUU2( 'Upper', IB, A( I, I ), LDA, INFO ) IF( I+IB.LE.N ) THEN CALL SGEMM( 'No transpose', 'Transpose', I-1, IB, $ N-I-IB+1, ONE, A( 1, I+IB ), LDA, $ A( I, I+IB ), LDA, ONE, A( 1, I ), LDA ) CALL SSYRK( 'Upper', 'No transpose', IB, N-I-IB+1, $ ONE, A( I, I+IB ), LDA, ONE, A( I, I ), $ LDA ) END IF 10 CONTINUE ELSE * * Compute the product L' * L. * DO 20 I = 1, N, NB IB = MIN( NB, N-I+1 ) CALL STRMM( 'Left', 'Lower', 'Transpose', 'Non-unit', IB, $ I-1, ONE, A( I, I ), LDA, A( I, 1 ), LDA ) CALL SLAUU2( 'Lower', IB, A( I, I ), LDA, INFO ) IF( I+IB.LE.N ) THEN CALL SGEMM( 'Transpose', 'No transpose', IB, I-1, $ N-I-IB+1, ONE, A( I+IB, I ), LDA, $ A( I+IB, 1 ), LDA, ONE, A( I, 1 ), LDA ) CALL SSYRK( 'Lower', 'Transpose', IB, N-I-IB+1, ONE, $ A( I+IB, I ), LDA, ONE, A( I, I ), LDA ) END IF 20 CONTINUE END IF END IF * RETURN * * End of SLAUUM * END SUBROUTINE SORM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, $ WORK, INFO ) * * -- LAPACK routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER SIDE, TRANS INTEGER INFO, K, LDA, LDC, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) * .. * * Purpose * ======= * * SORM2R overwrites the general real m by n matrix C with * * Q * C if SIDE = 'L' and TRANS = 'N', or * * Q'* C if SIDE = 'L' and TRANS = 'T', or * * C * Q if SIDE = 'R' and TRANS = 'N', or * * C * Q' if SIDE = 'R' and TRANS = 'T', * * where Q is a real orthogonal matrix defined as the product of k * elementary reflectors * * Q = H(1) H(2) . . . H(k) * * as returned by SGEQRF. Q is of order m if SIDE = 'L' and of order n * if SIDE = 'R'. * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'L': apply Q or Q' from the Left * = 'R': apply Q or Q' from the Right * * TRANS (input) CHARACTER*1 * = 'N': apply Q (No transpose) * = 'T': apply Q' (Transpose) * * M (input) INTEGER * The number of rows of the matrix C. M >= 0. * * N (input) INTEGER * The number of columns of the matrix C. N >= 0. * * K (input) INTEGER * The number of elementary reflectors whose product defines * the matrix Q. * If SIDE = 'L', M >= K >= 0; * if SIDE = 'R', N >= K >= 0. * * A (input) REAL array, dimension (LDA,K) * The i-th column must contain the vector which defines the * elementary reflector H(i), for i = 1,2,...,k, as returned by * SGEQRF in the first k columns of its array argument A. * A is modified by the routine but restored on exit. * * LDA (input) INTEGER * The leading dimension of the array A. * If SIDE = 'L', LDA >= max(1,M); * if SIDE = 'R', LDA >= max(1,N). * * TAU (input) REAL array, dimension (K) * TAU(i) must contain the scalar factor of the elementary * reflector H(i), as returned by SGEQRF. * * C (input/output) REAL array, dimension (LDC,N) * On entry, the m by n matrix C. * On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1,M). * * WORK (workspace) REAL array, dimension * (N) if SIDE = 'L', * (M) if SIDE = 'R' * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL LEFT, NOTRAN INTEGER I, I1, I2, I3, IC, JC, MI, NI, NQ REAL AII * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL SLARF, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LEFT = LSAME( SIDE, 'L' ) NOTRAN = LSAME( TRANS, 'N' ) * * NQ is the order of Q * IF( LEFT ) THEN NQ = M ELSE NQ = N END IF IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN INFO = -1 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN INFO = -2 ELSE IF( M.LT.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN INFO = -7 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -10 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SORM2R', -INFO ) RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) $ RETURN * IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. ( .NOT.LEFT .AND. NOTRAN ) ) $ THEN I1 = 1 I2 = K I3 = 1 ELSE I1 = K I2 = 1 I3 = -1 END IF * IF( LEFT ) THEN NI = N JC = 1 ELSE MI = M IC = 1 END IF * DO 10 I = I1, I2, I3 IF( LEFT ) THEN * * H(i) is applied to C(i:m,1:n) * MI = M - I + 1 IC = I ELSE * * H(i) is applied to C(1:m,i:n) * NI = N - I + 1 JC = I END IF * * Apply H(i) * AII = A( I, I ) A( I, I ) = ONE CALL SLARF( SIDE, MI, NI, A( I, I ), 1, TAU( I ), C( IC, JC ), $ LDC, WORK ) A( I, I ) = AII 10 CONTINUE RETURN * * End of SORM2R * END SUBROUTINE SORML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, $ WORK, INFO ) * * -- LAPACK routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER SIDE, TRANS INTEGER INFO, K, LDA, LDC, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) * .. * * Purpose * ======= * * SORML2 overwrites the general real m by n matrix C with * * Q * C if SIDE = 'L' and TRANS = 'N', or * * Q'* C if SIDE = 'L' and TRANS = 'T', or * * C * Q if SIDE = 'R' and TRANS = 'N', or * * C * Q' if SIDE = 'R' and TRANS = 'T', * * where Q is a real orthogonal matrix defined as the product of k * elementary reflectors * * Q = H(k) . . . H(2) H(1) * * as returned by SGELQF. Q is of order m if SIDE = 'L' and of order n * if SIDE = 'R'. * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'L': apply Q or Q' from the Left * = 'R': apply Q or Q' from the Right * * TRANS (input) CHARACTER*1 * = 'N': apply Q (No transpose) * = 'T': apply Q' (Transpose) * * M (input) INTEGER * The number of rows of the matrix C. M >= 0. * * N (input) INTEGER * The number of columns of the matrix C. N >= 0. * * K (input) INTEGER * The number of elementary reflectors whose product defines * the matrix Q. * If SIDE = 'L', M >= K >= 0; * if SIDE = 'R', N >= K >= 0. * * A (input) REAL array, dimension * (LDA,M) if SIDE = 'L', * (LDA,N) if SIDE = 'R' * The i-th row must contain the vector which defines the * elementary reflector H(i), for i = 1,2,...,k, as returned by * SGELQF in the first k rows of its array argument A. * A is modified by the routine but restored on exit. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,K). * * TAU (input) REAL array, dimension (K) * TAU(i) must contain the scalar factor of the elementary * reflector H(i), as returned by SGELQF. * * C (input/output) REAL array, dimension (LDC,N) * On entry, the m by n matrix C. * On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1,M). * * WORK (workspace) REAL array, dimension * (N) if SIDE = 'L', * (M) if SIDE = 'R' * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL LEFT, NOTRAN INTEGER I, I1, I2, I3, IC, JC, MI, NI, NQ REAL AII * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL SLARF, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LEFT = LSAME( SIDE, 'L' ) NOTRAN = LSAME( TRANS, 'N' ) * * NQ is the order of Q * IF( LEFT ) THEN NQ = M ELSE NQ = N END IF IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN INFO = -1 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN INFO = -2 ELSE IF( M.LT.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN INFO = -7 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -10 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SORML2', -INFO ) RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) $ RETURN * IF( ( LEFT .AND. NOTRAN ) .OR. ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) $ THEN I1 = 1 I2 = K I3 = 1 ELSE I1 = K I2 = 1 I3 = -1 END IF * IF( LEFT ) THEN NI = N JC = 1 ELSE MI = M IC = 1 END IF * DO 10 I = I1, I2, I3 IF( LEFT ) THEN * * H(i) is applied to C(i:m,1:n) * MI = M - I + 1 IC = I ELSE * * H(i) is applied to C(1:m,i:n) * NI = N - I + 1 JC = I END IF * * Apply H(i) * AII = A( I, I ) A( I, I ) = ONE CALL SLARF( SIDE, MI, NI, A( I, I ), LDA, TAU( I ), $ C( IC, JC ), LDC, WORK ) A( I, I ) = AII 10 CONTINUE RETURN * * End of SORML2 * END SUBROUTINE SORMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, $ WORK, LWORK, INFO ) * * -- LAPACK routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER SIDE, TRANS INTEGER INFO, K, LDA, LDC, LWORK, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), C( LDC, * ), TAU( * ), $ WORK( LWORK ) * .. * * Purpose * ======= * * SORMLQ overwrites the general real m by n matrix C with * * Q * C if SIDE = 'L' and TRANS = 'N', or * * Q'* C if SIDE = 'L' and TRANS = 'T', or * * C * Q if SIDE = 'R' and TRANS = 'N', or * * C * Q' if SIDE = 'R' and TRANS = 'T', * * where Q is a real orthogonal matrix defined as the product of k * elementary reflectors * * Q = H(k) . . . H(2) H(1) * * as returned by SGELQF. Q is of order m if SIDE = 'L' and of order n * if SIDE = 'R'. * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'L': apply Q or Q' from the Left * = 'R': apply Q or Q' from the Right * * TRANS (input) CHARACTER*1 * = 'N': apply Q (No transpose) * = 'T': apply Q' (Transpose) * * M (input) INTEGER * The number of rows of the matrix C. M >= 0. * * N (input) INTEGER * The number of columns of the matrix C. N >= 0. * * K (input) INTEGER * The number of elementary reflectors whose product defines * the matrix Q. * If SIDE = 'L', M >= K >= 0; * if SIDE = 'R', N >= K >= 0. * * A (input) REAL array, dimension * (LDA,M) if SIDE = 'L', * (LDA,N) if SIDE = 'R' * The i-th row must contain the vector which defines the * elementary reflector H(i), for i = 1,2,...,k, as returned by * SGELQF in the first k rows of its array argument A. * A is modified by the routine but restored on exit. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,K). * * TAU (input) REAL array, dimension (K) * TAU(i) must contain the scalar factor of the elementary * reflector H(i), as returned by SGELQF. * * C (input/output) REAL array, dimension (LDC,N) * On entry, the m-by-n matrix C. * On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1,M). * * WORK (workspace) REAL array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the minimum value of * LWORK required to use the optimal blocksize. * * LWORK (input) INTEGER * The dimension of the array WORK. * If SIDE = 'L', LWORK >= max(1,N); * if SIDE = 'R', LWORK >= max(1,M). * For optimum performance LWORK should be at least N*NB * if SIDE = 'L' and at least M*NB if SIDE = 'R', where NB is * the optimal blocksize. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. INTEGER NBMAX, LDT PARAMETER ( NBMAX = 64, LDT = NBMAX+1 ) * .. * .. Local Scalars .. LOGICAL LEFT, NOTRAN CHARACTER TRANST INTEGER I, I1, I2, I3, IB, IC, IINFO, IWS, JC, LDWORK, $ MI, NB, NBMIN, NI, NQ, NW * .. * .. Local Arrays .. REAL T( LDT, NBMAX ) * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. External Subroutines .. EXTERNAL SLARFB, SLARFT, SORML2, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LEFT = LSAME( SIDE, 'L' ) NOTRAN = LSAME( TRANS, 'N' ) * * NQ is the order of Q and NW is the minimum dimension of WORK * IF( LEFT ) THEN NQ = M NW = N ELSE NQ = N NW = M END IF IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN INFO = -1 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN INFO = -2 ELSE IF( M.LT.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN INFO = -7 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -10 ELSE IF( LWORK.LT.MAX( 1, NW ) ) THEN INFO = -12 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SORMLQ', -INFO ) RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN WORK( 1 ) = 1 RETURN END IF * * Determine the block size. NB may be at most NBMAX, where NBMAX * is used to define the local array T. * NB = MIN( NBMAX, ILAENV( 1, 'SORMLQ', SIDE // TRANS, M, N, K, $ -1 ) ) NBMIN = 2 LDWORK = NW IF( NB.GT.1 .AND. NB.LT.K ) THEN IWS = NW*NB IF( LWORK.LT.IWS ) THEN NB = LWORK / LDWORK NBMIN = MAX( 2, ILAENV( 2, 'SORMLQ', SIDE // TRANS, M, N, K, $ -1 ) ) END IF ELSE IWS = NW END IF * IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN * * Use unblocked code * CALL SORML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, $ IINFO ) ELSE * * Use blocked code * IF( ( LEFT .AND. NOTRAN ) .OR. $ ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN I1 = 1 I2 = K I3 = NB ELSE I1 = ( ( K-1 ) / NB )*NB + 1 I2 = 1 I3 = -NB END IF * IF( LEFT ) THEN NI = N JC = 1 ELSE MI = M IC = 1 END IF * IF( NOTRAN ) THEN TRANST = 'T' ELSE TRANST = 'N' END IF * DO 10 I = I1, I2, I3 IB = MIN( NB, K-I+1 ) * * Form the triangular factor of the block reflector * H = H(i) H(i+1) . . . H(i+ib-1) * CALL SLARFT( 'Forward', 'Rowwise', NQ-I+1, IB, A( I, I ), $ LDA, TAU( I ), T, LDT ) IF( LEFT ) THEN * * H or H' is applied to C(i:m,1:n) * MI = M - I + 1 IC = I ELSE * * H or H' is applied to C(1:m,i:n) * NI = N - I + 1 JC = I END IF * * Apply H or H' * CALL SLARFB( SIDE, TRANST, 'Forward', 'Rowwise', MI, NI, IB, $ A( I, I ), LDA, T, LDT, C( IC, JC ), LDC, WORK, $ LDWORK ) 10 CONTINUE END IF WORK( 1 ) = IWS RETURN * * End of SORMLQ * END SUBROUTINE SORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, $ WORK, LWORK, INFO ) * * -- LAPACK routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER SIDE, TRANS INTEGER INFO, K, LDA, LDC, LWORK, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), C( LDC, * ), TAU( * ), $ WORK( LWORK ) * .. * * Purpose * ======= * * SORMQR overwrites the general real m by n matrix C with * * Q * C if SIDE = 'L' and TRANS = 'N', or * * Q'* C if SIDE = 'L' and TRANS = 'T', or * * C * Q if SIDE = 'R' and TRANS = 'N', or * * C * Q' if SIDE = 'R' and TRANS = 'T', * * where Q is a real orthogonal matrix defined as the product of k * elementary reflectors * * Q = H(1) H(2) . . . H(k) * * as returned by SGEQRF. Q is of order m if SIDE = 'L' and of order n * if SIDE = 'R'. * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'L': apply Q or Q' from the Left * = 'R': apply Q or Q' from the Right * * TRANS (input) CHARACTER*1 * = 'N': apply Q (No transpose) * = 'T': apply Q' (Transpose) * * M (input) INTEGER * The number of rows of the matrix C. M >= 0. * * N (input) INTEGER * The number of columns of the matrix C. N >= 0. * * K (input) INTEGER * The number of elementary reflectors whose product defines * the matrix Q. * If SIDE = 'L', M >= K >= 0; * if SIDE = 'R', N >= K >= 0. * * A (input) REAL array, dimension (LDA,K) * The i-th column must contain the vector which defines the * elementary reflector H(i), for i = 1,2,...,k, as returned by * SGEQRF in the first k columns of its array argument A. * A is modified by the routine but restored on exit. * * LDA (input) INTEGER * The leading dimension of the array A. * If SIDE = 'L', LDA >= max(1,M); * if SIDE = 'R', LDA >= max(1,N). * * TAU (input) REAL array, dimension (K) * TAU(i) must contain the scalar factor of the elementary * reflector H(i), as returned by SGEQRF. * * C (input/output) REAL array, dimension (LDC,N) * On entry, the m-by-n matrix C. * On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1,M). * * WORK (workspace) REAL array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the minimum value of * LWORK required to use the optimal blocksize. * * LWORK (input) INTEGER * The dimension of the array WORK. * If SIDE = 'L', LWORK >= max(1,N); * if SIDE = 'R', LWORK >= max(1,M). * For optimum performance LWORK should be at least N*NB * if SIDE = 'L' and at least M*NB if SIDE = 'R', where NB is * the optimal blocksize. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. INTEGER NBMAX, LDT PARAMETER ( NBMAX = 64, LDT = NBMAX+1 ) * .. * .. Local Scalars .. LOGICAL LEFT, NOTRAN INTEGER I, I1, I2, I3, IB, IC, IINFO, IWS, JC, LDWORK, $ MI, NB, NBMIN, NI, NQ, NW * .. * .. Local Arrays .. REAL T( LDT, NBMAX ) * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. External Subroutines .. EXTERNAL SLARFB, SLARFT, SORM2R, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LEFT = LSAME( SIDE, 'L' ) NOTRAN = LSAME( TRANS, 'N' ) * * NQ is the order of Q and NW is the minimum dimension of WORK * IF( LEFT ) THEN NQ = M NW = N ELSE NQ = N NW = M END IF IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN INFO = -1 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN INFO = -2 ELSE IF( M.LT.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN INFO = -7 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -10 ELSE IF( LWORK.LT.MAX( 1, NW ) ) THEN INFO = -12 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SORMQR', -INFO ) RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN WORK( 1 ) = 1 RETURN END IF * * Determine the block size. NB may be at most NBMAX, where NBMAX * is used to define the local array T. * NB = MIN( NBMAX, ILAENV( 1, 'SORMQR', SIDE // TRANS, M, N, K, $ -1 ) ) NBMIN = 2 LDWORK = NW IF( NB.GT.1 .AND. NB.LT.K ) THEN IWS = NW*NB IF( LWORK.LT.IWS ) THEN NB = LWORK / LDWORK NBMIN = MAX( 2, ILAENV( 2, 'SORMQR', SIDE // TRANS, M, N, K, $ -1 ) ) END IF ELSE IWS = NW END IF * IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN * * Use unblocked code * CALL SORM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, $ IINFO ) ELSE * * Use blocked code * IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. $ ( .NOT.LEFT .AND. NOTRAN ) ) THEN I1 = 1 I2 = K I3 = NB ELSE I1 = ( ( K-1 ) / NB )*NB + 1 I2 = 1 I3 = -NB END IF * IF( LEFT ) THEN NI = N JC = 1 ELSE MI = M IC = 1 END IF * DO 10 I = I1, I2, I3 IB = MIN( NB, K-I+1 ) * * Form the triangular factor of the block reflector * H = H(i) H(i+1) . . . H(i+ib-1) * CALL SLARFT( 'Forward', 'Columnwise', NQ-I+1, IB, A( I, I ), $ LDA, TAU( I ), T, LDT ) IF( LEFT ) THEN * * H or H' is applied to C(i:m,1:n) * MI = M - I + 1 IC = I ELSE * * H or H' is applied to C(1:m,i:n) * NI = N - I + 1 JC = I END IF * * Apply H or H' * CALL SLARFB( SIDE, TRANS, 'Forward', 'Columnwise', MI, NI, $ IB, A( I, I ), LDA, T, LDT, C( IC, JC ), LDC, $ WORK, LDWORK ) 10 CONTINUE END IF WORK( 1 ) = IWS RETURN * * End of SORMQR * END SUBROUTINE SLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER SIDE INTEGER INCV, LDC, M, N REAL TAU * .. * .. Array Arguments .. REAL C( LDC, * ), V( * ), WORK( * ) * .. * * Purpose * ======= * * SLARF applies a real elementary reflector H to a real m by n matrix * C, from either the left or the right. H is represented in the form * * H = I - tau * v * v' * * where tau is a real scalar and v is a real vector. * * If tau = 0, then H is taken to be the unit matrix. * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'L': form H * C * = 'R': form C * H * * M (input) INTEGER * The number of rows of the matrix C. * * N (input) INTEGER * The number of columns of the matrix C. * * V (input) REAL array, dimension * (1 + (M-1)*abs(INCV)) if SIDE = 'L' * or (1 + (N-1)*abs(INCV)) if SIDE = 'R' * The vector v in the representation of H. V is not used if * TAU = 0. * * INCV (input) INTEGER * The increment between elements of v. INCV <> 0. * * TAU (input) REAL * The value tau in the representation of H. * * C (input/output) REAL array, dimension (LDC,N) * On entry, the m by n matrix C. * On exit, C is overwritten by the matrix H * C if SIDE = 'L', * or C * H if SIDE = 'R'. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1,M). * * WORK (workspace) REAL array, dimension * (N) if SIDE = 'L' * or (M) if SIDE = 'R' * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. External Subroutines .. EXTERNAL SGEMV, SGER * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Executable Statements .. * IF( LSAME( SIDE, 'L' ) ) THEN * * Form H * C * IF( TAU.NE.ZERO ) THEN * * w := C' * v * CALL SGEMV( 'Transpose', M, N, ONE, C, LDC, V, INCV, ZERO, $ WORK, 1 ) * * C := C - v * w' * CALL SGER( M, N, -TAU, V, INCV, WORK, 1, C, LDC ) END IF ELSE * * Form C * H * IF( TAU.NE.ZERO ) THEN * * w := C * v * CALL SGEMV( 'No transpose', M, N, ONE, C, LDC, V, INCV, $ ZERO, WORK, 1 ) * * C := C - w * v' * CALL SGER( M, N, -TAU, WORK, 1, V, INCV, C, LDC ) END IF END IF RETURN * * End of SLARF * END SUBROUTINE SLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, $ T, LDT, C, LDC, WORK, LDWORK ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER DIRECT, SIDE, STOREV, TRANS INTEGER K, LDC, LDT, LDV, LDWORK, M, N * .. * .. Array Arguments .. REAL C( LDC, * ), T( LDT, * ), V( LDV, * ), $ WORK( LDWORK, * ) * .. * * Purpose * ======= * * SLARFB applies a real block reflector H or its transpose H' to a * real m by n matrix C, from either the left or the right. * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'L': apply H or H' from the Left * = 'R': apply H or H' from the Right * * TRANS (input) CHARACTER*1 * = 'N': apply H (No transpose) * = 'T': apply H' (Transpose) * * DIRECT (input) CHARACTER*1 * Indicates how H is formed from a product of elementary * reflectors * = 'F': H = H(1) H(2) . . . H(k) (Forward) * = 'B': H = H(k) . . . H(2) H(1) (Backward) * * STOREV (input) CHARACTER*1 * Indicates how the vectors which define the elementary * reflectors are stored: * = 'C': Columnwise * = 'R': Rowwise * * M (input) INTEGER * The number of rows of the matrix C. * * N (input) INTEGER * The number of columns of the matrix C. * * K (input) INTEGER * The order of the matrix T (= the number of elementary * reflectors whose product defines the block reflector). * * V (input) REAL array, dimension * (LDV,K) if STOREV = 'C' * (LDV,M) if STOREV = 'R' and SIDE = 'L' * (LDV,N) if STOREV = 'R' and SIDE = 'R' * The matrix V. See further details. * * LDV (input) INTEGER * The leading dimension of the array V. * If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); * if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); * if STOREV = 'R', LDV >= K. * * T (input) REAL array, dimension (LDT,K) * The triangular k by k matrix T in the representation of the * block reflector. * * LDT (input) INTEGER * The leading dimension of the array T. LDT >= K. * * C (input/output) REAL array, dimension (LDC,N) * On entry, the m by n matrix C. * On exit, C is overwritten by H*C or H'*C or C*H or C*H'. * * LDC (input) INTEGER * The leading dimension of the array C. LDA >= max(1,M). * * WORK (workspace) REAL array, dimension (LDWORK,K) * * LDWORK (input) INTEGER * The leading dimension of the array WORK. * If SIDE = 'L', LDWORK >= max(1,N); * if SIDE = 'R', LDWORK >= max(1,M). * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. CHARACTER TRANST INTEGER I, J * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL SCOPY, SGEMM, STRMM * .. * .. Executable Statements .. * * Quick return if possible * IF( M.LE.0 .OR. N.LE.0 ) $ RETURN * IF( LSAME( TRANS, 'N' ) ) THEN TRANST = 'T' ELSE TRANST = 'N' END IF * IF( LSAME( STOREV, 'C' ) ) THEN * IF( LSAME( DIRECT, 'F' ) ) THEN * * Let V = ( V1 ) (first K rows) * ( V2 ) * where V1 is unit lower triangular. * IF( LSAME( SIDE, 'L' ) ) THEN * * Form H * C or H' * C where C = ( C1 ) * ( C2 ) * * W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK) * * W := C1' * DO 10 J = 1, K CALL SCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 ) 10 CONTINUE * * W := W * V1 * CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', N, $ K, ONE, V, LDV, WORK, LDWORK ) IF( M.GT.K ) THEN * * W := W + C2'*V2 * CALL SGEMM( 'Transpose', 'No transpose', N, K, M-K, $ ONE, C( K+1, 1 ), LDC, V( K+1, 1 ), LDV, $ ONE, WORK, LDWORK ) END IF * * W := W * T' or W * T * CALL STRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K, $ ONE, T, LDT, WORK, LDWORK ) * * C := C - V * W' * IF( M.GT.K ) THEN * * C2 := C2 - V2 * W' * CALL SGEMM( 'No transpose', 'Transpose', M-K, N, K, $ -ONE, V( K+1, 1 ), LDV, WORK, LDWORK, ONE, $ C( K+1, 1 ), LDC ) END IF * * W := W * V1' * CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K, $ ONE, V, LDV, WORK, LDWORK ) * * C1 := C1 - W' * DO 30 J = 1, K DO 20 I = 1, N C( J, I ) = C( J, I ) - WORK( I, J ) 20 CONTINUE 30 CONTINUE * ELSE IF( LSAME( SIDE, 'R' ) ) THEN * * Form C * H or C * H' where C = ( C1 C2 ) * * W := C * V = (C1*V1 + C2*V2) (stored in WORK) * * W := C1 * DO 40 J = 1, K CALL SCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 ) 40 CONTINUE * * W := W * V1 * CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', M, $ K, ONE, V, LDV, WORK, LDWORK ) IF( N.GT.K ) THEN * * W := W + C2 * V2 * CALL SGEMM( 'No transpose', 'No transpose', M, K, N-K, $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV, $ ONE, WORK, LDWORK ) END IF * * W := W * T or W * T' * CALL STRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K, $ ONE, T, LDT, WORK, LDWORK ) * * C := C - W * V' * IF( N.GT.K ) THEN * * C2 := C2 - W * V2' * CALL SGEMM( 'No transpose', 'Transpose', M, N-K, K, $ -ONE, WORK, LDWORK, V( K+1, 1 ), LDV, ONE, $ C( 1, K+1 ), LDC ) END IF * * W := W * V1' * CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K, $ ONE, V, LDV, WORK, LDWORK ) * * C1 := C1 - W * DO 60 J = 1, K DO 50 I = 1, M C( I, J ) = C( I, J ) - WORK( I, J ) 50 CONTINUE 60 CONTINUE END IF * ELSE * * Let V = ( V1 ) * ( V2 ) (last K rows) * where V2 is unit upper triangular. * IF( LSAME( SIDE, 'L' ) ) THEN * * Form H * C or H' * C where C = ( C1 ) * ( C2 ) * * W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK) * * W := C2' * DO 70 J = 1, K CALL SCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 ) 70 CONTINUE * * W := W * V2 * CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', N, $ K, ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK ) IF( M.GT.K ) THEN * * W := W + C1'*V1 * CALL SGEMM( 'Transpose', 'No transpose', N, K, M-K, $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK ) END IF * * W := W * T' or W * T * CALL STRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, $ ONE, T, LDT, WORK, LDWORK ) * * C := C - V * W' * IF( M.GT.K ) THEN * * C1 := C1 - V1 * W' * CALL SGEMM( 'No transpose', 'Transpose', M-K, N, K, $ -ONE, V, LDV, WORK, LDWORK, ONE, C, LDC ) END IF * * W := W * V2' * CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K, $ ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK ) * * C2 := C2 - W' * DO 90 J = 1, K DO 80 I = 1, N C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J ) 80 CONTINUE 90 CONTINUE * ELSE IF( LSAME( SIDE, 'R' ) ) THEN * * Form C * H or C * H' where C = ( C1 C2 ) * * W := C * V = (C1*V1 + C2*V2) (stored in WORK) * * W := C2 * DO 100 J = 1, K CALL SCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 ) 100 CONTINUE * * W := W * V2 * CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', M, $ K, ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK ) IF( N.GT.K ) THEN * * W := W + C1 * V1 * CALL SGEMM( 'No transpose', 'No transpose', M, K, N-K, $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK ) END IF * * W := W * T or W * T' * CALL STRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, $ ONE, T, LDT, WORK, LDWORK ) * * C := C - W * V' * IF( N.GT.K ) THEN * * C1 := C1 - W * V1' * CALL SGEMM( 'No transpose', 'Transpose', M, N-K, K, $ -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC ) END IF * * W := W * V2' * CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K, $ ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK ) * * C2 := C2 - W * DO 120 J = 1, K DO 110 I = 1, M C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J ) 110 CONTINUE 120 CONTINUE END IF END IF * ELSE IF( LSAME( STOREV, 'R' ) ) THEN * IF( LSAME( DIRECT, 'F' ) ) THEN * * Let V = ( V1 V2 ) (V1: first K columns) * where V1 is unit upper triangular. * IF( LSAME( SIDE, 'L' ) ) THEN * * Form H * C or H' * C where C = ( C1 ) * ( C2 ) * * W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK) * * W := C1' * DO 130 J = 1, K CALL SCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 ) 130 CONTINUE * * W := W * V1' * CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K, $ ONE, V, LDV, WORK, LDWORK ) IF( M.GT.K ) THEN * * W := W + C2'*V2' * CALL SGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE, $ C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, ONE, $ WORK, LDWORK ) END IF * * W := W * T' or W * T * CALL STRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K, $ ONE, T, LDT, WORK, LDWORK ) * * C := C - V' * W' * IF( M.GT.K ) THEN * * C2 := C2 - V2' * W' * CALL SGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE, $ V( 1, K+1 ), LDV, WORK, LDWORK, ONE, $ C( K+1, 1 ), LDC ) END IF * * W := W * V1 * CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', N, $ K, ONE, V, LDV, WORK, LDWORK ) * * C1 := C1 - W' * DO 150 J = 1, K DO 140 I = 1, N C( J, I ) = C( J, I ) - WORK( I, J ) 140 CONTINUE 150 CONTINUE * ELSE IF( LSAME( SIDE, 'R' ) ) THEN * * Form C * H or C * H' where C = ( C1 C2 ) * * W := C * V' = (C1*V1' + C2*V2') (stored in WORK) * * W := C1 * DO 160 J = 1, K CALL SCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 ) 160 CONTINUE * * W := W * V1' * CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K, $ ONE, V, LDV, WORK, LDWORK ) IF( N.GT.K ) THEN * * W := W + C2 * V2' * CALL SGEMM( 'No transpose', 'Transpose', M, K, N-K, $ ONE, C( 1, K+1 ), LDC, V( 1, K+1 ), LDV, $ ONE, WORK, LDWORK ) END IF * * W := W * T or W * T' * CALL STRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K, $ ONE, T, LDT, WORK, LDWORK ) * * C := C - W * V * IF( N.GT.K ) THEN * * C2 := C2 - W * V2 * CALL SGEMM( 'No transpose', 'No transpose', M, N-K, K, $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, ONE, $ C( 1, K+1 ), LDC ) END IF * * W := W * V1 * CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', M, $ K, ONE, V, LDV, WORK, LDWORK ) * * C1 := C1 - W * DO 180 J = 1, K DO 170 I = 1, M C( I, J ) = C( I, J ) - WORK( I, J ) 170 CONTINUE 180 CONTINUE * END IF * ELSE * * Let V = ( V1 V2 ) (V2: last K columns) * where V2 is unit lower triangular. * IF( LSAME( SIDE, 'L' ) ) THEN * * Form H * C or H' * C where C = ( C1 ) * ( C2 ) * * W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK) * * W := C2' * DO 190 J = 1, K CALL SCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 ) 190 CONTINUE * * W := W * V2' * CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K, $ ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK ) IF( M.GT.K ) THEN * * W := W + C1'*V1' * CALL SGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE, $ C, LDC, V, LDV, ONE, WORK, LDWORK ) END IF * * W := W * T' or W * T * CALL STRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, $ ONE, T, LDT, WORK, LDWORK ) * * C := C - V' * W' * IF( M.GT.K ) THEN * * C1 := C1 - V1' * W' * CALL SGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE, $ V, LDV, WORK, LDWORK, ONE, C, LDC ) END IF * * W := W * V2 * CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', N, $ K, ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK ) * * C2 := C2 - W' * DO 210 J = 1, K DO 200 I = 1, N C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J ) 200 CONTINUE 210 CONTINUE * ELSE IF( LSAME( SIDE, 'R' ) ) THEN * * Form C * H or C * H' where C = ( C1 C2 ) * * W := C * V' = (C1*V1' + C2*V2') (stored in WORK) * * W := C2 * DO 220 J = 1, K CALL SCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 ) 220 CONTINUE * * W := W * V2' * CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K, $ ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK ) IF( N.GT.K ) THEN * * W := W + C1 * V1' * CALL SGEMM( 'No transpose', 'Transpose', M, K, N-K, $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK ) END IF * * W := W * T or W * T' * CALL STRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, $ ONE, T, LDT, WORK, LDWORK ) * * C := C - W * V * IF( N.GT.K ) THEN * * C1 := C1 - W * V1 * CALL SGEMM( 'No transpose', 'No transpose', M, N-K, K, $ -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC ) END IF * * W := W * V2 * CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', M, $ K, ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK ) * * C1 := C1 - W * DO 240 J = 1, K DO 230 I = 1, M C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J ) 230 CONTINUE 240 CONTINUE * END IF * END IF END IF * RETURN * * End of SLARFB * END SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER DIRECT, STOREV INTEGER K, LDT, LDV, N * .. * .. Array Arguments .. REAL T( LDT, * ), TAU( * ), V( LDV, * ) * .. * * Purpose * ======= * * SLARFT forms the triangular factor T of a real block reflector H * of order n, which is defined as a product of k elementary reflectors. * * If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; * * If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. * * If STOREV = 'C', the vector which defines the elementary reflector * H(i) is stored in the i-th column of the array V, and * * H = I - V * T * V' * * If STOREV = 'R', the vector which defines the elementary reflector * H(i) is stored in the i-th row of the array V, and * * H = I - V' * T * V * * Arguments * ========= * * DIRECT (input) CHARACTER*1 * Specifies the order in which the elementary reflectors are * multiplied to form the block reflector: * = 'F': H = H(1) H(2) . . . H(k) (Forward) * = 'B': H = H(k) . . . H(2) H(1) (Backward) * * STOREV (input) CHARACTER*1 * Specifies how the vectors which define the elementary * reflectors are stored (see also Further Details): * = 'C': columnwise * = 'R': rowwise * * N (input) INTEGER * The order of the block reflector H. N >= 0. * * K (input) INTEGER * The order of the triangular factor T (= the number of * elementary reflectors). K >= 1. * * V (input/output) REAL array, dimension * (LDV,K) if STOREV = 'C' * (LDV,N) if STOREV = 'R' * The matrix V. See further details. * * LDV (input) INTEGER * The leading dimension of the array V. * If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. * * TAU (input) REAL array, dimension (K) * TAU(i) must contain the scalar factor of the elementary * reflector H(i). * * T (output) REAL array, dimension (LDT,K) * The k by k triangular factor T of the block reflector. * If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is * lower triangular. The rest of the array is not used. * * LDT (input) INTEGER * The leading dimension of the array T. LDT >= K. * * Further Details * =============== * * The shape of the matrix V and the storage of the vectors which define * the H(i) is best illustrated by the following example with n = 5 and * k = 3. The elements equal to 1 are not stored; the corresponding * array elements are modified but restored on exit. The rest of the * array is not used. * * DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': * * V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) * ( v1 1 ) ( 1 v2 v2 v2 ) * ( v1 v2 1 ) ( 1 v3 v3 ) * ( v1 v2 v3 ) * ( v1 v2 v3 ) * * DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': * * V = ( v1 v2 v3 ) V = ( v1 v1 1 ) * ( v1 v2 v3 ) ( v2 v2 v2 1 ) * ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) * ( 1 v3 ) * ( 1 ) * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J REAL VII * .. * .. External Subroutines .. EXTERNAL SGEMV, STRMV * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Executable Statements .. * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * IF( LSAME( DIRECT, 'F' ) ) THEN DO 20 I = 1, K IF( TAU( I ).EQ.ZERO ) THEN * * H(i) = I * DO 10 J = 1, I T( J, I ) = ZERO 10 CONTINUE ELSE * * general case * VII = V( I, I ) V( I, I ) = ONE IF( LSAME( STOREV, 'C' ) ) THEN * * T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i) * CALL SGEMV( 'Transpose', N-I+1, I-1, -TAU( I ), $ V( I, 1 ), LDV, V( I, I ), 1, ZERO, $ T( 1, I ), 1 ) ELSE * * T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)' * CALL SGEMV( 'No transpose', I-1, N-I+1, -TAU( I ), $ V( 1, I ), LDV, V( I, I ), LDV, ZERO, $ T( 1, I ), 1 ) END IF V( I, I ) = VII * * T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) * CALL STRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, $ LDT, T( 1, I ), 1 ) T( I, I ) = TAU( I ) END IF 20 CONTINUE ELSE DO 40 I = K, 1, -1 IF( TAU( I ).EQ.ZERO ) THEN * * H(i) = I * DO 30 J = I, K T( J, I ) = ZERO 30 CONTINUE ELSE * * general case * IF( I.LT.K ) THEN IF( LSAME( STOREV, 'C' ) ) THEN VII = V( N-K+I, I ) V( N-K+I, I ) = ONE * * T(i+1:k,i) := * - tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i) * CALL SGEMV( 'Transpose', N-K+I, K-I, -TAU( I ), $ V( 1, I+1 ), LDV, V( 1, I ), 1, ZERO, $ T( I+1, I ), 1 ) V( N-K+I, I ) = VII ELSE VII = V( I, N-K+I ) V( I, N-K+I ) = ONE * * T(i+1:k,i) := * - tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)' * CALL SGEMV( 'No transpose', K-I, N-K+I, -TAU( I ), $ V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO, $ T( I+1, I ), 1 ) V( I, N-K+I ) = VII END IF * * T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) * CALL STRMV( 'Lower', 'No transpose', 'Non-unit', K-I, $ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) END IF T( I, I ) = TAU( I ) END IF 40 CONTINUE END IF RETURN * * End of SLARFT * END SUBROUTINE SGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * * -- LAPACK routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. INTEGER INFO, LDA, LWORK, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), TAU( * ), WORK( LWORK ) * .. * * Purpose * ======= * * SGELQF computes an LQ factorization of a real m by n matrix A: * A = L * Q. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the m by n matrix A. * On exit, the elements on and below the diagonal of the array * contain the m by min(m,n) lower trapezoidal matrix L (L is * lower triangular if m <= n); the elements above the diagonal, * with the array TAU, represent the orthogonal matrix Q as a * product of elementary reflectors (see Further Details). * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * TAU (output) REAL array, dimension (min(M,N)) * The scalar factors of the elementary reflectors (see Further * Details). * * WORK (workspace) REAL array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the minimum value of * LWORK required to use the optimal blocksize. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,M). * For optimum performance LWORK should be at least M*NB, * where NB is the optimal blocksize. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * The matrix Q is represented as a product of elementary reflectors * * Q = H(k) . . . H(2) H(1), where k = min(m,n). * * Each H(i) has the form * * H(i) = I - tau * v * v' * * where tau is a real scalar, and v is a real vector with * v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), * and tau in TAU(i). * * ===================================================================== * * .. Local Scalars .. INTEGER I, IB, IINFO, IWS, K, LDWORK, NB, NBMIN, NX * .. * .. External Subroutines .. EXTERNAL SGELQ2, SLARFB, SLARFT, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 ELSE IF( LWORK.LT.MAX( 1, M ) ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGELQF', -INFO ) RETURN END IF * * Quick return if possible * K = MIN( M, N ) IF( K.EQ.0 ) THEN WORK( 1 ) = 1 RETURN END IF * * Determine the block size. * NB = ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 ) NBMIN = 2 NX = 0 IWS = M IF( NB.GT.1 .AND. NB.LT.K ) THEN * * Determine when to cross over from blocked to unblocked code. * NX = MAX( 0, ILAENV( 3, 'SGELQF', ' ', M, N, -1, -1 ) ) IF( NX.LT.K ) THEN * * Determine if workspace is large enough for blocked code. * LDWORK = M IWS = LDWORK*NB IF( LWORK.LT.IWS ) THEN * * Not enough workspace to use optimal NB: reduce NB and * determine the minimum value of NB. * NB = LWORK / LDWORK NBMIN = MAX( 2, ILAENV( 2, 'SGELQF', ' ', M, N, -1, $ -1 ) ) END IF END IF END IF * IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN * * Use blocked code initially * DO 10 I = 1, K - NX, NB IB = MIN( K-I+1, NB ) * * Compute the LQ factorization of the current block * A(i:i+ib-1,i:n) * CALL SGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK, $ IINFO ) IF( I+IB.LE.M ) THEN * * Form the triangular factor of the block reflector * H = H(i) H(i+1) . . . H(i+ib-1) * CALL SLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ), $ LDA, TAU( I ), WORK, LDWORK ) * * Apply H to A(i+ib:m,i:n) from the right * CALL SLARFB( 'Right', 'No transpose', 'Forward', $ 'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ), $ LDA, WORK, LDWORK, A( I+IB, I ), LDA, $ WORK( IB+1 ), LDWORK ) END IF 10 CONTINUE ELSE I = 1 END IF * * Use unblocked code to factor the last or only block. * IF( I.LE.K ) $ CALL SGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK, $ IINFO ) * WORK( 1 ) = IWS RETURN * * End of SGELQF * END SUBROUTINE SGEQRF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * * -- LAPACK routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. INTEGER INFO, LDA, LWORK, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), TAU( * ), WORK( LWORK ) * .. * * Purpose * ======= * * SGEQRF computes a QR factorization of a real m by n matrix A: * A = Q * R. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the m by n matrix A. * On exit, the elements on and above the diagonal of the array * contain the min(m,n) by n upper trapezoidal matrix R (R is * upper triangular if m >= n); the elements below the diagonal, * with the array TAU, represent the orthogonal matrix Q as a * product of elementary reflectors (see Further Details). * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * TAU (output) REAL array, dimension (min(M,N)) * The scalar factors of the elementary reflectors (see Further * Details). * * WORK (workspace) REAL array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the minimum value of * LWORK required to use the optimal blocksize. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,N). * For optimum performance LWORK should be at least N*NB, * where NB is the optimal blocksize. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * The matrix Q is represented as a product of elementary reflectors * * Q = H(1) H(2) . . . H(k), where k = min(m,n). * * Each H(i) has the form * * H(i) = I - tau * v * v' * * where tau is a real scalar, and v is a real vector with * v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), * and tau in TAU(i). * * ===================================================================== * * .. Local Scalars .. INTEGER I, IB, IINFO, IWS, K, LDWORK, NB, NBMIN, NX * .. * .. External Subroutines .. EXTERNAL SGEQR2, SLARFB, SLARFT, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 ELSE IF( LWORK.LT.MAX( 1, N ) ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGEQRF', -INFO ) RETURN END IF * * Quick return if possible * K = MIN( M, N ) IF( K.EQ.0 ) THEN WORK( 1 ) = 1 RETURN END IF * * Determine the block size. * NB = ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 ) NBMIN = 2 NX = 0 IWS = N IF( NB.GT.1 .AND. NB.LT.K ) THEN * * Determine when to cross over from blocked to unblocked code. * NX = MAX( 0, ILAENV( 3, 'SGEQRF', ' ', M, N, -1, -1 ) ) IF( NX.LT.K ) THEN * * Determine if workspace is large enough for blocked code. * LDWORK = N IWS = LDWORK*NB IF( LWORK.LT.IWS ) THEN * * Not enough workspace to use optimal NB: reduce NB and * determine the minimum value of NB. * NB = LWORK / LDWORK NBMIN = MAX( 2, ILAENV( 2, 'SGEQRF', ' ', M, N, -1, $ -1 ) ) END IF END IF END IF * IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN * * Use blocked code initially * DO 10 I = 1, K - NX, NB IB = MIN( K-I+1, NB ) * * Compute the QR factorization of the current block * A(i:m,i:i+ib-1) * CALL SGEQR2( M-I+1, IB, A( I, I ), LDA, TAU( I ), WORK, $ IINFO ) IF( I+IB.LE.N ) THEN * * Form the triangular factor of the block reflector * H = H(i) H(i+1) . . . H(i+ib-1) * CALL SLARFT( 'Forward', 'Columnwise', M-I+1, IB, $ A( I, I ), LDA, TAU( I ), WORK, LDWORK ) * * Apply H' to A(i:m,i+ib:n) from the left * CALL SLARFB( 'Left', 'Transpose', 'Forward', $ 'Columnwise', M-I+1, N-I-IB+1, IB, $ A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ), $ LDA, WORK( IB+1 ), LDWORK ) END IF 10 CONTINUE ELSE I = 1 END IF * * Use unblocked code to factor the last or only block. * IF( I.LE.K ) $ CALL SGEQR2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK, $ IINFO ) * WORK( 1 ) = IWS RETURN * * End of SGEQRF * END INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, $ N4 ) * * -- LAPACK auxiliary routine (preliminary version) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 20, 1992 * * .. Scalar Arguments .. CHARACTER*( * ) NAME, OPTS INTEGER ISPEC, N1, N2, N3, N4 * .. * * Purpose * ======= * * ILAENV is called from the LAPACK routines to choose problem-dependent * parameters for the local environment. See ISPEC for a description of * the parameters. * * This version provides a set of parameters which should give good, * but not optimal, performance on many of the currently available * computers. Users are encouraged to modify this subroutine to set * the tuning parameters for their particular machine using the option * and problem size information in the arguments. * * This routine will not function correctly if it is converted to all * lower case. Converting it to all upper case is allowed. * * Arguments * ========= * * ISPEC (input) INTEGER * Specifies the parameter to be returned as the value of * ILAENV. * = 1: the optimal blocksize; if this value is 1, an unblocked * algorithm will give the best performance. * = 2: the minimum block size for which the block routine * should be used; if the usable block size is less than * this value, an unblocked routine should be used. * = 3: the crossover point (in a block routine, for N less * than this value, an unblocked routine should be used) * = 4: the number of shifts, used in the nonsymmetric * eigenvalue routines * = 5: the minimum column dimension for blocking to be used; * rectangular blocks must have dimension at least k by m, * where k is given by ILAENV(2,...) and m by ILAENV(5,...) * = 6: the crossover point for the SVD (when reducing an m by n * matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds * this value, a QR factorization is used first to reduce * the matrix to a triangular form.) * = 7: the number of processors * = 8: the crossover point for the multishift QR and QZ methods * for nonsymmetric eigenvalue problems. * * NAME (input) CHARACTER*(*) * The name of the calling subroutine, in either upper case or * lower case. * * OPTS (input) CHARACTER*(*) * The character options to the subroutine NAME, concatenated * into a single character string. For example, UPLO = 'U', * TRANS = 'T', and DIAG = 'N' for a triangular routine would * be specified as OPTS = 'UTN'. * * N1 (input) INTEGER * N2 (input) INTEGER * N3 (input) INTEGER * N4 (input) INTEGER * Problem dimensions for the subroutine NAME; these may not all * be required. * * (ILAENV) (output) INTEGER * >= 0: the value of the parameter specified by ISPEC * < 0: if ILAENV = -k, the k-th argument had an illegal value. * * Further Details * =============== * * The following conventions have been used when calling ILAENV from the * LAPACK routines: * 1) OPTS is a concatenation of all of the character options to * subroutine NAME, in the same order that they appear in the * argument list for NAME, even if they are not used in determining * the value of the parameter specified by ISPEC. * 2) The problem dimensions N1, N2, N3, N4 are specified in the order * that they appear in the argument list for NAME. N1 is used * first, N2 second, and so on, and unused problem dimensions are * passed a value of -1. * 3) The parameter value returned by ILAENV is checked for validity in * the calling subroutine. For example, ILAENV is used to retrieve * the optimal blocksize for STRTRI as follows: * * NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 ) * IF( NB.LE.1 ) NB = MAX( 1, N ) * * ===================================================================== * * .. Local Scalars .. LOGICAL CNAME, SNAME CHARACTER*1 C1 CHARACTER*2 C2, C4 CHARACTER*3 C3 CHARACTER*6 SUBNAM INTEGER I, IC, IZ, NB, NBMIN, NX * .. * .. Intrinsic Functions .. INTRINSIC CHAR, ICHAR, INT, MIN, REAL * .. * .. Executable Statements .. * GO TO ( 100, 100, 100, 400, 500, 600, 700, 800 ) ISPEC * * Invalid value for ISPEC * ILAENV = -1 RETURN * 100 CONTINUE * * Convert NAME to upper case if the first character is lower case. * ILAENV = 1 SUBNAM = NAME IC = ICHAR( SUBNAM( 1:1 ) ) IZ = ICHAR( 'Z' ) IF( IZ.EQ.90 .OR. IZ.EQ.122 ) THEN * * ASCII character set * IF( IC.GE.97 .AND. IC.LE.122 ) THEN SUBNAM( 1:1 ) = CHAR( IC-32 ) DO 10 I = 2, 6 IC = ICHAR( SUBNAM( I:I ) ) IF( IC.GE.97 .AND. IC.LE.122 ) $ SUBNAM( I:I ) = CHAR( IC-32 ) 10 CONTINUE END IF * ELSE IF( IZ.EQ.233 .OR. IZ.EQ.169 ) THEN * * EBCDIC character set * IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR. $ ( IC.GE.145 .AND. IC.LE.153 ) .OR. $ ( IC.GE.162 .AND. IC.LE.169 ) ) THEN SUBNAM( 1:1 ) = CHAR( IC+64 ) DO 20 I = 2, 6 IC = ICHAR( SUBNAM( I:I ) ) IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR. $ ( IC.GE.145 .AND. IC.LE.153 ) .OR. $ ( IC.GE.162 .AND. IC.LE.169 ) ) $ SUBNAM( I:I ) = CHAR( IC+64 ) 20 CONTINUE END IF * ELSE IF( IZ.EQ.218 .OR. IZ.EQ.250 ) THEN * * Prime machines: ASCII+128 * IF( IC.GE.225 .AND. IC.LE.250 ) THEN SUBNAM( 1:1 ) = CHAR( IC-32 ) DO 30 I = 2, 6 IC = ICHAR( SUBNAM( I:I ) ) IF( IC.GE.225 .AND. IC.LE.250 ) $ SUBNAM( I:I ) = CHAR( IC-32 ) 30 CONTINUE END IF END IF * C1 = SUBNAM( 1:1 ) SNAME = C1.EQ.'S' .OR. C1.EQ.'D' CNAME = C1.EQ.'C' .OR. C1.EQ.'Z' IF( .NOT.( CNAME .OR. SNAME ) ) $ RETURN C2 = SUBNAM( 2:3 ) C3 = SUBNAM( 4:6 ) C4 = C3( 2:3 ) * GO TO ( 110, 200, 300 ) ISPEC * 110 CONTINUE * * ISPEC = 1: block size * * In these examples, separate code is provided for setting NB for * real and complex. We assume that NB will take the same value in * single or double precision. * NB = 1 * IF( C2.EQ.'GE' ) THEN IF( C3.EQ.'TRF' ) THEN IF( SNAME ) THEN NB = 64 ELSE NB = 64 END IF ELSE IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. $ C3.EQ.'QLF' ) THEN IF( SNAME ) THEN NB = 32 ELSE NB = 32 END IF ELSE IF( C3.EQ.'HRD' ) THEN IF( SNAME ) THEN NB = 32 ELSE NB = 32 END IF ELSE IF( C3.EQ.'BRD' ) THEN IF( SNAME ) THEN NB = 32 ELSE NB = 32 END IF ELSE IF( C3.EQ.'TRI' ) THEN IF( SNAME ) THEN NB = 64 ELSE NB = 64 END IF END IF ELSE IF( C2.EQ.'PO' ) THEN IF( C3.EQ.'TRF' ) THEN IF( SNAME ) THEN NB = 64 ELSE NB = 64 END IF END IF ELSE IF( C2.EQ.'SY' ) THEN IF( C3.EQ.'TRF' ) THEN IF( SNAME ) THEN NB = 64 ELSE NB = 64 END IF ELSE IF( SNAME .AND. C3.EQ.'TRD' ) THEN NB = 1 ELSE IF( SNAME .AND. C3.EQ.'GST' ) THEN NB = 64 END IF ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN IF( C3.EQ.'TRF' ) THEN NB = 64 ELSE IF( C3.EQ.'TRD' ) THEN NB = 1 ELSE IF( C3.EQ.'GST' ) THEN NB = 64 END IF ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN IF( C3( 1:1 ).EQ.'G' ) THEN IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. $ C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. $ C4.EQ.'BR' ) THEN NB = 32 END IF ELSE IF( C3( 1:1 ).EQ.'M' ) THEN IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. $ C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. $ C4.EQ.'BR' ) THEN NB = 32 END IF END IF ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN IF( C3( 1:1 ).EQ.'G' ) THEN IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. $ C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. $ C4.EQ.'BR' ) THEN NB = 32 END IF ELSE IF( C3( 1:1 ).EQ.'M' ) THEN IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. $ C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. $ C4.EQ.'BR' ) THEN NB = 32 END IF END IF ELSE IF( C2.EQ.'GB' ) THEN IF( C3.EQ.'TRF' ) THEN IF( SNAME ) THEN IF( N4.LE.64 ) THEN NB = 1 ELSE NB = 32 END IF ELSE IF( N4.LE.64 ) THEN NB = 1 ELSE NB = 32 END IF END IF END IF ELSE IF( C2.EQ.'PB' ) THEN IF( C3.EQ.'TRF' ) THEN IF( SNAME ) THEN IF( N2.LE.64 ) THEN NB = 1 ELSE NB = 32 END IF ELSE IF( N2.LE.64 ) THEN NB = 1 ELSE NB = 32 END IF END IF END IF ELSE IF( C2.EQ.'TR' ) THEN IF( C3.EQ.'TRI' ) THEN IF( SNAME ) THEN NB = 64 ELSE NB = 64 END IF END IF ELSE IF( C2.EQ.'LA' ) THEN IF( C3.EQ.'UUM' ) THEN IF( SNAME ) THEN NB = 64 ELSE NB = 64 END IF END IF ELSE IF( SNAME .AND. C2.EQ.'ST' ) THEN IF( C3.EQ.'EBZ' ) THEN NB = 1 END IF END IF ILAENV = NB RETURN * 200 CONTINUE * * ISPEC = 2: minimum block size * NBMIN = 2 IF( C2.EQ.'GE' ) THEN IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. $ C3.EQ.'QLF' ) THEN IF( SNAME ) THEN NBMIN = 2 ELSE NBMIN = 2 END IF ELSE IF( C3.EQ.'HRD' ) THEN IF( SNAME ) THEN NBMIN = 2 ELSE NBMIN = 2 END IF ELSE IF( C3.EQ.'BRD' ) THEN IF( SNAME ) THEN NBMIN = 2 ELSE NBMIN = 2 END IF ELSE IF( C3.EQ.'TRI' ) THEN IF( SNAME ) THEN NBMIN = 2 ELSE NBMIN = 2 END IF END IF ELSE IF( C2.EQ.'SY' ) THEN IF( C3.EQ.'TRF' ) THEN IF( SNAME ) THEN NBMIN = 2 ELSE NBMIN = 2 END IF ELSE IF( SNAME .AND. C3.EQ.'TRD' ) THEN NBMIN = 2 END IF ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN IF( C3.EQ.'TRD' ) THEN NBMIN = 2 END IF ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN IF( C3( 1:1 ).EQ.'G' ) THEN IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. $ C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. $ C4.EQ.'BR' ) THEN NBMIN = 2 END IF ELSE IF( C3( 1:1 ).EQ.'M' ) THEN IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. $ C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. $ C4.EQ.'BR' ) THEN NBMIN = 2 END IF END IF ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN IF( C3( 1:1 ).EQ.'G' ) THEN IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. $ C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. $ C4.EQ.'BR' ) THEN NBMIN = 2 END IF ELSE IF( C3( 1:1 ).EQ.'M' ) THEN IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. $ C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. $ C4.EQ.'BR' ) THEN NBMIN = 2 END IF END IF END IF ILAENV = NBMIN RETURN * 300 CONTINUE * * ISPEC = 3: crossover point * NX = 0 IF( C2.EQ.'GE' ) THEN IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. $ C3.EQ.'QLF' ) THEN IF( SNAME ) THEN NX = 128 ELSE NX = 128 END IF ELSE IF( C3.EQ.'HRD' ) THEN IF( SNAME ) THEN NX = 128 ELSE NX = 128 END IF ELSE IF( C3.EQ.'BRD' ) THEN IF( SNAME ) THEN NX = 128 ELSE NX = 128 END IF END IF ELSE IF( C2.EQ.'SY' ) THEN IF( SNAME .AND. C3.EQ.'TRD' ) THEN NX = 1 END IF ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN IF( C3.EQ.'TRD' ) THEN NX = 1 END IF ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN IF( C3( 1:1 ).EQ.'G' ) THEN IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. $ C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. $ C4.EQ.'BR' ) THEN NX = 128 END IF END IF ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN IF( C3( 1:1 ).EQ.'G' ) THEN IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. $ C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. $ C4.EQ.'BR' ) THEN NX = 128 END IF END IF END IF ILAENV = NX RETURN * 400 CONTINUE * * ISPEC = 4: number of shifts (used by xHSEQR) * ILAENV = 6 RETURN * 500 CONTINUE * * ISPEC = 5: minimum column dimension (not used) * ILAENV = 2 RETURN * 600 CONTINUE * * ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD) * ILAENV = INT( REAL( MIN( N1, N2 ) )*1.6E0 ) RETURN * 700 CONTINUE * * ISPEC = 7: number of processors (not used) * ILAENV = 1 RETURN * 800 CONTINUE * * ISPEC = 8: crossover point for multishift (used by xHSEQR) * ILAENV = 50 RETURN * * End of ILAENV * END LOGICAL FUNCTION LSAME( CA, CB ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER CA, CB * .. * * Purpose * ======= * * LSAME returns .TRUE. if CA is the same letter as CB regardless of * case. * * Arguments * ========= * * CA (input) CHARACTER*1 * CB (input) CHARACTER*1 * CA and CB specify the single characters to be compared. * * .. Intrinsic Functions .. INTRINSIC ICHAR * .. * .. Local Scalars .. INTEGER INTA, INTB, ZCODE * .. * .. Executable Statements .. * * Test if the characters are equal * LSAME = CA.EQ.CB IF( LSAME ) $ RETURN * * Now test for equivalence if both characters are alphabetic. * ZCODE = ICHAR( 'Z' ) * * Use 'Z' rather than 'A' so that ASCII can be detected on Prime * machines, on which ICHAR returns a value with bit 8 set. * ICHAR('A') on Prime machines returns 193 which is the same as * ICHAR('A') on an EBCDIC machine. * INTA = ICHAR( CA ) INTB = ICHAR( CB ) * IF( ZCODE.EQ.90 .OR. ZCODE.EQ.122 ) THEN * * ASCII is assumed - ZCODE is the ASCII code of either lower or * upper case 'Z'. * IF( INTA.GE.97 .AND. INTA.LE.122 ) INTA = INTA - 32 IF( INTB.GE.97 .AND. INTB.LE.122 ) INTB = INTB - 32 * ELSE IF( ZCODE.EQ.233 .OR. ZCODE.EQ.169 ) THEN * * EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or * upper case 'Z'. * IF( INTA.GE.129 .AND. INTA.LE.137 .OR. $ INTA.GE.145 .AND. INTA.LE.153 .OR. $ INTA.GE.162 .AND. INTA.LE.169 ) INTA = INTA + 64 IF( INTB.GE.129 .AND. INTB.LE.137 .OR. $ INTB.GE.145 .AND. INTB.LE.153 .OR. $ INTB.GE.162 .AND. INTB.LE.169 ) INTB = INTB + 64 * ELSE IF( ZCODE.EQ.218 .OR. ZCODE.EQ.250 ) THEN * * ASCII is assumed, on Prime machines - ZCODE is the ASCII code * plus 128 of either lower or upper case 'Z'. * IF( INTA.GE.225 .AND. INTA.LE.250 ) INTA = INTA - 32 IF( INTB.GE.225 .AND. INTB.LE.250 ) INTB = INTB - 32 END IF LSAME = INTA.EQ.INTB * * RETURN * * End of LSAME * END SUBROUTINE XERBLA( SRNAME, INFO ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER*6 SRNAME INTEGER INFO * .. * * Purpose * ======= * * XERBLA is an error handler for the LAPACK routines. * It is called by an LAPACK routine if an input parameter has an * invalid value. A message is printed and execution stops. * * Installers may consider modifying the STOP statement in order to * call system-specific exception-handling facilities. * * Arguments * ========= * * SRNAME (input) CHARACTER*6 * The name of the routine which called XERBLA. * * INFO (input) INTEGER * The position of the invalid parameter in the parameter list * of the calling routine. * * .. Executable Statements .. * WRITE( *, FMT = 9999 )SRNAME, INFO * STOP * 9999 FORMAT( ' ** On entry to ', A6, ' parameter number ', I2, ' had ', $ 'an illegal value' ) * * End of XERBLA * END SUBROUTINE SLASSQ( N, X, INCX, SCALE, SUMSQ ) * * -- LAPACK auxiliary routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. INTEGER INCX, N REAL SCALE, SUMSQ * .. * .. Array Arguments .. REAL X( * ) * .. * * Purpose * ======= * * SLASSQ returns the values scl and smsq such that * * ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq, * * where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is * assumed to be non-negative and scl returns the value * * scl = max( scale, abs( x( i ) ) ). * * scale and sumsq must be supplied in SCALE and SUMSQ and * scl and smsq are overwritten on SCALE and SUMSQ respectively. * * The routine makes only one pass through the vector x. * * Arguments * ========= * * N (input) INTEGER * The number of elements to be used from the vector X. * * X (input) REAL * The vector for which a scaled sum of squares is computed. * x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. * * INCX (input) INTEGER * The increment between successive values of the vector X. * INCX > 0. * * SCALE (input/output) REAL * On entry, the value scale in the equation above. * On exit, SCALE is overwritten with scl , the scaling factor * for the sum of squares. * * SUMSQ (input/output) REAL * On entry, the value sumsq in the equation above. * On exit, SUMSQ is overwritten with smsq , the basic sum of * squares from which scl has been factored out. * * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER IX REAL ABSXI * .. * .. Intrinsic Functions .. INTRINSIC ABS * .. * .. Executable Statements .. * IF( N.GT.0 ) THEN DO 10 IX = 1, 1 + ( N-1 )*INCX, INCX IF( X( IX ).NE.ZERO ) THEN ABSXI = ABS( X( IX ) ) IF( SCALE.LT.ABSXI ) THEN SUMSQ = 1 + SUMSQ*( SCALE / ABSXI )**2 SCALE = ABSXI ELSE SUMSQ = SUMSQ + ( ABSXI / SCALE )**2 END IF END IF 10 CONTINUE END IF RETURN * * End of SLASSQ * END SUBROUTINE SGEQR2( M, N, A, LDA, TAU, WORK, INFO ) * * -- LAPACK routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), TAU( * ), WORK( * ) * .. * * Purpose * ======= * * SGEQR2 computes a QR factorization of a real m by n matrix A: * A = Q * R. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the m by n matrix A. * On exit, the elements on and above the diagonal of the array * contain the min(m,n) by n upper trapezoidal matrix R (R is * upper triangular if m >= n); the elements below the diagonal, * with the array TAU, represent the orthogonal matrix Q as a * product of elementary reflectors (see Further Details). * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * TAU (output) REAL array, dimension (min(M,N)) * The scalar factors of the elementary reflectors (see Further * Details). * * WORK (workspace) REAL array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * The matrix Q is represented as a product of elementary reflectors * * Q = H(1) H(2) . . . H(k), where k = min(m,n). * * Each H(i) has the form * * H(i) = I - tau * v * v' * * where tau is a real scalar, and v is a real vector with * v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), * and tau in TAU(i). * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, K REAL AII * .. * .. External Subroutines .. EXTERNAL SLARF, SLARFG, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGEQR2', -INFO ) RETURN END IF * K = MIN( M, N ) * DO 10 I = 1, K * * Generate elementary reflector H(i) to annihilate A(i+1:m,i) * CALL SLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1, $ TAU( I ) ) IF( I.LT.N ) THEN * * Apply H(i) to A(i:m,i+1:n) from the left * AII = A( I, I ) A( I, I ) = ONE CALL SLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAU( I ), $ A( I, I+1 ), LDA, WORK ) A( I, I ) = AII END IF 10 CONTINUE RETURN * * End of SGEQR2 * END SUBROUTINE SGELQ2( M, N, A, LDA, TAU, WORK, INFO ) * * -- LAPACK routine (version 1.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), TAU( * ), WORK( * ) * .. * * Purpose * ======= * * SGELQ2 computes an LQ factorization of a real m by n matrix A: * A = L * Q. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the m by n matrix A. * On exit, the elements on and below the diagonal of the array * contain the m by min(m,n) lower trapezoidal matrix L (L is * lower triangular if m <= n); the elements above the diagonal, * with the array TAU, represent the orthogonal matrix Q as a * product of elementary reflectors (see Further Details). * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * TAU (output) REAL array, dimension (min(M,N)) * The scalar factors of the elementary reflectors (see Further * Details). * * WORK (workspace) REAL array, dimension (M) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * The matrix Q is represented as a product of elementary reflectors * * Q = H(k) . . . H(2) H(1), where k = min(m,n). * * Each H(i) has the form * * H(i) = I - tau * v * v' * * where tau is a real scalar, and v is a real vector with * v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), * and tau in TAU(i). * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, K REAL AII * .. * .. External Subroutines .. EXTERNAL SLARF, SLARFG, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGELQ2', -INFO ) RETURN END IF * K = MIN( M, N ) * DO 10 I = 1, K * * Generate elementary reflector H(i) to annihilate A(i,i+1:n) * CALL SLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA, $ TAU( I ) ) IF( I.LT.M ) THEN * * Apply H(i) to A(i+1:m,i:n) from the right * AII = A( I, I ) A( I, I ) = ONE CALL SLARF( 'Right', M-I, N-I+1, A( I, I ), LDA, TAU( I ), $ A( I+1, I ), LDA, WORK ) A( I, I ) = AII END IF 10 CONTINUE RETURN * * End of SGELQ2 * END