A Complete Bibliography of Publications in Computer Networks (Amsterdam, Netherlands: 2020–2029)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
13 June 2022
Version 1.10

Title word cross-reference

1 + 1 [239,1104]. 3 [602,934]. 5 [8,15,16,18,44,88,115,126,141,145,166,167,172,179,201,204,206,207,217,234].
* [771]. *-flow [771].

-anonymity [1065]. -based [418,883].
-SHARP [597].

/1/M [340]. /Hyper [340].

360-degree [600]. 3GPP [58,87]. 3P [330].

7 [89, 524, 1001].

autoencoder [740, 1043].

BaaS [368]. backhaul [413, 782, 961, 990, 1031, 1034]. backhauling [562]. backoff [528]. backscatter [196, 552].

based-Context [643]. BASM [821].
Battery [302]. Battery-less [302].
BG [531, 922, 1003]. bi [350].

bi-level [350]. biased [899]. big [68, 71, 595, 622, 936]. BigFoot [971].
binary [997]. bins [322]. bipartite [582].
black [324]. black-box [324]. block [134, 901, 1014]. Blockage [782].

Blockchain [177, 266, 287, 421, 461, 595, 598, 608, 610, 710, 715, 719, 753, 774, 810, 821, 841, 856, 859, 862, 863, 865, 875, 876, 897, 924, 927, 949, 950, 952, 966, 970, 971, 1000, 1015, 1044, 1092, 1102].

Blockchain-based

Device [47, 634, 889]. Devices [57, 91, 104, 251, 270, 485, 602, 605, 685, 726, 733, 813, 935, 968, 1042, 1122, 1133].

experimentation \{47, 64, 1027, 1089\}, energy-efficiency \{626\}, Energy-Efficient \{5, 234, 253, 341, 385, 415, 648, 652, 775, 781, 868, 885, 1017, 1081, 1089, 1106, 1137\},
extension\{871\}, extensions \{58, 282\}, extensive \{925\}, extraction \{785, 910\}, extremely \{279\}, F4Tele \{483\}, fabric \{792\}, Facilitating \{507\}, factor \{240, 383, 829\}, factorization \{729, 887\}, fading \{134\}, Failure \{445, 623, 784, 1052\}, Failure-resilient \{784\}, failures \{232, 431, 624, 676\}, fair \{691, 720, 1048\}, Fairness \{11, 125, 486, 622, 924, 1006\}, Fairness-Aware \{125\}, falsification \{46\}, family \{447\}, FANET \{788\}, FANETs \{788\}, farming \{48, 68, 69, 71, 131, 822\}, Fast \{60, 157, 199, 265, 269, 647, 794, 797, 902, 1054, 1064\}, Faster \{70\}, FASUS \{199\}, Fault \{17, 95, 191, 541, 793, 840, 1137\}, FCNR \{647\}, feasible \{916\}, feature \{137, 159, 176, 447, 463, 854, 890, 901, 910\}, Features \{563, 591, 929\}, February \{27, 50, 450, 481, 930, 953\},
Federated \{400, 500, 635, 776, 819, 827, 924, 941, 966–968, 998, 1039, 1076, 1125, 1135\}, Federation \{1073\}, FedPA \{827\}, fees \{130\}, femto \{580\}, femtocell \{66\}, Few \{799\}, Few-shot \{799\}, Fi \{98, 507, 696, 787, 994\}, fiber \{171, 961\}, fiber-optic \{961\}, Field \{345, 358, 1066\}, fieldable \{1066\}, fields \{289\}, Filter \{158, 736, 1005\}, filtering \{576, 1020\}, Finding \{354, 435\}, fine \{120, 534\}, fine-grained \{534\}, fine-tuned \{120\}, Fingerprinting \{391, 799, 825, 866, 1005\}, fingerprints \{911\}, fire \{449\}, firefly \{808\}, First \{165, 679\}, fitness \{568\}, fitting \{578\}, five \{808\}, five-step \{808\}, FIWARE \{716\}, Fixed \{841, 843\}, flagging \{376\}, FLAME \{654\}, flexgrid \{342\}, Flexible \{20, 309, 453, 635, 873, 926, 938, 965, 1132\}, flight \{415, 1038\}, Flood \{496, 501\}, Flow
Multi-tenant [231, 318, 707, 808, 1062].

multi-access [560, 724, 972, 1029].

Multi-agent [231, 318, 707, 808, 1062].

multi-antenna [805].

multi-atomic [299].

multi-authority [698].

multi-band [65].

multi-branch [732].

multi-celled [19, 207].

multi-centrality [795].

multi-channel [463, 552].

multi-class [70].

multi-cloud [870].

Multi-criteria [464].

multi-domain [248, 256, 824, 1125].

multi-domains [500].

multi-edge [870].

Multi-failure [1052].

multi-hop [7, 65, 1019, 1031, 1034].

multi-information [785].

multi-input [602].

multi-jammer [729].

multi-layer [781].

Multi-layered [283].

Multi-level [929].

Multi-objective [31, 79, 276, 350, 438, 456, 621, 687, 1047].

Multi-observable [376].

multi-optimality [636].

Multi-path [641, 964, 1127].

multi-point [347].

multi-quality [347].

multi-radio [103].

Multi-RAT [407, 803].

multi-region [233].

multi-router [192].

multi-scale [463].

multi-scanner [74].

Multi-Sensor [340].

multi-service [118, 899].

multi-smartphone [911].

multi-stage [429].

multi-step [785].

multi-task [839].

Multi-tenancy [229].

multi-tenant [56, 344].

multi-tier [224, 365, 816].

Multi-timescale [795].

multi-traffic [18].

multi-UAV [844].

Multi-user [200, 260, 685, 1130].

multi-vendor [500].

multibiometric [327].

multicast [200, 713, 1100].

multicasting [1051].

multichannel [57].

multigraph [303].

multilayer [457].

Multimedia [159, 253, 359, 397, 708, 962].

Multiple [60, 86, 131, 275, 290, 335, 383, 395, 408, 462, 514, 558, 624, 744, 756, 791, 891, 932, 1036, 1117].

Multiple-level [791].

Multiplexing [1057].

multiservice [434, 684].

multisource [631].

multistory [822].

multitask [878].

Multiuser [943].

Munkres [691].

Mutual [726, 834].

name [471, 537, 547, 607].

name-based [607].

Named [25, 158, 173, 433, 736, 832].

names [435].

nano [181].

nanonetworks [181].

nanonetworks [293].

Narrow [458].

Narrowband [161].

Nash [381].

native [927].

Natural [809].

navigation [270, 488].

NB [458, 822].

NB-IoT [458, 822].

NBA [607].

NC [174, 1018].

NC-enabled [1018].

NDN [25, 157, 174].

Near [207, 250, 358, 1121].

Near-optimal [207, 1121].

near-optically [250].

needles [354].

Neighborhood [254, 618].

NemesisGuard [997].

nerve [116].

nested [39].

NetView [316].

network-aware [730].

network-based [143, 879, 916].

network-coding [900].

network-coding-based-multicast [713].

network-on-chip [934].

network-slicing [522].

network-wide [316].

networked [955, 1074].

NFStream [406, 472, 543, 645, 770, 857, 917, 1056].

Non-cooperative [1039]. non-IEEE [135].

non-linear [46, 556]. Non-Orthogonal [395, 408]. Non-parametric [509].

non-SDN [605]. non-urban [380].

November [325, 814]. NR [696]. NR-U [696]. NSGA2 [137]. NSGA2-LR [137].

numerology [696, 732]. NUV [236].

Nyquist [961].

objectives [319]. observable [376].

OCpA [565]. OCPA-ON [556].

October [271, 297, 742, 778]. OFDM [565, 961].

OFDM-NOMA [565]. OFDMA [310, 370]. off [26, 556, 602, 1013]. off-path [26].

offloading-efficiency [553].

offloading/sharing [228]. offS [276, 982].

Offspeeding [415]. On-demand [26, 316, 339]. on-board [792]. one [625].

Open-access [847].

Open-RAN [1024]. open-source [166, 926].

OpenAirInterface [204]. OpenFlow [43].

operated [53]. operating [577, 813].
proveable [460]. provably [704].
Provenance [154]. Provenance-enabled [154]. provide [915]. provider [606].
Q [391, 738, 757, 775, 788, 871, 1004].
Q-FANET [788]. Q-learning [757, 775, 788, 1004]. Q-Network [738].
Q-SR [871]. QoE [42, 136, 155, 296, 565].
Quadtree [452]. Quadtree-based [452].
regression [409]. regular [54].
Regularized [156]. regulation [989].
97, 101, 182, 189, 258, 334, 393, 411, 422, 430, 558, 651, 755, 865, 905, 987, 1103, 1118.
Social-aware [10, 189, 422]. Society [1092].
Software [25, 76, 84, 95, 157, 164, 216, 231, 257, 349, 355, 410, 443, 446, 449, 455, 475, 512, 520, 523, 539, 543, 545, 606, 613, 624, 630, 658, 673, 706, 746, 790, 858, 978, 1037, 1066, 1096, 1102, 1120].
Software-Defined [76, 84, 95, 231, 446, 455, 475, 520, 523, 606, 613, 624, 658, 706, 858, 1096, 1120].
Softwarized [248, 300, 533]. solar [789].
Solutions [82, 88, 361, 418, 705, 709, 1134].
space-aerial-terrestrial [172].
Steerable-Beam [1069]. steering [37].
steegomalware [612]. Step [165, 785, 808].
Stochastic [364, 380, 573]. stock [659].
strawberry [49]. stream [354, 555, 797].
Structured [887, 959]. structures [684].

Types [126].

U [696, 787]. UAP [530]. UASNs [988].

UAV [48, 132, 201, 294, 415, 480, 664, 738, 820, 843, 844, 853, 883, 888, 928, 982, 1035, 1036, 1038, 1088].

UAV-assisted [415, 738, 1035, 1036].

UAV-based [1088]. UAV-IoT [928]. UAVs [228, 388, 394, 434, 479, 715, 728, 777, 826, 907, 975].

ultra-reliable [766]. ultrabroadband [665]. ultrasonic [121].

unbiased [902]. uncertainty [764, 806, 1136]. unclonable [418].

Understanding [85, 230, 255, 554, 796, 922, 1012].

Underwater [83, 124, 153, 775, 1127].

unified [530, 803]. universal [324].

Universally [177]. unknown [284, 563].

Unlicensed [229, 243, 1058]. unlinkability [328].

Unmanned [321, 488, 518, 631, 739, 998, 1095, 1109].

Unobtrusive [22]. unsaturated [780].

unseen [1136]. unstable [293].

unstructured [198]. Unsupervised [305, 633].

Unveiling [680]. unwittingly [915]. update [1062, 1071].

updates [236, 257, 916]. uplink [367]. uploading [10].

urban [380, 716, 822]. URL [269]. URLLC [179, 229, 261, 265, 820].

URLs [890]. usability [162]. usage [516, 554].

user-centric [105].

user-to-multiple [744]. users [112, 267, 311, 516, 587, 701, 825, 1048, 1133].

REFERENCES

References

Anonymous:2020:Ja

Anonymous:2020:EBa

Melo:2020:ED

Tang:2020:BAC

He:2020:DEE

Noferesti:2020:AAS

Huan:2020:PIP

Ma:2020:QOJ

Barmpounakis:2020:NSE

Yuan:2020:FTP

Saddoud:2020:RRM

Kazi:2020:CMC

Khanouche:2020:FQA

REFERENCES

Anonymous:2020:Fa

Anonymous:2020:EBb

Cozza:2020:HLD

Xiu-wu:2020:CRA

Jaglarz:2020:ELD

Pan:2020:PML

Yang:2020:FMS

[40] Zhixin Liu, Mingye Zhao, Yazhou Yuan, and Xingping Guan. Subchan-

Ahmed El-mekkawi:2020:SKM

El-mekkawi:2020:SKM

El-mekkawi:2020:SKM

El-mekkawi:2020:SKM

Yu:2020:WQM

Wang:2020:TLT

Al-Musawi:2020:IOL

REFERENCES

Konstantinidis:2020:MCB

Perakis:2020:CFP

Glaroudis:2020:SCR

Wan:2020:FRC

Sarigiannidis:2020:BDE

Anonymous:2020:Ma

Anonymous:2020:EBd

REFERENCES

Kafoilgu:2020:MMS

Ghosal:2020:SIC

Gunduz:2020:CSS

Liu:2020:TOM

BenJaballah:2020:SDR

Zhuang:2020:ULV

Torres:2020:BSR

REFERENCES

[121] Elisabetta C. Sciacca and Laura Galluccio. Impulse response analysis of an ultrasonic human body channel. *Computer Networks (Amsterdam,

Bosc:2020:AMI

Abbas:2020:PAT

Khammassi:2020:NLW

Hou:2020:CRA

Boz:2020:HAQ

Abbasloo:2020:SSW

Barmpounakis:2020:CAU

REFERENCES

REFERENCES

[161] Eshita Rastogi, Navrati Saxena, Abhishek Roy, and Dong Ryol Shin. Narrowband Internet of Things: a com-

REFERENCES

REFERENCES

Anonymous:2020:Jd

Anonymous:2020:EBk

Kaltenberger:2020:ODI

Dwivedi:2020:ECG

Rasheed:2020:PPS

Xia:2020:NOL

Costa:2020:SBH

Zhao:2020:FAT

Liu:2020:RRA

AlKhansa:2020:HSG

Darabkh:2020:LAG

Stamou:2020:CAH

Alami:2020:EQE

REFERENCES

Anonymous:2020:Ac

Anonymous:2020:EB1

Santos:2020:MTF

Pejovic:2020:RDM

Zhang:2020:ECN

Gharib:2020:ASH

Alioua:2020:UTM
REFERENCES

Wu:2020:BAA

Li:2020:ARV

Sai:2020:EOA

Madureira:2020:SID

Chatterjee:2020:DBR

Fotouhi:2020:LST

[241] Gourav Prateek Sharma, Wouter Tavernier, Didier Colle, and Mario Pickavet. VNF-AAPC: Accelerator-aware VNF placement and chaining. *Computer Networks (Amsterdam,
REFERENCES

Wang:2020:PLB

Banditwattanawong:2020:FOA

Kalkan:2020:TTF

Wang:2020:EED

Lu:2020:NIE

REFERENCES

Hu:2020:CCU

Joshi:2020:PLP

Halder:2020:SAS

Jafarian:2020:DAT

Kalkan:2020:SSU

Zhou:2020:PCO

Weerasinghe:2020:PBI

Tarek:2020:NSP

Ashtiani:2020:PAR

Cui:2020:CDA

Karamyshev:2020:FAA

Benil:2020:CBS

Sarieddine:2020:FMR

Lopes:2020:GAP

[268] Ana Paula Golembiouski Lopes and Paulo R. L. Gondim. Group authentication protocol based on aggre-
REFERENCES

67

Wei:2020:AFU

Gupta:2020:CSA

Anonymous:2020:EBn

Kibalya:2020:NDP

Sicari:2020:ITE

Singh:2020:ATS

[275] Vikash Singh, Roshan Kumar, and Zhao Wei. Adaptive time-switching and power-splitting protocols for energy harvesting sensor networks with
multiple relays. Computer Networks (Amsterdam, Netherlands: 1999), 179
(??):Article 107341, October 9, 2020. CODEN ????. ISSN 1389-1286 (print),
article/pii/S138912861930862X.

[276] Marlon Jeske, Valério Rosset, and Mariá C. V. Nascimento. Determin-
ing the trade-offs between data delivery and energy consumption in large-scale
WSNs by multi-objective evolutionary optimization. Computer Networks
(Amsterdam, Netherlands: 1999), 179(??):Article 107347, October 9, 2020.
CODEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128620301560.

[277] Łukasz Krzywiecki, Adam Bobowski, Marta Slowik, Marcin Slowik, and
Patryk Koziel. Schnorr-like identification scheme resistant to malicious
subliminal setting of ephemeral secret. Computer Networks (Amster-
CODEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128620303741.

[278] Francesco Palmieri. A reliability and latency-aware routing framework for 5G transport infra-
structures. Computer Networks (Amsterdam, Netherlands: 1999), 179(??):
Article 107365, October 9, 2020. CODEN ????. ISSN 1389-1286 (print),
article/pii/S1389128620305132.

[279] Tao Huang, Bin Tang, Baoliu Ye, Zhihao Qu, and Sanglu Lu. Rateless802.11: Extending WiFi appli-
cability in extremely poor channels. Computer Networks (Amster-
dam, Netherlands: 1999), 179(??):Article 107361, October 9, 2020. CO-
DEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128620300384.

[280] Penghao Sun, Zehua Guo, Sen Liu, Junlong Lan, Junchao Wang, and Yux-
iang Hu. SmartFCT: Improving power-efficiency for data center net-
works with deep reinforcement learning. Computer Networks (Amster-
dam, Netherlands: 1999), 179(??): Article 107255, October 9, 2020. CO-
DEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128620300384.

[294] Freddy Demiane, Sanaa Sharafeddine, and Omar Farhat. An optimized UAV trajectory planning for localization in

Kumar:2020:OCC

Sanchez:2020:CDD

Bonati:2020:CZT

Anonymous:2020:EBo

Lopez-Raventos:2020:CDC

Anonymous:2020:Ob

Anonymous:2020:LSA

[301] Ayman Chouayakh, Aurélien Bechler, Isabel Amigo, Loutfi Nuaymi, and

REFERENCES

Chousainov:2020:AFC

Lin:2020:NTD

Kasim:2020:ERD

Xu:2020:IMA

Shahraki:2020:CO

Spinnewyn:2020:DCN

REFERENCES

REFERENCES

Hu:2020:CPM

Celdran:2020:PTP

Pasdar:2020:HSS

Li:2020:TMO

Jafari-Beyrami:2020:DFA

Ali:2020:MSB

Gorlatov:2020:CTC

Tanaka:2020:EAL

Leal:2020:RPS

Karatas:2020:MOB

Safkhani:2020:IMP

Vikhrova:2020:GBD

Fan:2020:LEO

REFERENCES

Khaki:2020:IMM

Baidas:2020:RAS

Zhang:2020:JTO

REFERENCES

Mchergui:2020:BBS

Muller:2020:STI

Dehkordi:2020:ENR

Iqbal:2020:DGK

Iqbal:2020:DGK

Taleb:2020:FDA

Polverini:2020:IDS

Lalouani:2020:MOR

Tseng:2020:RBT

Ayoub:2020:MIS

Pacheco-Paramo:2020:DAD

[386] Lifan Mei, Runchen Hu, Houwei Cao, Yong Liu, Zifan Han, Feng Li, and Jin Li. Realtime mobile bandwidth prediction using LSTM neural network and Bayesian fusion. *Computer Networks*

REFERENCES

[412] Xiaojian Li and Kwan L. Yeung. ILP formulations for monitoring-
cycle design based on segment rout-

Dai:2020:JAB

Hu:2020:SEA

Ye:2020:OOE

Zhang:2020:TAI

Guidotti:2020:ASP

Shamsoshoara:2020:SPU

Zeb:2021:JPS

Chao:2021:LAA

Palumbo:2021:CAC

Zeng:2021:SCM

Liu:2021:TAS

Pushpalatha:2021:RRP

Zaki:2021:GGG

[432] Faiz Zaki, Abdullah Gani, Hamid Tahaei, Steven Furnell, and Nor Badrul Anuar. Grano-GT: a granular ground truth collection tool for encrypted browser-based Internet traf-

REFERENCES

Moll:2021:QBS

Park:2021:FFB

Yemeni:2021:RST

Yi:2021:SSA

Tahmasebi:2021:SEM

Amorim:2021:ACO

[464] Emmanuel Ndashimye, Nurul I. Sarkar, and Sayan Kumar Ray. A multi-

Eksert:2021:IIC

Geng:2021:FLE

Shehzad:2021:PAC

Noura:2021:ERD

Sheng:2021:CPM

Shadroo:2021:TPS

REFERENCES

Choudhury:2021:HLS

Triantafyllou:2021:LFL

Ramirez:2021:ING

Malboubi:2021:PFI

Majumdar:2021:NBS

Li:2021:CLB

Ge:2021:TDL

[491] Mengmeng Ge, Naeem Firdous Syed, Xiping Fu, Zubair Baig, and Antonio Robles-Kelly. Towards a deep learning-driven intrusion detection approach for...
REFERENCES

[497] Ramesh Sekaran, Surya Narayana Goddumarri, Suresh Kallam, Manikandan Ramachandran, Rizwan Patan, and Deepak Gupta. 5G integrated spectrum selection and spectrum access using AI-based frame work for IoT based sensor networks. Computer Networks (Amsterdam, Netherlands: 1999), 186(??):
REFERENCES

REFERENCES

[511] Hamid Hassani, Francesco Gringoli, and Douglas J. Leith. Quick and

Anonymous:2021:Aa

Anonymous:2021:EBe

Salhab:2021:NSR

Golkarifard:2021:DVP

Touijer:2021:ICC

Zhang:2021:RIS

Hendaoui:2021:UUA

[544] Rahman Doost-Mohammady, Oscar Bejarano, and Ashutosh Sabhar-

Kumar:2021:OA

Gao:2021:OCE

Khormali:2021:CDN

Anonymous:2021:Ab

Anonymous:2021:EBf

Fawaz:2021:RLA

Lin:2021:NLG

Jie Lin, Lin Huang, Hanlin Zhang, Xinyu Yang, and Peng Zhao. A novel

Wu:2021:AMS

Biswas:2021:LBU

Zhong:2021:CSC

Huang:2021:ITC

Venkateswararao:2021:UUV

Shang:2021:DUA

Enoch:2021:NSM

REFERENCES

[578] Simon Sundberg and Johan Garcia. Locating eNodeBs through sectorization inference-sector fitting evaluated on a railway use case. Computer Networks (Amsterdam, Netherlands:
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Zhong:2021:APP

Zhang:2021:ELS

Ergiz:2021:JMF

Zhai:2021:TPU

Wen:2021:ACB

Cominelli:2021:ICR

Martinez-Yelmo:2021:EEH

Zaballa:2021:TMH

Ming:2021:NNB

Wu:2021:DRL

Aazam:2021:TOE

Brotsis:2021:SBP

Faghihi:2021:RDC

Caviglione:2021:KL

Luca Caviglione, Wojciech Mazureczyk, Matteo Repetto, Andreas Schaffhauser, and Marco Zuppelli. Kernel-level...

REFERENCES

Liu:2021:RTC

Yakici:2021:SMO

devos:2021:CMF

Tomassili:2021:DRP

Dou:2021:MMN

Gupta:2021:LIH
Vallero:2021:BSS

Bryant:2021:EVN

Jiang:2021:WML

Priyadarsini:2021:SDN

Yang:2021:DAS

Khorsandroo:2021:HSE

Huang:2021:MCM

Somesula:2021:CDA

Sharma:2021:PCP

Vanderhallen:2021:RAA

Eramo:2021:ALS

Yang:2021:NTF

Hanyu Yang, Xutao Li, Wenhao Qiang, Yuhan Zhao, Wei Zhang, and Chang Tang. A network traffic forecasting method based on SA optimized ARIMA-BP neural network. *Com-
REFERENCES

[653] Aleksandr Ometov, Viktoriia Shubina, Lucie Klus, Justyna Skibinska, Salwa Saafi, Pavel Pascacio, Laura

Shamsoshoara:2021:AIP

Lopez-Benitez:2021:SSR

Radoglou-Grammatikis:2021:SSS

Zhou:2021:DLF

Valenza:2021:GES

Bansal:2021:NGS

Zhang:2021:TCF

Wang:2021:TRL

Lu:2021:NTI

Wang:2021:DEC

Tang:2021:JGL

[672] Ashwin Panicker, Ozgur Ozdemir, Mihael L. Sichitiu, Ismail Guvenc, Rudra

Ren:2021:MRR

Gupta:2021:OPD

Yu:2021:PPB

Polverini:2021:EDL

Palamà:2021:ICW

Ozdem:2021:SAD

Yigit:2021:BFS

Magan-Carrion:2021:UIW

Cai:2021:DAP

Xing:2021:VBM

Wang:2021:DSA

Glabowski:2021:MSS

Caiazza:2021:MDD

REFERENCES

Magoula:2021:GAA

elhoudaNouar:2021:SVN

Steadman:2021:DED

Kosek-Szott:2021:DCA

Aguilar-Fuster:2021:NEF

Tu:2021:ROM

[705] Firdose Saeik, Marios Avgeris, Dimitrios Spitharakis, Nina Santi, Dimitrios Dechouniotis, John Violos, Aris Leivadeas, Nikolaos Athanasopoulos, Natalie Mitton, and Symeon Papavassiliou. Task offloading in edge and cloud computing: a survey on math-
REFERENCES

133

REFERENCES

[719] Rourab Paul, Nimisha Ghosh, Suman Sau, Amlan Chakrabarti, and Pras-

Chadda:2021:ACW

Wan:2021:JCO

Aghaei:2021:TNA

REFERENCES

Tseng:2021:LLR

Xie:2021:SAD

Touati:2021:CRD

Krishnamurthy:2021:AFA

Kiani:2021:NAP

Aurizzi:2021:SBT

REFERENCES

Pustokhina:2021:EEN

Paguada:2021:TPA

Dhananjay:2021:PRV

Anonymous:2021:Oa

Anonymous:2021:EBn

Dinh:2021:DUM

Rahman:2021:AAS

Yue Wang, Anmin Zhou, Shan Liao, Rongfeng Zheng, Rong Hu, and Lei Zhang. A comprehensive survey on

Gringoli:2021:LDH

Lu:2021:CCM

SureshKumar:2021:EER

Belhamra:2021:ECN

Chai:2021:NCO

Bhooanusas:2021:PMM

Wei:2021:ASE

[765] Guiyi Wei, Xiaohang Mao, Rongxing Lu, Jun Shao, Yunguo Guan,

[Dziyauddin:2021:COC]

[Lezzar:2021:OUR]

[Seoane:2021:PEC]

[Lindroos:2021:SMC]

[Dziyauddin:2021:COC]

[Madi:2021:NSS]

REFERENCES

REFERENCES

REFERENCES

[798] Donghai Tian, Qianjin Ying, Xiaoxian Jia, Rui Ma, Changzhen Hu, and Wenmao Liu. MDCHD: a novel malware detection method in cloud using hardware

Chen:2021:FSW

Roostaei:2021:GTJ

He:2021:TSD

Prathapchandran:2021:TAS

Khaturia:2021:FUM

Rea:2021:BSM

[811] Shan Jin and Riccardo Bettati. Efficient side-channel attacks beyond

REFERENCES

REFERENCES

Alhowaidi:2021:CML

Sheshjavani:2021:CCS

Mall:2021:CPB

Araujo:2021:HOM

Samaila:2021:PES

Popli:2021:CSG

Fourati:2021:CSS

Jagannath:2021:DMC

Arnold:2021:CDB

Liu:2021:TOO

Wei:2021:COM
Shara:2021:SMD

Cheng:2021:MLN

Kohli:2021:OAF

Velasco:2021:LMS

Anonymous:2021:Da

Anonymous:2021:EBq

Tamang:2021:ARS

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th></th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[898] Luciano Miuccio, Daniela Panno, and Salvatore Riolo. A DNN-based estimate of the PRACH traffic load...
REFERENCES

Shinde:2021:NOB

Torre:2021:PEM

Dhooge:2021:HFB

Abid:2021:SRC

Yu:2021:IAT

[911] Qiuqing Ren, Chao Yang, and Jianfeng Ma. App identification based on encrypted multi-smartphone sources traffic fingerprints. *Computer Networks*
Liu:2021:PLP

Horchulhack:2022:TFM

Anonymous:2022:Ja

Anonymous:2022:EBa

Guarino:2022:AMP

Aureli:2022:ADO

Zhang:2022:DDA

Dutta:2022:DRL

Yang:2022:RWO

Zeng:2022:UIO

Nguyen:2022:CAO

Ruckel:2022:FIP

Goldoni:2022:CBW

[925] Emanuele Goldoni, Pietro Savazzi, Lorenzo Favalli, and Anna Vizziello. Correlation between weather and signal

[932] Rui Tang, Xingshu Chen, Chuancheng Wei, Qindong Li, Wenzian Wang, Haizhou Wang, and Wei Wang. Interlayer link prediction based on multiple network structural attributes. *Computer Networks* (Amsterdam, Netherlands: 1999), 203 (??):??, February 11,
REFERENCES

[939] Atefeh Khatiri, Ghasem Mirjalily, and Zhi-Quan Luo. Balanced resource al-
REFERENCES

Yang:2022:GTA

Campos:2022:EFL

Carpio:2022:SMR

Kumar:2022:HS

Wang:2022:LTL

Hbaieb:2022:STM

REFERENCES

Bonati:2022:EAE

Wang:2022:SRS

Zhang:2022:OPB

Hireche:2022:DDP

REFERENCES

Zheng:2022:EPM

Dien:2022:TSN

Wu:2022:OMT

Mei:2022:RMB

Sengupta:2022:VPP

Aouini:2022:NFN

REFERENCES

Abubaker:2022:BSP

Rey:2022:FLM

Saltini:2022:BRO

Salman:2022:TER

Cheema:2022:BBS

[979] Seyed Reza Zahedi, Shahram Jamali, and Peyman Bayat. A power-efficient and performance-aware online virtual network function placement in SDN/

Liu:2022:MMB

Zhong:2022:PBD

Wang:2022:BDM

Nasir:2022:SII

Cao:2022:APM

Cortesi:2022:NAB

Liu:2022:CNT

Floris:2022:SIB

Liu:2022:EOD

deCarvalho:2022:JJT

Santos:2022:TOO

Aumayr:2022:SBA

Casar:2022:SBL
REFERENCES

[999] Chonghua Wang, Hao Zhou, Zhiqiang Hao, Shu Hu, Jun Li, Xueying

Mukta:2022:SDM

Anonymous:2022:Aa

Anonymous:2022:EBc

Yang:2022:PSP

Silva:2022:TLD

Dahanayaka:2022:DTF

Yang:2022:BTB

Furong Yang, Qinghua Wu, Zhenyu Li, Yanmei Liu, Giovanni Pau, and Gao-gang Xie. BBRv2+: Towards balancing aggressiveness and fairness with delay-based bandwidth probing. *Computer Networks (Amsterdam, Netherlands: 1999)*, 206(??):??, April 7, 2022. CODEN ????, ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:
REFERENCES

[1013] Entesar Hosseini, Mohsen Nickray, and Shamsollah Ghanbari. Optimized task

Zhang:2022:SBP

Xiong:2022:BBP

Brehon-Grataloup:2022:MEC

El-Zawawy:2022:SSB

Vasudevan:2022:IAE

Kim:2022:CF

REFERENCES

[1027] Ke Zhang, Guang Zhang, Xiwu Yu, Shaohua Hu, and Moxiao Li. Clustering the sensor networks based

Makarem:2022:DEC

Nduwayezu:2022:LEA

Guo:2022:SSR

Huang:2022:PLF

Ribeiro:2022:SHT

Nassef:2022:SDM

REFERENCES

REFERENCES

REFERENCES

Somesula:2022:CCU

Zhan:2022:DDH

Nacef:2022:MLB

Kita:2022:PRL

Jagannath:2022:DFC

Katila:2022:AMS

REFERENCES

Ojha:2022:BWC

Sharma:2022:RSP

Garcia:2022:ESC

Lacava:2022:SBL

Uzunidis:2022:BPO

Zhang:2022:EIR

REFERENCES

193

Li:2022:TCC

Giakoumakis:2022:SMN

Tsipis:2022:IOS

Bagnuolo:2022:EEL

Martini:2022:IBZ

Luttringer:2022:DNO

Gomez:2022:STE

Nakimuli:2022:ERA

Dao:2022:ABS

Callejo:2022:MDW

Li:2022:FHD

García-Teodoro:2022:NZT

Asaad:2022:CRI

Boobalan:2022:FFL

[1135] Parimala Boobalan, Swarna Priya Ramu, Quoc-Viet Pham, Kapal Dev,

Maryam:2022:LQQ

Mansour:2022:EAF