
1

Theo C. Ruys

University of Twente
Formal Methods & Tools group

http://www.cs.utwente.nl/~ruys

SPIN 2002 Workshop

Beginner’s SPIN Tutorial
Grenoble, France

Thursday 11-Apr-2002

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 2

Credits should go to …

• Gerard Holzmann (Bell Laboratories)
Developer of SPIN, Basic SPIN Manual.

• Radu Iosif (Kansas State University, USA)
Course: Specification and Verification of

Reactive Systems (2001)

• Mads Dam (Royal Institute of Technology, Sweden)
Course: Theory of Distributed Systems (2001).

• Bengt Jonsson (Uppsala University, Sweden)
Course: Reactive Systems (2001).

• Joost-Pieter Katoen (University of Twente)
Course: Protocol/System Validation (2000).

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 3

Audience & Contents

• Basic SPIN
intended audience:

people totally new to (model checking and) SPIN

• Advanced SPIN
intended audience:

people at least at the level of “Basic SPIN”

• Contents
Emphasis is on “using SPIN” not on technical details.
In fact, we almost regard SPIN as a black box.

We just want to
“press-the-button”.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 4

Common Design Flaws
• Deadlock
• Livelock, starvation
• Underspecification

– unexpected reception
of messages

• Overspecification
– Dead code

• Violations of constraints
– Buffer overruns
– Array bounds violations

• Assumptions about speed
– Logical correctness vs.

real-time performance

Designing concurrent (software)
systems is so hard, that these
flaws are mostly overlooked...

Fortunately, most of these
design errors can be detected
using model checking techniques!

In designing distributed systems:
network applications,
data communication protocols,
multithreaded code,
client-server applications.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 5

What is Model Checking?
• [Clarke & Emerson 1981]:

“Model checking is an automated technique that, given
a finite-state model of a system and a logical property,
systematically checks whether this property holds for
(a given initial state in) that model.”

φ=|M

Although finite-state, the
model of a system typically

grows exponentially.

• Model checking tools automatically verify whether

holds, where M is a (finite-state) model of a system and
property φ is stated in some formal notation.

• Problem: state space explosion!
• SPIN [Holzmann 1991] is one of

the most powerful model checkers.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 6

System Development

System
Engineering

Analysis

Design

Code

Testing

Maintenance

“Modern”
Model Checking

“Classic”
Model Checking

Classic “waterfall model”
[Pressman 1996]

2

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 7

“Classic” Model Checking

Model
Checker

Abstract
Verification Model

(initial) Design

Implementation

(manual)
abstractions

refinement
techniques

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 8

“Modern” Model Checking

• Abstraction is key activity in both approaches.

• This talk deals with pure SPIN, i.e., the “classic”
model checking approach.

Model
Checker

systematic
abstraction
techniques

Implementation

Verification Model

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 9

Program suggestions

• Some presentations at ETAPS/SPIN 2002 somehow
related to this tutorial:
– Dennis Dams

Abstraction in Software Model Checking
• Friday April 12th 10.45-13.00

– John Hatcliff, Matthew Dwyer and Willem Visser
Using the Bandera Tool Set and JPF (Tutorial 10)

• Saturday April 13th (full day)

– SPIN Applications
• Saturday April 13th 11.00-12.30

“Modern” model checking approach.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 10

Basic SPIN
• Gentle introduction to SPIN and Promela

– SPIN Background
– Promela processes
– Promela statements
– Promela communication
– Architecture of (X)Spin
– Some demo’s: SPIN and Xspin

• hello world
• mutual exclusion
• alternating bit protocol

– Cookie for the break

Windows 2000: OK, but
SPIN runs more smoothly

under Unix/Linux.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 11

SPIN - Introduction (1)
• SPIN (= Simple Promela Interpreter)

= is a tool for analysing the logical conisistency of concurrent
systems, specifically of data communication protocols.

= state-of-the-art model checker, used by >2000 users
– Concurrent systems are described in the modelling

language called Promela.

• Promela (= Protocol/Process Meta Language)
– allows for the dynamic creation of concurrent processes.
– communication via message channels can be defined to be

• synchronous (i.e. rendezvous), or
• asynchronous (i.e. buffered).

– resembles the programming language C
– specification language to model finite-state systems

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 12

SPIN - Introduction (2)

• Major versions:

model extraction from C codelate 20024.0
minimised automaton representationApr 19973.0
partial order reductionJan 19952.0
initial version [Holzmann 1991]Jan 19911.0

• Some success factors of SPIN (subjective!):
– “press on the button” verification (model checker)
– very efficient implementation (using C)
– nice graphical user interface (Xspin)
– not just a research tool, but well supported
– result of more than two decades research on advanced

computer aided verification (many optimization algorithms)

3

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 13

Documentation on SPIN

• SPIN’s starting page:
http://netlib.bell-labs.com/netlib/spin/whatispin.html
– Basic SPIN manual
– Getting started with XSPIN
– Getting started with SPIN
– Examples and Exercises
– Concise Promela Reference (by Rob Gerth)
– Proceedings of all SPIN Workshops

• Gerard Holzmann’s website for papers on SPIN:
http://cm.bell-labs.com/cm/cs/who/gerard/

• SPIN version 1.0 is described in [Holzmann 1991].

Also part of SPIN’s
documentation distribution

(file: html.tar.gz)

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 14

Promela Model
• Promela model consist of:

– type declarations
– channel declarations
– variable declarations
– process declarations
– [init process]

• A Promela model corresponds
with a (usually very large, but)
finite transition system, so
– no unbounded data
– no unbounded channels
– no unbounded processes
– no unbounded process creation

mtype = {MSG, ACK};
chan toS = ...
chan toR = ...
bool flag;

proctype Sender() {
...

}

proctype Receiver() {
...

}

init {
...

}

process body

creates processes

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 15

Processes (1)

• A process type (proctype) consist of
– a name
– a list of formal parameters
– local variable declarations
– body

proctype Sender(chan in; chan out) {
bit sndB, rcvB;
do
:: out ! MSG, sndB ->

in ? ACK, rcvB;
if
:: sndB == rcvB -> sndB = 1-sndB
:: else -> skip
fi

od
}

name

local variables

body

formal parameters

The body consist of a
sequence of statements.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 16

Processes (2)

• A process
– is defined by a proctype definition
– executes concurrently with all other processes,

independent of speed of behaviour
– communicate with other processes

• using global (shared) variables
• using channels

• There may be several processes of the same type.
• Each process has its own local state:

– process counter (location within the proctype)
– contents of the local variables

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 17

Processes (3)

! Process are created using
the run statement (which
returns the process id).

! Processes can be created
at any point in the execution
(within any process).

! Processes start executing
after the run statement.

! Processes can also be
created by adding active
in front of the proctype
declaration.

proctype Foo(byte x) {
...

}

init {
int pid2 = run Foo(2);
run Foo(27);

}

active[3] proctype Bar() {
...

}

number of procs. (opt.)

cannot have parameters

Last

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 18

Hello World!
/* A "Hello World" Promela model for SPIN. */
active proctype Hello() {

printf("Hello process, my pid is: %d\n", _pid);
}
init {

int lastpid;
printf("init process, my pid is: %d\n", _pid);
lastpid = run Hello();
printf("last pid was: %d\n", lastpid);

}

$ spin -n2 hello.pr
init process, my pid is: 1

last pid was: 2
Hello process, my pid is: 0

Hello process, my pid is: 2
3 processes created

running SPIN in
random simulation mode

random seed

DEMO

4

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 19

Basic types
bit turn=1; [0..1]
bool flag; [0..1]
byte counter; [0..255]
short s; [-216-1.. 216 –1]
int msg; [-232-1.. 232 –1]

Arrays
byte a[27];
bit flags[4];

Typedef (records)
typedef Record {
short f1;
byte f2;

}
Record rr;
rr.f1 = ..

Variables and Types (1)

• Five different (integer)
basic types.

• Arrays

• Records (structs)

• Type conflicts are detected
at runtime.

• Default initial value of basic
variables (local and global)
is 0.

array
indicing

start at 0

variable
declaration

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 20

Variables and Types (2)

• Variables should be
declared.

• Variables can be given a
value by:
– assignment
– argument passing
– message passing

(see communication)

• Variables can be used in
expressions.

int ii;
bit bb;

bb=1;
ii=2;

short s=-1;

typedef Foo {
bit bb;
int ii;

};
Foo f;
f.bb = 0;
f.ii = -2;

ii*s+27 == 23;
printf(“value: %d”, s*s);

assignment =

equal test ==

declaration +
initialisation

Most arithmetic, relational,
and logical operators of
C/Java are supported,

including bitshift operators.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 21

Statements (1)
• The body of a process consists of a sequence of

statements. A statement is either
– executable: the statement can

be executed immediately.
– blocked: the statement cannot be executed.

• An assignment is always executable.

• An expression is also a statement; it is executable if it
evaluates to non-zero.

2 < 3 always executable
x < 27 only executable if value of x is smaller 27
3 + x executable if x is not equal to –3

executable/blocked
depends on the global
state of the system.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 22

Statements (2)

• The skip statement is always executable.
– “does nothing”, only changes process’ process counter

• A run statement is only executable if a new process can be
created (remember: the number of processes is bounded).

• A printf statement is always executable (but is not
evaluated during verification, of course).

int x;
proctype Aap()
{
int y=1;
skip;
run Noot();
x=2;
x>2 && y==1;
skip;

}

Can only become executable
if a different process

makes x greater than 2.

Executable if Noot can
be created…

Statements are
separated by a
semi-colon: “;”.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 23

Statements (3)

• assert(<expr>);
– The assert-statement is always executable.
– If <expr> evaluates to zero, SPIN will exit with an error, as

the <expr> “has been violated”.
– The assert-statement is often used within Promela models,

to check whether certain properties are valid in a state.
proctype monitor() {
assert(n <= 3);

}

proctype receiver() {
...
toReceiver ? msg;
assert(msg != ERROR);
...

}

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 24

Interleaving Semantics
• Promela processes execute concurrently.

• Non-deterministic scheduling of the processes.

• Processes are interleaved (statements of different
processes do not occur at the same time).
– exception: rendez-vous communication.

• Statements are atomic; each statement is executed
without interleaving with other processes.

• Each process may have several different possible actions
enabled at each point of execution.
– only one choice is made, non-deterministically.

= randomly

5

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 25

(X)SPIN Architecture

Promela
model M Xspin spin.exe

ϕ=|M

ϕ LTL
Translator

Simulator

Verifier
Generator

C program pan.*

checker pan.exe

editing window
simulation options

verification options
MSC simulation window counter

example
=|

random
interactive
guided

false

SPIN

•deadlocks
•safety properties
•liveness properties

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 26

Xspin in a nutshell

• Xspin allows the user to
– edit Promela models (+ syntax check)
– simulate Promela models

• random
• interactive
• guided

– verify Promela models
• exhaustive
• bitstate hashing mode

– additional features
• Xspin suggest abstractions to a Promela model (slicing)
• Xspin can draw automata for each process
• LTL property manager
• Help system (with verification/simulation guidelines)

with dialog boxes to set
various options and directives

to tune the verification process

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 27

bit flag; /* signal entering/leaving the section */
byte mutex; /* # procs in the critical section. */

proctype P(bit i) {
flag != 1;
flag = 1;
mutex++;
printf("MSC: P(%d) has entered section.\n", i);
mutex--;
flag = 0;

}

proctype monitor() {
assert(mutex != 2);

}

init {
atomic { run P(0); run P(1); run monitor(); }

}

Mutual Exclusion (1)
WRONG!

starts two instances of process P

DEMO

models:
while (flag == 1);

Problem: assertion violation!
Both processes can pass the
flag != 1 “at the same time”,
i.e. before flag is set to 1.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 28

Mutual Exclusion (2)

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */

active proctype A() {
x = 1;
y == 0;
mutex++;
mutex--;
x = 0;

}

active proctype monitor() {
assert(mutex != 2);

}

WRONG!

active proctype B() {
y = 1;
x == 0;
mutex++;
mutex--;
y = 0;

}

Process A waits for
process B to end.

DEMO

Problem: invalid-end-state!
Both processes can pass execute
x = 1 and y = 1 “at the same time”,
and will then be waiting for each other.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 29

Mutual Exclusion (3)
Dekker [1962]

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */
byte turn; /* who's turn is it? */

active proctype A() {
x = 1;
turn = B_TURN;
y == 0 &&
(turn == A_TURN);

mutex++;
mutex--;
x = 0;

}

active proctype monitor() {
assert(mutex != 2);

}

active proctype B() {
y = 1;
turn = A_TURN;
x == 0 &&
(turn == B_TURN);

mutex++;
mutex--;
y = 0;

}

DEMO

First “software-only” solution to the
mutex problem (for two processes).

Can be generalised
to a single process.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 30

Mutual Exclusion (4)
BakeryDEMO

byte turn[2]; /* who’s turn is it? */
byte mutex; /* # procs in critical section */

proctype P(bit i) {
do
:: turn[i] = 1;

turn[i] = turn[1-i] + 1;
(turn[1-i] == 0) || (turn[i] < turn[1-i]);
mutex++;
mutex--;
turn[i] = 0;

od
}

proctype monitor() { assert(mutex != 2); }
init { atomic {run P(0); run P(1); run monitor()}}

More mutual exclusion algorithms
in (good-old) [Ben-Ari 1990].

Problem (in Promela/Spin):
turn[i] will overrun after 255.

6

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 31

if-statement (1)

• If there is at least one choicei (guard) executable, the if-
statement is executable and SPIN non-deterministically
chooses one of the executable choices.

• If no choicei is executable, the if-statement is blocked.
• The operator “->” is equivalent to “;”. By convention, it is used

within if-statements to separate the guards from the
statements that follow the guards.

if
:: choice1 -> stat1.1; stat1.2; stat1.3; …
:: choice2 -> stat2.1; stat2.2; stat2.3; …
:: …
:: choicen -> statn.1; statn.2; statn.3; …
fi;

inspired by:
Dijkstra’s guarded
command language

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 32

if-statement (2)

if
:: (n % 2 != 0) -> n=1
:: (n >= 0) -> n=n-2
:: (n % 3 == 0) -> n=3
:: else -> skip
fi

• The else guard becomes
executable if none of the
other guards is executable.

non-deterministic branching
if
:: skip -> n=0
:: skip -> n=1
:: skip -> n=2
:: skip -> n=3
fi

give n a random value

skips are redundant, because assignments
are themselves always executable...

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 33

do-statement (1)

• With respect to the choices, a do-statement behaves in the
same way as an if-statement.

• However, instead of ending the statement at the end of the
choosen list of statements, a do-statement repeats the choice
selection.

• The (always executable) break statement exits a do-loop
statement and transfers control to the end of the loop.

do
:: choice1 -> stat1.1; stat1.2; stat1.3; …
:: choice2 -> stat2.1; stat2.2; stat2.3; …
:: …
:: choicen -> statn.1; statn.2; statn.3; …
od;

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 34

do-statement (2)

• Example – modelling a traffic light

mtype = { RED, YELLOW, GREEN } ;

active proctype TrafficLight() {
byte state = GREEN;
do
:: (state == GREEN) -> state = YELLOW;
:: (state == YELLOW) -> state = RED;
:: (state == RED) -> state = GREEN;
od;

} Note: this do-loop does not contain
any non-deterministic choice.

if- and do-statements
are ordinary Promela
statements; so they can
be nested.

mtype (message type) models enumerations in Promela

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 35

Communication (1)
• Communication between processes is via channels:

– message passing
– rendez-vous synchronisation (handshake)

• Both are defined as channels:
chan <name> = [<dim>] of {<t1>,<t2>, … <tn>};

type of the elements that will be
transmitted over the channel

number of elements in the channel
dim==0 is special case: rendez-vous

name of
the channel

also called:
queue or buffer

chan c = [1] of {bit};
chan toR = [2] of {mtype, bit};
chan line[2] = [1] of {mtype, Record}; array of

channels

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 36

Communication (2)

• channel = FIFO-buffer (for dim>0)

! Sending - putting a message into a channel
ch ! <expr1>, <expr2>, … <exprn>;

• The values of <expri> should correspond with the types of the
channel declaration.

• A send-statement is executable if the channel is not full.

? Receiving - getting a message out of a channel
ch ? <var1>, <var2>, … <varn>;

• If the channel is not empty, the message is fetched from the channel
and the individual parts of the message are stored into the <vari>s.

ch ? <const1>, <const2>, … <constn>;
• If the channel is not empty and the message at the front of the

channel evaluates to the individual <consti>, the statement is
executable and the message is removed from the channel.

message passing

message testing

<var> +
<const>
can be
mixed

7

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 37

Communication (3)

• Rendez-vous communication
<dim> == 0
The number of elements in the channel is now zero.

– If send ch! is enabled and if there is a corresponding
receive ch? that can be executed simultaneously and the
constants match, then both statements are enabled.

– Both statements will “handshake” and together
take the transition.

• Example:
chan ch = [0] of {bit, byte};

– P wants to do ch ! 1, 3+7
– Q wants to do ch ? 1, x
– Then after the communication, x will have the value 10.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 38

Alternating Bit Protocol (1)
mtype {MSG, ACK};

chan toS = [2] of {mtype, bit};
chan toR = [2] of {mtype, bit};

proctype Sender(chan in, out)
{
bit sendbit, recvbit;
do
:: out ! MSG, sendbit ->

in ? ACK, recvbit;
if
:: recvbit == sendbit ->

sendbit = 1-sendbit
:: else -> skip
fi

od
}

proctype Receiver(chan in, out)
{
bit recvbit;
do
:: in ? MSG(recvbit) ->

out ! ACK(recvbit);
:: timeout ->

out ! ACK(recvbit);
od

}

init
{
run Sender(toS, toR);
run Receiver(toR, toS);

}

DEMO

Alternative notation:
ch ! MSG(par1, …)
ch ? MSG(par1, …)

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 39

Alternating Bit Protocol (2)

• Alternating Bit Protocol

– To every message, the sender adds a bit.

– The receiver acknowledges each message by sending
the received bit back.

– To receiver only excepts messages with a bit that it
excepted to receive.

– If the sender is sure that the receiver has correctly
received the previous message, it sends a new
message and it alternates the accompanying bit.

DEMO

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 40

Alternating Bit Protocol (3)

• abp-1.pr

– perfect lines

• abp-2.pr

– stealing daemon (models lossy channels)
– how do we know that the protocol works correctly?

• abp-3.pr

– model different messages by a sequence number
– assert that the protocol works correctly
– how can we be sure that different messages are being

transmitted?

How large should MAX be
such that we are sure that
the ABP works correctly?

only
three!

DEMO

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 41

Cookie: soldiers problem

unsafe safe

5 10 20 25

<=
2 pers

<= 60 min?

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 42

Advanced SPIN
• Towards effective modelling in Promela

– Some left-over Promela statements
– Properties that can be verified with SPIN
– Introduction to SPIN validation algorithms
– SPIN’s reduction algorithms
– Extreme modelling: the “art of modelling”
– Beyond Xspin: managing the verification trajectory
– Concluding remarks
– Summary

8

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 43

Promela Model

• A Promela model consist of:

– type declarations

– channel declarations

– global variable declarations

– process declarations

– [init process]

Basic SPIN

behaviour of the processes:
local variables + statements

can be accessed
by all processes

initialises variables and
starts processes

chan ch = [dim] of {type, …}
asynchronous: dim > 0
rendez-vous: dim == 0

mtype, typedefs,
constants

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 44

Promela statements

skip always executable
assert(<expr>) always executable
expression executable if not zero
assignment always executable
if executable if at least one guard is executable
do executable if at least one guard is executable
break always executable (exits do-statement)
send (ch!) executable if channel ch is not full
receive (ch?) executable if channel ch is not empty

are either executable
or blocked

Basic SPIN

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 45

atomic

atomic { stat1; stat2; ... statn }

– can be used to group statements into an atomic sequence;
all statements are executed in a single step
(no interleaving with statements of other processes)

– is executable if stat1 is executable
– if a stati (with i>1) is blocked, the “atomicity token” is

(temporarily) lost and other processes may do a step

• (Hardware) solution to the mutual exclusion problem:

no pure atomicity

proctype P(bit i) {
atomic {flag != 1; flag = 1; }
mutex++;
mutex--;
flag = 0;

}

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 46

d_step

d_step { stat1; stat2; ... statn }
– more efficient version of atomic: no intermediate states are

generated and stored
– may only contain deterministic steps
– it is a run-time error if stati (i>1) blocks.

– d_step is especially
useful to perform
intermediate computations
in a single transition

:: Rout?i(v) -> d_step {
k++;
e[k].ind = i;
e[k].val = v;
i=0; v=0 ;

}

• atomic and d_step can be used to lower the number of
states of the model

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 47

No atomicityproctype P1() { t1a; t1b; t1c }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

0

1

2

3

t1a

t1b

t1c

P1

0

1

2

3

t2a

t2b

t2c

P2

Not completely correct as each
process has an implicit end-transition…

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

t2at1a

t1b t2a
t2b

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

t2c

t1a

t1a

t1a

t1c
t1b

t1b

t1b

t1c

t1c

t1c

t2c

t2c

t2c

t2b

t2b

t2b

t2a

t2a

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 48

atomic proctype P1() { atomic {t1a; t1b; t1c} }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

Although atomic clauses cannot
be interleaved, the intermediate
states are still constructed.

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

It is as if P1 has only one transition…

If one of P1’s transitions
blocks, these transitions

may get executed

9

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 49

d_step proctype P1() { d_step {t1a; t1b; t1c} }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

No intermediate states will
be constructed.

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

It is as if P1 has only one transition…

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 50

Checking for pure atomicity

• Suppose we want to check that none of the atomic clauses
in our model are ever blocked (i.e. pure atomicity).

atomic {
stat1;

stat2

...

statn

}

2. Change all atomic clauses to:

aflag=1;

aflag=0;

1. Add a global bit variable:

bit aflag;

3. Check that aflag is always 0.

[]!aflag

process monitor {
assert(!aflag);

}

e.g.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 51

timeout (1)

• Promela does not have real-time features.
– In Promela we can only specify functional behaviour.
– Most protocols, however, use timers or a timeout

mechanism to resend messages or acknowledgements.

• timeout
– SPIN’s timeout becomes executable if there is no

other process in the system which is executable
– so, timeout models a global timeout
– timeout provides an escape from deadlock states
– beware of statements that are always executable…

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 52

timeout (2)

• Example to recover from message loss:

active proctype Receiver()
{

bit recvbit;
do
:: toR ? MSG, recvbit -> toS ! ACK, recvbit;
:: timeout -> toS ! ACK, recvbit;
od

}

• Premature timeouts can be modelled by replacing the
timeout by skip (which is always executable).

One might want to limit the number of premature
timeouts (see [Ruys & Langerak 1997]).

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 53

goto

goto label

– transfers execution to label
– each Promela statement might be labelled
– quite useful in modelling communication protocols

wait_ack:
if
:: B?ACK -> ab=1-ab ; goto success
:: ChunkTimeout?SHAKE ->

if
:: (rc < MAX) -> rc++; F!(i==1),(i==n),ab,d[i];

goto wait_ack
:: (rc >= MAX) -> goto error
fi

fi ;

Timeout modelled by a channel.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 54

unless

{ <stats> } unless { guard; <stats> }

– Statements in <stats> are executed until the first
statement (guard) in the escape sequence becomes
executable.

– resembles exception handling in languages like Java
– Example:

proctype MicroProcessor() {
{
...
/* execute normal instructions */

}
unless { port ? INTERRUPT; ... }

}

10

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 55

macros – cpp preprocessor
• Promela uses cpp, the C preprocessor to preprocess

Promela models. This is useful to define:

– constants

– macros

– conditional Promela model fragments

All cpp commands start with a hash:
#define, #ifdef, #include, etc.#define MAX 4

#define RESET_ARRAY(a) \
d_step { a[0]=0; a[1]=0; a[2]=0; a[3]=0; }

#define LOSSY 1
…
#ifdef LOSSY
active proctype Deamon() { /* steal messages */ }
#endif

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 56

inline – poor man’s procedures
• Promela also has its own macro-expansion feature using

the inline-construct.

– error messages are more useful than when using #define
– cannot be used as expression
– all variables should be declared somewhere else

inline init_array(a) {
d_step {
i=0;
do
:: i<N -> a[i] = 0; i++
:: else -> break
od;
i=0;

}
}

Should be declared somewhere
else (probably as a local variable).

Be sure to reset temporary variables.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 57

Properties (1)

• With SPIN one check the following type of properties:
– deadlocks (invalid endstates)
– assertions
– unreachable code
– LTL formulae
– liveness properties

• non-progress cycles (livelocks)
• acceptance cycles

φ=|M
• Remember: model checking tools automatically verify

holds, where M is a (finite-state) model of a system and
property φ is stated in some formal notation.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 58

Properties (2)

safety property
– “nothing bad ever happens”

– invariant
x is always less than 5

– deadlock freedom
the system never reaches a
state where no actions are
possible

– SPIN: find a trace leading to
the “bad” thing. If there is not
such a trace, the property is
satisfied.

liveness property
– “something good will eventually

happen”

– termination
the system will eventually
terminate

– response
if action X occurs then
eventually action Y will occur

– SPIN: find a (infinite) loop in
which the “good” thing does not
happen. If there is not such a
loop, the property is satisfied.

Historical
Classification

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 59

Properties (3)

• LTL formulae are used to specify liveness properties.
LTL ≡ propositional logic + temporal operators
– []P always P
– <>P eventually P
– P U Q P is true until Q becomes true

• Some LTL patterns
– invariance [] (p)
– response [] ((p) -> (<> (q)))
– precedence [] ((p) -> ((q) U (r)))
– objective [] ((p) -> <>((q) || (r)))

Xspin contains a special
“LTL Manager” to edit,

save and load LTL properties.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 60

Properties (4)

• Suggested further reading:
[Bérard et. al. 2001]

• Textbook on model checking.
• One part of the book (six chapters) is devoted to

“Specifying with Temporal Logic”.
• Also available in French.

[Dwyer et. al. 1999]
• classification of temporal logic properties
• pattern-based approach to the presentation, codification

and reuse of property specifications for finite-state
verification.

Note: although this tutorial focuses on how to construct an
effective Promela model M, the definition of the set of
properties which are to be verified is equally important!

11

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 61

(random) Simulation Algorithm

while (!error & !allBlocked) {
ActionList menu = getCurrentExecutableActions();
allBlocked = (menu.size() == 0);
if (! allBlocked) {
Action act = menu.chooseRandom();
error = act.execute();

}
}

act is executed and the
system enters a new state

interactive simulation:
act is chosen by the user

Visit all processes and collect
all executable actions .

deadlock ≡ allBlocked

s t act

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 62

Verification Algorithm (1)
• SPIN uses a depth first search algorithm (DFS) to

generate and explore the complete state space.

procedure dfs(s: state) {
if error(s)

reportError();
foreach (successor t of s) {

if (t not in Statespace)
dfs(t)

}
}

• Note that the construction and error checking happens at
the same time: SPIN is an on-the-fly model checker.

states are stored
in a hash table

the old states s are stored on a stack, which
corresponds with a complete execution path

requires state matching
Only works
for state

properties.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 63

Verification Algorithm (2)

P1 P2 Pn…

interleaving
product

SBuchi
Automaton

ϕ

¬ϕ

A Buchi
Automaton

translation

language
intersection

X should be empty.
Search for an accepting state in the intersection,
which is reachable from itself. In SPIN this
is implemented by two basic DFS procedures.
See [Holzmann 1996 et. al. – DFS] for details.

Based on
[Vardi & Wolper 1996].

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 64

State vector
• A state vector is the information to uniquely identify a

system state; it contains:
– global variables
– contents of the channels
– for each process in the system:

• local variables
• process counter of the process

• It is important to minimise the size of the state vector.
state vector = m bytes
state space = n states

storing the state space
may require n*m bytes

SPIN provides several algorithms to
compress the state vector.

[Holzmann 1997 - State Compression]

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 65

(Spin Version 3.4.12 -- 18 December 2001)
+ Partial Order Reduction

Full statespace search for:
never-claim - (not selected)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid endstates +

State-vector 96 byte, depth reached 18637, errors: 0
169208 states, stored
71378 states, matched
240586 transitions (= stored+matched)
31120 atomic steps

hash conflicts: 150999 (resolved)
(max size 2^19 states)

Stats on memory usage (in Megabytes):
17.598 equivalent memory usage for states (stored*(State-vector +

overhead))
11.634 actual memory usage for states (compression: 66.11%)

State-vector as stored = 61 byte + 8 byte overhead
2.097 memory used for hash-table (-w19)
0.480 memory used for DFS stack (-m20000)
14.354 total actual memory usage

SPIN Verification Report

property was
satisfied

total number of states
(i.e. the state space)

the size of a single state longest execution path

total amount of memory used for this verification
Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 66

Reduction Algorithms (1)
• SPIN has several optimisation algorithms to make verification

runs more effective:
– partial order reduction
– bitstate hashing
– minimised automaton encoding of states (not in a hashtable)
– state vector compression
– dataflow analysis
– slicing algorithm

SPIN’s power (and popularity) is based on these (default)
optimisation/reduction algorithms.

SPIN supports several command-line options to select and
further tune these optimisation algorithms.
See for instance: Xspin → Run → Set Verification Parameters →
Set Advanced options → Extra Compile-Time Directives

12

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 67

Reduction Algorithms (2)

• Partial Order Reduction
– observation: the validity of a property ϕ is often

insensitive to the order in which concurrent and
independently executed events are interleaved

– idea: if in some global state, a process P can execute
only “local” statements, then all other processes may
be deferred until later

– local statements, e.g.:
• statement accessing only local variables
• receiving from a queue, from which no other process receives
• sending to a queue, to which no other process sends

[Holzmann & Peled 1995 – PO]

It is hard to determine exclusive access to channels:
let user annotate exclusisve channels with xr or xs.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 68

Reduction Algorithms (3)

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

t1a

t1b

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

t1c

t2c

t2b

t2a

(1,1)

(0,1)

(2,1)

(2,2)

(1,2)

(0,2)

(0,3)

(1,3)

(2,3)

• Partial Order Reduction (cont.)

Suppose the statements
of P1 and P2 are all local.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 69

Reduction Algorithms (3)

• Bit-state hashing
– instead of storing each state explicitly, only one bit of

memory are used to store a reachable state
– given a state, a hash function is used to compute the

address of the bit in the hash table
– no collision detection
– hash factor = # available bits / # reached states

• aim for hash factor > 100

• Hash-compaction
– large hash table: 2^64
– store address in regular (smaller) hash table
– with collision detection

approximation

[Holzmann 1998 – Bitstate hashing]

[Holzmann 1998 – Bitstate hashing]

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 70

Reduction Algorithms (4)

• State compression
– instead of storing a state explicitly, a compressed version of

the state is stored in the statespace

• Minimised automaton
– states are stored in a dynamically changing, minimised

deterministic finite automaton (DFA)
• inserting/deleting a state changes the DFA

– close relationship with OBDDs

• Static analysis algorithms
– slicing algorithm: to get hints for possible reductions
– data-flow optimisations, dead variable elimination, merging

of safe and atomic statements

very memory
effective,
… but slow.

[Holzmann & Puri 1999 - MA]

[Holzmann 1997 – State Compression]

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 71

Moore’s Law & Advanced Algorithms
[Holzmann 2000 M’dorf]
– Verification results of Tpc (The phone company)

1

10

100

1000

10000

1980 1987 1995 1999 2000

Available Memory
Required Memory

1980: pan
1987: bitstate hashing
1995: partial order reduction
1999: minimised automaton

memory requirements
to (fully) verify Tpc

7 days 7 secs

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 72

BRP – Effective Modelling

• BRP = Bounded Retransmission Protocol
– alternating bit protocol with timers
– 1997: exhaustive verification with SPIN and UPPAAL
– 2002: optimised SPIN version
– shows the effectiveness of a tuned model

14.354116.399Memory (Mb)

169,2081,799,340# states

96 bytes104 bytesstate vector

BRP 2002BRP 1997

took upto an hour in 1997

Both verified
with SPIN 3.4.x

13

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 73

Recipes in [Ruys 2001]

• Tool Support

• First Things First

• Macros

• Atomicity

• Randomness

• Bitvectors

• Subranges

• Abstract Data Types: Deque

• Lossy channels

• Multicast Protocols

• Reordering a Promela model

• Invariance

• Modelling Time in Promela

• Scheduling algorithms

Still in the pipeline…

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 74

Invariance
• []P where P is a state property

– safety property
– invariance ≡ global universality or global absence

[Dwyer et. al. 1999]:
• 25% of the properties that are being checked with model

checkers are invariance properties
• BTW, 48% of the properties are response properties

– examples:
• [] !aflag
• [] mutex != 2

• SPIN supports (at least) 7 ways to check for invariance.

[]P

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 75

variant 1+2 - monitor process (single assert)

• proposed in Spin's documentation

• add the following monitor process to
the Promela model:

1

2

0

assert(P)

-end-

[]P

If the monitor process is
created last, the –end-

transition will be executable
after executing assert(P).

active proctype monitor()
{

assert(P);
}

• Two variations:
– 1. monitor process is created first
– 2. monitor process is created last

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 76

variant 3 - guarded monitor process

• Drawback of solution “1+2 monitor process” is that the
assert statement is enabled in every state.

active proctype monitor()
{
assert(P) ;

}

active proctype monitor()
{
atomic {
!P -> assert(P) ;
}

}

• The atomic statement only becomes executable when P
itself is not true.

[]P

We are searching for a state where P
is not true. If it does not exist, []P is true.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 77

variant 4 - monitor process (do assert)

• From an operational viewpoint, the following monitor
process seems less effective:

• But the number of states is clearly advantageous.

2 assert(P)

[]P

active proctype monitor()
{

do
:: assert(P)
od

}

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 78

variant 5 - never claim (do assert)

• also proposed in Spin's documentation

… and this never claim has not been generated…

[]P

never {
do
:: assert(P)
od

}

… but SPIN will issue the following unnerving warning:
warning: for p.o. reduction to be valid the never claim must be stutter-closed
(never claims generated from LTL formulae are stutter-closed)

SPIN will synchronise the never
claim automaton with the automaton
of the system. SPIN uses never
claims to verify LTL formulae.

14

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 79

variant 6 - LTL property
• The logical way...

• Spin translates the LTL formula to an accepting
never claim.

[]P

never { ![]P
TO_init:

if
:: (!P) -> goto accept_all
:: (1) -> goto TO_init
fi;

accept_all:
skip

}

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 80

variant 7 - unless {!P -> ...}
• Enclose the body of (at least) one of the processes into

the following unless clause:

This is quite
restrictive

Note: disabling partial reduction (-DNOREDUCE) may have severe
negative consequences on the effectiveness of the verification run.

[]P

• Discussion
+ no extra process is needed: saves 4 bytes in state vector
+ local variables can be used in the property P
– definition of the process has to be changed
– the unless construct can reach inside atomic clauses
– partial order reduction may be invalid if rendez-vous

communication is used within body
– the body is not allowed to end

{ body } unless { atomic { !P -> assert(P) ; } }

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 81

Invariance experiments
-DNOREDUCE - memory (Mb)

0

10

20

30

40

50

60

brp philo pftp

 1. monitor first
 2. monitor last
 3. guarded monitor
 4. monitor do assert
 5. never do assert
 6. LTL property
 7. unless

[]PPII 300Mhz
128 Mb

SPIN 3.3.10
Linux 2.2.12

NO partial order reduction

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 82

Invariance experiments
-DNOREDUCE - time (sec)

0

5

10

15

20

25

30

35

40

brp philo pftp

 1. monitor first
 2. monitor last
 3. guarded monitor
 4. monitor do assert
 5. never do assert
 6. LTL property
 7. unless

[]P

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 83

Invariance experiments
default settings - memory (Mb)

0

5

10

15

20

25

30

35

40

brp philo pftp

 1. monitor first
 2. monitor last
 3. guarded monitor
 4. monitor do assert
 5. never do assert
 6. LTL property

seems
attractive...

[]P

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 84

Invariance experiments
default settings - time (sec)

0

5

10

15

20

25

30

35

brp philo pftp

 1. monitor first
 2. monitor last
 3. guarded monitor
 4. monitor do assert
 5. never do assert
 6. LTL property

[]P

15

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 85

Invariance - Conclusions
• The methods 1 and 2 “monitor process with single
assert” performed worst on all experiments.
– When checking invariance, these methods should be avoided.

• Variant 4 “monitor do assert” seems attractive, after
verifying the pftp model.
– unfortunately, this method modifies the original pftp model!
– the pftp model contains a timeout statement
– because the do-assert loop is always executable, the timeout

will never become executable
⇒never use variant 4 in the presence of timeouts

• Variant 3 “guarded monitor process” is the most effective
and reliable method for checking invariance.

[]P

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 86

Basic recipe to check

1. Sanity check
Interactive and random simulations

2. Partial check
Use SPIN’s bitstate hashing mode to quickly sweep over
the state space.

3. Exhaustive check
If this fails, SPIN supports several options to proceed:
1. Compression (of state vector)
2. Optimisations (SPIN-options or manually)
3. Abstractions (manually, guided by SPIN’s slicing algorithm)
4. Bitstate hashing

states are not stored; fast method

ϕ=|M
Properties:
1. deadlock
2. assertions
3. invariance
4. liveness (LTL)

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 87

Optimising a Promela Model
• Use SPIN’s “Slicing Algorithm” to guide abstractions

– SPIN will propose reductions to the model on basis of the
property to be checked.

• Modelling priorities (space over time):
1. minimise the number of states
2. minimise the state vector
3. minimise the maximum search depth
4. minimise the verification time

• Often more than one validation model
– Worst case: one model for each property.
– This differs from programming where one usually develops

only a single program.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 88

Beyond Xspin

Promela model

models
options
results

options
spin

runspin gcc

pan

pan results
runspin data

retrieve

ppr

parse pan results:
identifies 49 items

shell script to
automatically run

spin, gcc & pan

version control system or
literate programming tool

LaTeX file .csv file
to analyse in
spreadsheet

“personal” SPIN setup

Verification results
obtained using a
verification tool
should always be

reproducible.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 89

runspin & ppr
• runspin

– automates the complete verification of Promela model
– shell script (270 loc)
– adds extra information to SPIN’s verification report, e.g.

• options passed to SPIN, the C compiler and pan
• system resources (time and memory) used by the verification
• name of the Promela source file
• date and time of the verification run

• ppr
– parse pan results: recognises 49 items in verification report
– Perl script (600 loc)
– output to LaTeX or CSV (general spreadsheet format)

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 90

Becoming a “SPIN doctor”
• Experiment freely with SPIN

Only by practicing with the Promela language and the SPIN
tool, one get a feeling of what it takes to construct effective
validation models and properties.

• Read SPIN (html) documentation thoroughly.

• Consult “Proceedings of the SPIN Workshops”:
– papers on successful applications with SPIN
– papers on the inner workings of SPIN
– papers on extensions to SPIN

• Further reading
– [Holzmann 2000 M’dorf] Nice overview of SPIN machinery

& “modern” model checking approach.

16

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 91

Some rules of thumb (1)
• See “Extended Abstract” of this tutorial in the SPIN 2002

Proceedings for:
– Techniques to reduce the complexity of a Promela model

(borrowed from Xspin’s Help).
– Tips (one-liners) on effective Promela patterns.

• See [Ruys 2001] for details.

• Be careful with data and variables
– all data ends up in the state vector
– the more different values a variable can be assigned, the

more different states will be generated
– limit the number of places of a channel

(i.e. the dimension)
– prefer local variables over global variables

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 92

Some rules of thumb (2)

• Atomicity
– Enclose statements that do not have to be interleaved

within an atomic / d_step clause
• Beware: the behaviour of the processes may change!
• Beware of infinite loops.

• Computations
– use d_step clauses to make the computation a single

transition
– reset temporary variables to 0 at the end of a d_step

• Processes
– sometimes the behaviour of two processes can be

combined into one; this is usually more effective.

Thursday 11-Apr-2002 Theo C. Ruys - Beginner's SPIN Tutorial 93

Summary

• Basic SPIN
– Promela basics
– Overview of Xspin
– Several Xspin demo’s

• Advanced SPIN
– Some more Promela statements
– Spin’s reduction algorithms
– Beyond Xspin: verification management
– Art of modelling

