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Abstract. Partial order reduction is one of the most e�ective techniques
for avoiding the state explosion problem that is inherent to explicit state
model checking of asynchronous concurrent systems. It exploits the com-
mutativity of concurrently executed transitions in interleaved system
runs in order to reduce the size of the explored state space. Directed
model checking on the other hand addresses the state explosion problem
by using guided search techniques during state space exploration. As a
consequence shorter errors trails are found and less search e�ort is re-
quired than when using standard depth-�rst or breadth-�rst search. We
analyze how to combine directed model checking with partial order re-
duction methods and give experimental results on how the combination
of both techniques perform.

1 Introduction

Model checking [3] is a formal analysis technique for the veri�cation of hardware
and software systems. Given a model of the system and a property speci�cation,
typically formulated in some temporal logic formalism, the state space of the
model is analyzed to check whether the property is valid or not. The main
limitation of this method is the size of the resulting state space, known as the
state explosion problem. State space explosion occurs due to non-determinism in
the model introduced by data or concurrency.

Di�erent approaches have been proposed to tackle this problem. One of the
most successful techniques is partial order reduction [19]. This method explores
a reduced state space by exploiting the independence of concurrently executed
events. Partial order reduction is particularly e�cient in asynchronous systems,
where many interleavings of events are equivalent with respect to a given prop-
erty speci�cation. Considering only one or a few representatives of one class of
equivalent interleavings leads to drastic reductions in the size of the state space
to be explored.

Another technique that has been suggested in dealing with the state space
explosion problem is the use of heuristic search techniques. They apply state
evaluation functions to rank the set of successor states and to decide where to
continue the search. Applying such methods often allows to �nd errors at optimal
or sub-optimal depths and to �nd errors in models in which \blind" search



strategies like depth-�rst and breadth-�rst search exceed the available time and
space resources. Optimal or near-to optimal solutions are particularly important
for designers to understand the sequence of steps that lead to an error, since
shorter trails are likely to be more comprehensible than longer ones. In protocol
veri�cation, heuristic search model checking has been shown to accelerate the
search for �nding errors [5] and to shorten already existing long trails [21].

In this paper we will focus on safety error detection in model checking and es-
tablish a hierarchy of reduction conditions for classifying which methods applies
to which classes of heuristic search algorithms. Moreover, we prove a general cor-
rectness result for partial order reduction in checking safety properties. To the
best of our knowledge, at the time of writing none of the steadily growing number
of publications addressing heuristic search in model checking [5,6,21,10,11,16,23]
has analyzed how to combine guided search with partial order reduction.

The paper is structured as follows. Section 2 gives some background on di-
rected model checking. Section 3 discusses partial order reduction and a hierarchy
of conditions for its application to di�erent search algorithms. This section also
addresses the problem of optimality in the length of the counterexamples, since
partial order methods usually do not guarantee �nding shortest error trails which
is an objective in directed model checking. Section 4 presents experimental re-
sults showing how the combination of partial order reduction and directed model
checking perform Section 5 summarizes the results and concludes the paper.

2 Directed Model Checking

During the veri�cation process of a concurrent system, analysts have di�erent ex-
pectations at di�erent times [11]. In a �rst exploratory mode, one wishes to �nd
errors fast. In a second fault-�nding mode one expects meaningful error trails.
Early approaches [16,23] propose the use of best-�rst search in order to accel-
erate the search for error states. Further approaches [6,5,21,11] propose the full
spectrum of classical heuristic search strategies for the veri�cation process in or-
der to accelerate error detection and to provide optimal or near-to-optimal trails.
Most of these techniques can be applied to the detection of safety properties only
or for shortening given error traces corresponding to liveness violations [21].

Contrary to blind search algorithms like depth- and breadth-�rst search,
heuristic search exploits information of the speci�c problem being solved in order
to guide the search. Estimator functions approximate the distance from a given
state to a set of goal states. The values provided by these functions decide
in which direction the search will be continued. Two of the most frequently
used heuristic search algorithms are A* and IDA*. In the following we briey
introduce both algorithms and consider di�erent heuristic estimates to be applied
in the context of directed model checking for error detection. For this setting,
we interpret error states as goal nodes in an underlying graph representation of
the state space with error trails corresponding to solution paths.



2.1 Algorithm A*

Algorithm A* [8] divides the state space S into three sets: the set Open of visited
but not yet expanded states, the set Closed of visited and expanded states and
the set S n (Closed [ Open) of not yet visited states. The algorithm performs
the search by expanding states of the Open set and moving them to the Closed
set. A successor of an expanded state is either new, in which case it is added
to the Open set, or old. In this case and if the new path to the state is shorter
than the previous one, the stored state is moved into the Open list or updated
with the new path information. Therefore, in contrast to Dijkstra's shortest path
algorithm, states are possibly re-opened during the search.

Througout the paper we only consider consistent heuristics [18], a condition,
which is equivalent to monotonically increasing state merits and that requires no
reopening at all. Assuming consistent estimates is not a severe restriction, since
most proposed heuristics, including the ones we apply for protocol veri�cation
are indeed consistent. The A* algorithm for consistent estimates is depicted in
Figure 1. It selects the next state u to be expanded according to the minimal
value of a cost function f(u) applied to all possible successor states, where f(u)
is computed as the sum of the length of the path from the start state g(u) and
the estimated distance to a goal state h(u). If h is a lower bound of the distance
to a goal state, then A* �nds the shortest path to the goal state.

procedure A*
Open f(start state; h(start state))g
Closed ;
while (Open 6= ;) do
u deletemin(Open)
insert(Closed; u)
if error(u) then
exit ErrorFound

for each successor v of u do
f 0(v) f(u) + 1 + h(v)� h(u)
if search(Open; v) then
if (f 0(v) < f(v)) then
DecreaseKey(Open; (v; f 0(v))

else if not search(Closed; v) then
insert(Open; (v; f 0(v))

Fig. 1. A* Algorithm for consistent heuristics.



2.2 Iterative-deepening A*

Iterative-deepening A* [14], IDA* for short, is a re�nement of the brute-force
depth-�rst iterative deepening search (DFID). While DFID performs successive
iterations with increasing search depth, in IDA* increasing cost bounds are used
to limit search iterations. The cost bound f of a state is the same as in A*.
Similar to A*, IDA* guarantees optimality if the estimator is a lower bound.

procedure IDA*
threshold h(start state)
do
new threshold 1
search(start state)
threshold new threshold

procedure search(s,threshold)
if error(s) then
exit ErrorFound

for each successor s0 of s do
if g(s0) + h(s0) � threshold then
search(s0,threshold)

else if g(s0) + h(s0) < new threshold then
new threshold g(s0) + h(s0)

Fig. 2. Algorithm IDA* without memorization of visited states.

IDA* can be enhanced by the use of various data structures to store states.
The simplest version of IDA* (Figure 2) does not record visited states at all. At
the expense of an increase in node expansions, space consumption remains linear
in the search depth since duplicates cannot be identi�ed. Due to the typically
large number of duplicates this approach is not suitable for the domain of model
checking. A more useful state storage scheme for IDA* is that of transposition
tables [24] to store already visited states. This approach requires to additionally
maintain the smallest depth for each state and to enforce revisiting of states
when encountered on shorter generating paths.

2.3 Heuristic Estimates

The above presented search algorithms require suitable estimator functions. In
model checking, such functions approximate the number of transitions for the
system to reach a target state from a given state. In our setup we will henceforth
assume that the target state corresponds to an error in the model. During the



model checking process, however, an explicit error state is not always available.
In fact, in many cases we do not know if there is an error in the model at all.
We distinguish the cases when errors are unknown and when error states are
explicit.

The formula-based heuristic [5] constructs an error function that describes
the error in order to derive an estimate for the distance to an error state.
Given an error formula f and starting from state s, a heuristic function hf (s)
is constructed for estimating the number of transitions needed until a state s0

is reached, where f(s0) holds. If an explicit error state is given, re�ned esti-
mates that exploit the information of this state can be devised, for instance the
Hamming distance and the FSM distance [21].

3 Partial Order Reduction

Partial order reduction methods exploit the commutativity of asynchronous sys-
tems in order to reduce the size of the state space. The resulting state space is
constructed in such a manner that it is equivalent to the original one with re-
spect to the speci�cation. Several partial order approaches have been proposed,
namely those based on \stubborn" sets [22], \persistent" sets [7] and \ample"
sets [20]. Although they di�er in detail, they are based on similar ideas. Due to
its popularity, in this paper we mainly follow the ample set approach. Nonethe-
less, most of the reasoning presented in this paper can easily be adjusted to any
of the other approaches.

3.1 Stuttering Equivalence of Labeled Transition Systems

Our approach is mainly focused to the veri�cation of asynchronous systems
where the global system is constructed as the asynchronous product of a set of
local component processes following the interleaving model of execution. Such
systems can be modeled by labeled transitions systems.

A labeled �nite transition system is a tuple hS; S0; T; AP; Li where S is a
�nite set of states, S0 is the set of initial states, T is a �nite set of transitions
such that each transition � 2 T is a partial function � : S ! S, AP is a �nite
set of propositions and L is a labeling function S ! 2AP .

An execution of a transition system is de�ned as a sequence of states inter-
leaved by transitions, i.e. a sequence s0�0s1 : : :, such that state s0 must be a
state of S0 and for each i � 0; si+1 = �(si).

The algorithm for generating a reduced state space is very simple. It tries to
explore only some of the successors of a state. A transition � is enabled in a state
s if �(s) is de�ned. The set of enabled transitions from a state s is usually called
the enabled set and denoted as enabled(s). The algorithm selects and follows
only a subset of this set called the ample set and denoted as ample(s).

Partial order reduction techniques are based on the observation that the order
in which some transitions are executed is not relevant. This leads to the concept
of independence between transitions. Two transitions �; � 2 T are independent
if for each state s 2 S the following two properties hold:



1. Enabledness is preserved: � 2 enabled(�(s)) and � 2 enabled(�(s)), i.e. �
and � do not disable each other.

2. � and � are conmutative: �(�(s)) = �(�(s)), i.e. executed in any order �
and � lead to the same global state.

A further fundamental concept is the fact that some transitions are invisible

with respect to the property speci�cation. A transition � is invisible with respect
to a set of propositions P if for each state s; s0 2 S such that s0 = �(s), L(s)\P =
L(s0) \ P .

We now present the concept of stuttering equivalence. A block is de�ned as
a �nite execution of identically labeled states. Intuitively, two executions are
stuttering equivalent if they can be de�ned as a concatenation of blocks such
that the i-th block in one of the executions has the same label as the i-th block
in the other execution, for each i > 0.

Two transition systems are stuttering equivalent if and only if they have the
same set of initial states and for each execution in one of the systems starting
from an initial state there exists a stuttering equivalent execution in the other
system starting from the same initial state. It can be shown that LTL�X

1 for-
mulae cannot distinguish between stuttering equivalent transition systems [3].
In other words, if M and N are two stuttering equivalent transition systems,
then M satis�es a given LTL�X speci�cation if and only if N also does.

3.2 Ample Set Construction for LTL
�X

The main goal of the ample set construction is to produce an ample set such
that the reduced state space is stuttering equivalent to the full state space.
Signi�cant reductions can be expected from this reduction without requiring a
high computational overhead. For a given property speci�cation P the following
four conditions on a set of successor states of a given state s are necessary and
su�cient for performing an ample set construction on this set.

Condition C0: The ample set of s is void exactly when the enabled set of s is
void.

Condition C1: Along every path in the full state space that starts at s, a
transition that is dependent on a transition in ample(s) cannot be executed
without a transition in ample(s) occurring �rst.

Condition C2: If a state s is not fully expanded, then each transition � in the
ample set must be invisible with regard to P.

Condition C3: If for each state of a cycle, a transition � is always enabled,
then � must be selected in the ample set of some of the states of the cycle.

As shown in [3] conditions C0 and C2 are easy to check and do not depend
on the search algorithm2. Condition C1 is also independent from the search

1 LTL�X is the linear time temporal logic without the next-time operator X.
2 We say that a condition is dependent on a search algorithm if the complexity of
checking the condition depends on the algorithm



algorithm, but more complicated to verify3. In the next we focus on condition
C3. We will see that it is dependent on the search algorithm. C3 is commonly
over-approximated using a condition C3cycle that states that each cycle must
contain at least one state that is fully expanded:

C3cycle: Every cycle in the reduced state space contains at least one state that
is fully expanded.

C3cycle reduces the veri�cation problem for C3 to detecting cycles during
the search. Cycles can easily be established in depth-�rst search: Every cycle
contains a backward edge, i.e. an edge that links back to a state that is stored on
the search stack. Consequently, avoiding backward edges in the ample set ensures
satisfaction of C3cycle when using depth-�rst search or iterative deepening A*
(IDA*), since both methods perform a depth-�rst traversal. The resulting stack-
based characterization C3stack can be stated as follows:

C3stack: If a state s is not fully expanded, then no transition in ample(s) leads
to a state on the search stack.

The example on the left of Figure 3 illustrates how C3stack is used. The set of
enabled transitions in state s is f�1; : : : ; �ng. Transition �1 closes a cycle on the
stack and cannot be included in any ample set candidate, except when the state
is fully expanded. Therefore, the set of transitions f�2g is a valid candidate,
while f�1; �2g and f�1g are examples of invalid ample sets.

s

�1

�2::�n

dfs stack

s

s0

�1

�2::�n

Open

Closed

Fig. 3. Example for depth-�rst search (left) and A* (right).

The implementation of C3stack for depth-�rst search strategies marks each
expanded state on the stack with an additional ag, so that stack containment

3 In fact it has been shown to be at least as hard as checking reachability for the full
state space. The commonly used method [3] for constructing the ample set satis�es
the C1 using a sub-optimal approximation.



can be checked in constant time. Depth-�rst strategies that record visited states
will not consider every cycle in the state space on the search stack, since there
might exist exponentially many of them. However, C3stack is still a su�cient
condition for C3 since every cycle contains at least a back edge, i.e. an edge that
goes back to the stack.

The di�culty in using C3stack for general node expanding algorithms like A*
and breadth-�rst search are twofold. Firstly, a quick retrieval of generating path
information for a given node is di�cult. Through the uncorrelated extraction of
states from the search frontier, the only suitable way to retrieve the generating
path information is by explicit path construction, traversing the predecessor link
information. For each successor set generation this consumes an additional time
overhead linear to the encountered search depth. Secondly, predecessor links only
refer to shortest path information while depth-�rst search stacks memorize at
least every traversed path. In the extrem case of only one cycle depth-�rst search
is guaranteed to �nd it, while in A* or breadth-�rst search this is not necessarily
true. This implies with generating path reconstruction only a very small number
of cycles could be established. For undirected state space the reconstruction of
cycles that are indicated by hash collisions is possible by inverse application
of transition. For the usual case of directed graphs and general exploration,
however, no e�cient algorithms to detect cycles are known.

Following [2] and [1], enforcing the cycle condition with non-depth-�rst search
algorithms is based on the observation that for a cycle to exist, it is necessary
to reach an already visited state. Using this idea will lead to weaker reductions,
since it is known that the state spaces of concurrent systems usually have a high
density of duplicate states. The resulting condition is de�ned as:

C3duplicate: If a state s is not fully expanded, then no transition in ample(s)
leads to an already visited state.

We use the example on the right of Figure 3 to illustrate this condition.
Transition �1 leads to a state s0 that lies below the search horizon de�ned by
the Open set, i.e., s0 has already been visited when state s is expanded. Condition
C3duplicate forbids s0 in any ample set if s is not fully expanded. Hence, f�1g
and f�1; �2g are examples of not valid ample set. On the other hand, the set
f�2g is not refuted.

3.3 Ample Set Construction for Safety Properties

The authors of [9] propose an approximation of the C3 condition that can be
applied when checking safety properties. This condition is de�ned as follows:

C3�stack: If a state s is not fully expanded, then at least one transition in
ample(s) does not lead to a state on the search stack.

Consider again the example on the left Figure 3. Condition C3�stack does not
characterize the set f�1g as a valid candidate for the ample set. Contrary to



C3stack, condition C3
�

stack accepts f�1; �2g as a valid ample set, since at least
one transition (�2) of the set leads to a state that is not on the search stack of
the depth-�rst search. Hence, C3�stack is not su�cient to guarantee C3 which is
necessary for checking liveness properties correctly.

We now de�ne a modi�cation of C3 condition that together with C0-C3 is
su�cient and necessary to guarantee a correct reduction for safety properties.

C3�: If a transition � is enabled in every state, then � must be selected in the
ample set of some of the states of the state space.

This condition is implicitly de�ned in [9]. It is a relaxation of C3 that is only
correctly applicable to the veri�cation of safety properties, which is the focus of
our approach.

Condition C3�stack cannot be used with A*, since cycles cannot be e�ciently
detected with this algorithm. Therefore, we propose an alternative condition in
order to enforce C3�. It is based on the same idea as C3duplicate.

C3�duplicate If a state s is not fully expanded, then at least one transition in
ample(s) does not lead to an already visited state.

Similar to the comparison of conditions C3�stack and C3stack, Figure 3 illus-
trates that the set of transitions f�1; �2g is rejected as ample set by condition
C3duplicate, but not by C3

�

duplicate.

A proof of su�ciency of condition C3�stack for depth-�rst search is given
in [9]. The proof of su�ciency of condition C3�duplicate when combined with a

depth-�rst search is given by the fact that C3�duplicate implies C3�stack; if at least
one transition in ample(s) has a non-visited successor this transition certainly
does not lead to a successor on the stack.

The correctness of C3�duplicate when combined with A* remains to be proven.

A* changes the order of node expansions, so that more promising nodes
with respect to a set of error states are preferred. Therefore, during A*'s state
space traversal the respective sets of visited states are di�erent from breadth-
�rst search. Up to reopening, both A* and breadth-�rst search incrementally
extend the set of visited nodes. In order to prove the correctness of partial order
reduction with condition C3�duplicate for general state expansion algorithms in
the following lemma, we will use induction on the state expansion ordering,
starting from a completed exploration and moving backwards with respect to
the traversal algorithm. As a byproduct the more general setting in the lemma
also proves the correctness of partial order reduction according to condition
C3�duplicate for depth-�rst, breadth-�rst, best-�rst, and A* like search schemes.
The lemma �xes a state s 2 S after termination of the search and ensures that
each enabled transition is executed either in the ample set or in a state that
appears later on in the expansion process. Therefore, no transition is omitted.
Applying the lemma to all states s in S implies C3�, which, in turn, certi�es a
correct reduction.



Lemma 1. For each state s 2 S the following is true: when the search termi-

nates each transition � 2 enabled(s) have been selected either in ample(s) or in

a state s0 such that s0 has been expanded after s.

Proof. Let s be the last expanded state. Every transition � 2 enabled(s) leads
to an already expanded state, otherwise the search would have been continued.
Condition C3�duplicate enforces therefore that state s is fully expanded and the
lemma trivially holds for s.

Now suppose that the lemma is valid for those states which expansion order
is greater than n. Let s be the n-th expanded state. If s is fully expanded,
the lemma trivially holds for s. Otherwise we have that ample(s) � enabled(s).
Transitions in ample(s) are selected in s. Since ample(s) is accepted by condition
C3�duplicate there is a transition � 2 ample(s) such that �(s) leads to a state
that has not been previously visited nor expanded. Evidently the expansion
order of �(s) is higher than n. Condition C1 implies that the transitions in
ample(s) are all independent from those in enabled(s)nample(s) [3]. A transition
 2 enabled(s) n ample(s) cannot be dependent from a transition in ample(s),
since otherwise in the full graph there would be a path starting with  and a
transition depending on some transition in ample(s) would be executed before
a transition in ample(s). Hence, transitions in enabled(s) n ample(s) are still
enabled in �(s) and contained in enabled(�(s)).

By the induction hypothesis the lemma holds for �(s) and, therefore, transi-
tions in enabled(s)n ample(s) are selected in �(s) or in a state that is expanded
after it. Hence the lemma also holds for s. ut

3.4 Static Reduction in the Ample Set Construction

In contrast to the previous approaches this ample set construction method explic-
itly exploits the structure of the underlying interleaving system. Recall that the
global system is constructed as the asynchronous composition of several compo-
nents. The authors of [15] present a static partial order reduction method based
on the following observation. Any cycle in the global state space is composed of
a local cycle, which may be of length zero, in the state transition graph of each
component process. Breaking every local cycle breaks every global cycle. The
state transition graph of processes of the system are statically analyzed before
the global state space generation begins. Therefore, the method is independent
from the search algorithm to be used during the veri�cation.

A sticky transition is de�ned as a transition that enforces full expansion of
a state. Marking at least one transition in each local cycle as sticky guarantees
that at least one state in each global cycle is fully expanded, satisfying the cycle
condition C3cycle. The resulting C3static condition is de�ned as follows:

C3static: If a state s is not fully expanded then no transition in ample(s) is
sticky.

Selecting one sticky transition for each local cycle is a simple approach that
can be improved. The e�ect of local cycles on the set of variables of the system



can be analyzed in order to establish certain dependencies between local cycles.
For example, if a local cycle C1 has an overall incrementing e�ect on a variable
v, for a global cycle to exist, it is necessary (but not su�cient) to execute C1 in
combination with a local cycle C2 that has an overall decrementing e�ect on v.
In this case one can select only a sticky transition for this pair of local cycles.

3.5 Hierarchy of C3 Conditions

Figure 4 depicts a diagram with all the presented C3 conditions. Arrows indicate
logical implication. In the rest of the paper we will say that a condition A is
stronger than a condition B if A implies B. For example, if the search guarantees
C3stack thenC3cycle is also guaranteed, and we say thatC3stack is stronger than
C3cycle. The dashed region contains the conditions that can be correctly used
with A*, while the dotted region includes those for IDA*. For a given algorithm,
the arrows also denote that a condition will produce better or equal reduction.
For example, IDA* in combination with C3stack will provide better or equal
reductions than in combination with C3duplicate.

C3 C3cycle

C3static

C3duplicate

A*

IDA*

C3
�

duplicateC3
�

stackC3�

C3stack

Fig. 4. C3 conditions.

When the search is performed by A*, onlyC3static,C3duplicate andC3
�

duplicate

can be used for reduction as marked in the dashed region of the �gure. Condition
C3�duplicate is preferable to C3duplicate since it will produce better reductions.
Only experimental results can help us to decide whether C3static is superior to
C3�duplicate or not.

Since IDA*'s traversal order is depth-�rst, it can be combined with all cycle
conditions contained in the dotted region of the Figure.

3.6 Optimality and Partial Order

One of the goals of directed model checking is to �nd shortest paths to errors. Al-
though from a practical point of view near-to optimal solutions may be su�cient
to help designers during the debugging phase, �nding optimal counterexamples



still remains an important theoretical question. Heuristic search algorithms re-
quire lower bound estimates for guaranteeing optimal solution lengths. Never-
theless, there are other issues that determine optimality of the search results.

Partial order reduction does not guarantee optimal length of paths to the
set of error states in the non-reduced state space. In fact, the shortest path to
an error in the reduced state space may be longer than the shortest path to an
error state in the full state space. The reason is that the concept of stuttering
equivalence does not make assumptions about the length of the blocks. Suppose
that the transitions � and � of the state space depicted in Figure 5 are indepen-
dent and that � is invisible with respect to the set of propositions p. Suppose
further that the property we want to check corresponds to the LTL formula 2p.
With these assumptions the reduced state space for the example is stuttering
equivalent to the full one. The shortest path that violates the invariant in the
reduced state space is ��, which has a length of 2. In the full one the path � is
the shortest path to an error state and the error trail has a length of 1. Section 4
gives experimental evidence for loss of optimality when applying partial order
reduction.

:p

:p

�

� �

�

p

p

:p

�

�

p

p

Fig. 5. Example of a full state space (left) and a reduction (right).

4 Experiments

The experimental results that we report in this Section have been obtained
using our experimental directed model checker HSF-SPIN4 for which we have
implemented the described reduction methods for some of the experiments. All
results were produced on a SUN workstation, UltraSPARC-II CPU with 248
Mhz.

We use a set of Promela models as benchmarks including a model of a leader
election protocol5 [4] (leader), the CORBA GIOP protocol [12] (giop), the tele-

4 Available at www.informatik.uni-freiburg.de/~lafuente/hsf-spin
5 Available at netlib.bell-labs.com/netlib/spin



phony model POTS6 [13] (pots), and a model of a concurrent program that
solves the stable marriage problem [17] (marriers). The considered versions of
these protocols violate certain safety properties.

4.1 Exhaustive exploration

The objective of the �rst set of experiments is to show how the di�erent variants
of the C3 condition perform. We expect that stronger C3 conditions according
to hierarchy in Figure 4 lead to stronger reductions in the number of stored and
expanded states and transitions.

Model Reduction States Transitions Time

marriers No Reduction 96,295 264,053 20.6

C3stack 29,501 37,341 5.6

C3duplicate 72,536 111,170 17.3

C3�stack 29,501 37,341 5.5

C3�duplicate 72,536 111,170 17.5

C3static 57,067 88,119 10.7

leader No Reduction 54,216 210,548 36.3

C3stack 963 4,939 4.7

C3duplicate 1,417 6,899 4.6

C3�stack 963 4,939 4.4

C3�duplicate 1,417 6,899 5.0

C3static 2,985 7,527 4.8

giop No Reduction 664,376 2,579,722 259.3

C3stack 65,964 90,870 21.0

C3duplicate 284,083 605,147 110.0

C3�stack 65,964 90,870 23.1

C3�duplicate 284,083 605,147 115.0

C3static 231,102 445,672 79.0

Table 1. Exhaustive exploration with depth-�rst search and several reduction methods.

We use the marriers, leader and giop protocols in our experiments. The POTS
model is too large to be explored exhaustively. In this and all following experi-
ments we have selected the biggest con�guration of these protocols that can still
be exhaustively analyzed. Exploration is performed by depth-�rst search.

Table 1 depicts the size of the state space as a a result of the application of
di�erent C3 conditions. The number of transitions performed and the running
time in seconds are also included. For each model, the �rst row indicates the size
of the explored state space when no reduction is used.

As expected stronger conditions o�er weaker reductions. This loss of reduc-
tion is especially evident in the second con�guration of the giop protocol, where

6 Available at www.informatik.uni-freiburg.de/~lafuente/models/models.html



the two conditions potentially applicable in A*, namely C3�duplicate and C3static,
are worse by about a factor of 4 with respect to the condition that o�ers the
best reductions, namely C3�stack.

For the marriers and giop protocols the static reduction yields a stronger
reduction than condition C3�duplicate. Only for the leader election algorithm this
is not true. This is probably due to the relative high number of local cycles in
the state transition graph of the processes in this model, and to the fact that
there is no global cycle in the global state space. Since our implementation of
the static reduction considers only the simplest approach where one transition
in each cycle is marked as sticky, we assume that the results will be even better
with re�ned methods for characterizing transitions as sticky.

In addition to the reduction in space consumption, partial order reduction
also provides reduction in time. Even though the overhead introduced by the
computation of the amplet set and the static computation prior to the explo-
ration when static reduction is used, time reduction is still achieved in all cases.

4.2 Error Finding with A* and Partial Order Reduction

The next set of experiments is intended to highlight the impact of various reduc-
tion methods when detecting errors with A*. More precisely, we want to compare
the two C3 conditions C3�duplicate and C3static that can be applied jointly with
A*.

Model Reduction States Transitions Time Length

marriers no 5,077 12,455 0.93 50

C3�duplicate 2,988 4,277 0.51 50

C3static 1,604 1,860 0.31 50

pots no 6,519 2,668 1.57 67

C3�duplicate 1,662 3,451 1.08 67

C3static 1,662 3,451 1.00 67

leader no 7,172 22,876 6.87 58

C3�duplicate 65 3,190 4.76 77

C3static 399 3,593 4.88 66

giop no 31,066 108,971 26.50 58

C3�duplicate 21,111 48,870 16.68 58

C3static 12,361 24,493 9.36 58

Table 2. Finding a safety violation with A* and several reduction methods.

Table 2 shows the e�ect of applying C3�duplicate and C3static in conjunction
with A*. The table has the same format as the previous one, but this time the
length of the error trail is included.

As expected, both conditions achieve a reduction in the number of stored
states and transitions performed. Solution quality is only lost in the case of



leader. In the same experiment C3static requires the storage of more states and
the execution of more transitions than C3�duplicate. The reasons are the same
as the ones mentioned in the previous set of experiments. On the other hand,
C3�duplicate produces a longer error trail. A possible interpretation is that more
reduction leads to higher probability that the anomaly that causes the loss of
solution quality occurs. In other words, the bigger the reduction is, the longer
the stuttering equivalent executions and, therefore, the longer the expected trail
lengths become. Table 2 also shows that the overhead introduced by partial order
reduction and heuristic search does not avoid time reduction.

4.3 Error Finding with IDA* and Partial Order Reduction

Reduction

In this Section we investigate the e�ect of partial order reduction when the state
space exploration is performed with IDA*. The test cases are the same of the
previous section. Partial order reduction with IDA* uses the cycle condition
C3stack.

Table 3 depicts the results on detecting a safety error with IDA* with and
without applying partial order reduction. The table shows the total number
of transitions performed, the maximal peak of stored states and the length of
the provided counterexamples. As in the previous set of experiments, solution
quality is only lost when applying partial order reduction in the leader elec-
tion algorithm. On the other hand, this is also the protocol for which the best
reduction is obtained. We assume that the reason is the same as indicated in
the previous set of experiments. In addition, the overhead introduced by partial
order reduction and heuristic search does avoid time reduction as explained for
previous experiments.

Model Reduction States Transitions Time Length

marriers no 4,724 84,594 19.29 50

yes 1,298 4,924 8.40 50

pots no 2,422 46,929 36.52 67

yes 1,518 20,406 28.37 67

leader no 6,989 141,668 210.67 56

yes 55 50,403 73.90 77

giop no 30,157 868,184 225.54 58

yes 7,441 102,079 78.43 58

Table 3. Finding a safety violation with IDA* with and without reduction.



4.4 Combined E�ect Heuristic Search and Partial Order

In this Section we are interested in analyzing the combined reduction e�ect of
partial order reduction and heuristic search. More precisely, we have measured
the reduction ratio provided by one of the techniques when the other technique
is used or not, as well as the reduction ratio of using both techniques simultane-
ously. The Table on the left of Figure 6 indicates the reduction factor achieved
by partial order and heuristic search when error detecting is performed with A*.
The �gure also includes a diagram that helps to understand the table. The reduc-
tion factor due to a given technique is computed as the number of stored states
when the search is done without applying the respective technique divided by
the number of stored states when the search is done applying the technique. Re-
call that when no heuristic is applied, A* performs breadth-�rst search. A search
is represented in the diagram by a circle labeled with the applied technique(s),
namely heuristic search (H), partial-order reduction (PO) or both (H+PO). The
labels of the edges in the diagram refer to the cells of the table which contain the
measured reduction factor from one search to other. The leftmost column of the
table indicates the technique(s) for which the reduction e�ect is measured. When
testing the reduction ratios of the methods separately, we distinguish whether
the other method is applied (C) or not (N).

marriers N C

H 2.3 6.5

PO 40.8 117.6

H+PO 267.0

pots N C

H 5.9 8.4

PO 1.4 1.6

H+PO 9.5

leader N C

H 1.9 2.6

PO 2.7 3.2

H+PO 5.9

giop N C

H 1.3 1.3

PO 2.6 2.5

H+PO 3.3

H PO

H+PO

(PO,N)

(H+PO)

(H,N)

(PO,C) (H,C)

Fig. 6. Table with reduction factor due partial order and heuristic search (left) and an
explanatory diagram (right).

In some cases the reduction factor provided by one of the techniques when
working alone ((H,N) and (PO,C)) improves when the other technique is applied
((H,C) and (PO,C)). This is particularly evident in the case of the marriers
model, where the reduction factor is about doubled. However we cannot conclude



that the partial order reduction and heuristic search produce synergy since in
the case of giop model the reduction ratio is not improved.

5 Conclusions

When combining partial order with directed search two main problems must be
considered. First of all, common partial order reduction techniques require to
check a condition which entails the detection of cycles during the construction
of the reduced state space. Depth-�rst search based algorithms like IDA* can
easily detect cycles during the exploration. On the other side, heuristic search al-
gorithms like A* are not well-suited for cycle detection. Stronger cycle conditions
or static reduction methods have to be used. We have established a hierarchy of
approximation conditions for ample set condition C3 and our experiments show
that weaker the condition, the better the e�ect on the state space search.

The second problem is that partial order reduction techniques do not preserve
optimality of the length of the path to error states. In other words, when partial
order is used there is no guarantee to �nd the shortest counterexample that
lead to an error, which is one of the core objectives of the paradigm of directed
model checking. In future work we plan to work on the possibility of avoiding
this problem by exploting the independence of events to shorten error trails.

Experimental results that we have presented show that partial order reduc-
tion has positive e�ects in combination with directed search strategies. Although
optimality is lost in some cases, signi�cant reductions can be achieved even when
using A* with weaker methods than classical cycle conditions. Static reduction,
in particular, seems to be more promising than other methods applicable with
A*. Partial order reduction provides drastic reductions when error detection is
performed by IDA*. We have also analyzed the combined e�ect of heuristics and
reduction, showing than in most cases the reduction e�ect of one technique is
lightly accentuated by the other. Experimental results also show that the time
overhead introduced by both techniques does not notably decrease the time re-
duction that they provide.
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