*DECK DMPAR
SUBROUTINE DMPAR (N, R, LDR, IPVT, DIAG, QTB, DELTA, PAR, X,
+ SIGMA, WA1, WA2)
C***BEGIN PROLOGUE DMPAR
C***SUBSIDIARY
C***PURPOSE Subsidiary to DNLS1 and DNLS1E
C***LIBRARY SLATEC
C***TYPE DOUBLE PRECISION (LMPAR-S, DMPAR-D)
C***AUTHOR (UNKNOWN)
C***DESCRIPTION
C
C **** Double Precision version of LMPAR ****
C
C Given an M by N matrix A, an N by N nonsingular DIAGONAL
C matrix D, an M-vector B, and a positive number DELTA,
C the problem is to determine a value for the parameter
C PAR such that if X solves the system
C
C A*X = B , SQRT(PAR)*D*X = 0 ,
C
C in the least squares sense, and DXNORM is the Euclidean
C norm of D*X, then either PAR is zero and
C
C (DXNORM-DELTA) .LE. 0.1*DELTA ,
C
C or PAR is positive and
C
C ABS(DXNORM-DELTA) .LE. 0.1*DELTA .
C
C This subroutine completes the solution of the problem
C if it is provided with the necessary information from the
C QR factorization, with column pivoting, of A. That is, if
C A*P = Q*R, where P is a permutation matrix, Q has orthogonal
C columns, and R is an upper triangular matrix with diagonal
C elements of nonincreasing magnitude, then DMPAR expects
C the full upper triangle of R, the permutation matrix P,
C and the first N components of (Q TRANSPOSE)*B. On output
C DMPAR also provides an upper triangular matrix S such that
C
C T T T
C P *(A *A + PAR*D*D)*P = S *S .
C
C S is employed within DMPAR and may be of separate interest.
C
C Only a few iterations are generally needed for convergence
C of the algorithm. If, however, the limit of 10 iterations
C is reached, then the output PAR will contain the best
C value obtained so far.
C
C The subroutine statement is
C
C SUBROUTINE DMPAR(N,R,LDR,IPVT,DIAG,QTB,DELTA,PAR,X,SIGMA,
C WA1,WA2)
C
C where
C
C N is a positive integer input variable set to the order of R.
C
C R is an N by N array. On input the full upper triangle
C must contain the full upper triangle of the matrix R.
C On output the full upper triangle is unaltered, and the
C strict lower triangle contains the strict upper triangle
C (transposed) of the upper triangular matrix S.
C
C LDR is a positive integer input variable not less than N
C which specifies the leading dimension of the array R.
C
C IPVT is an integer input array of length N which defines the
C permutation matrix P such that A*P = Q*R. Column J of P
C is column IPVT(J) of the identity matrix.
C
C DIAG is an input array of length N which must contain the
C diagonal elements of the matrix D.
C
C QTB is an input array of length N which must contain the first
C N elements of the vector (Q TRANSPOSE)*B.
C
C DELTA is a positive input variable which specifies an upper
C bound on the Euclidean norm of D*X.
C
C PAR is a nonnegative variable. On input PAR contains an
C initial estimate of the Levenberg-Marquardt parameter.
C On output PAR contains the final estimate.
C
C X is an output array of length N which contains the least
C squares solution of the system A*X = B, SQRT(PAR)*D*X = 0,
C for the output PAR.
C
C SIGMA is an output array of length N which contains the
C diagonal elements of the upper triangular matrix S.
C
C WA1 and WA2 are work arrays of length N.
C
C***SEE ALSO DNLS1, DNLS1E
C***ROUTINES CALLED D1MACH, DENORM, DQRSLV
C***REVISION HISTORY (YYMMDD)
C 800301 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 900328 Added TYPE section. (WRB)
C***END PROLOGUE DMPAR
INTEGER N,LDR
INTEGER IPVT(*)
DOUBLE PRECISION DELTA,PAR
DOUBLE PRECISION R(LDR,*),DIAG(*),QTB(*),X(*),SIGMA(*),WA1(*),
1 WA2(*)
INTEGER I,ITER,J,JM1,JP1,K,L,NSING
DOUBLE PRECISION DXNORM,DWARF,FP,GNORM,PARC,PARL,PARU,P1,P001,
1 SUM,TEMP,ZERO
DOUBLE PRECISION D1MACH,DENORM
SAVE P1, P001, ZERO
DATA P1,P001,ZERO /1.0D-1,1.0D-3,0.0D0/
C***FIRST EXECUTABLE STATEMENT DMPAR
DWARF = D1MACH(1)
C
C COMPUTE AND STORE IN X THE GAUSS-NEWTON DIRECTION. IF THE
C JACOBIAN IS RANK-DEFICIENT, OBTAIN A LEAST SQUARES SOLUTION.
C
NSING = N
DO 10 J = 1, N
WA1(J) = QTB(J)
IF (R(J,J) .EQ. ZERO .AND. NSING .EQ. N) NSING = J - 1
IF (NSING .LT. N) WA1(J) = ZERO
10 CONTINUE
IF (NSING .LT. 1) GO TO 50
DO 40 K = 1, NSING
J = NSING - K + 1
WA1(J) = WA1(J)/R(J,J)
TEMP = WA1(J)
JM1 = J - 1
IF (JM1 .LT. 1) GO TO 30
DO 20 I = 1, JM1
WA1(I) = WA1(I) - R(I,J)*TEMP
20 CONTINUE
30 CONTINUE
40 CONTINUE
50 CONTINUE
DO 60 J = 1, N
L = IPVT(J)
X(L) = WA1(J)
60 CONTINUE
C
C INITIALIZE THE ITERATION COUNTER.
C EVALUATE THE FUNCTION AT THE ORIGIN, AND TEST
C FOR ACCEPTANCE OF THE GAUSS-NEWTON DIRECTION.
C
ITER = 0
DO 70 J = 1, N
WA2(J) = DIAG(J)*X(J)
70 CONTINUE
DXNORM = DENORM(N,WA2)
FP = DXNORM - DELTA
IF (FP .LE. P1*DELTA) GO TO 220
C
C IF THE JACOBIAN IS NOT RANK DEFICIENT, THE NEWTON
C STEP PROVIDES A LOWER BOUND, PARL, FOR THE ZERO OF
C THE FUNCTION. OTHERWISE SET THIS BOUND TO ZERO.
C
PARL = ZERO
IF (NSING .LT. N) GO TO 120
DO 80 J = 1, N
L = IPVT(J)
WA1(J) = DIAG(L)*(WA2(L)/DXNORM)
80 CONTINUE
DO 110 J = 1, N
SUM = ZERO
JM1 = J - 1
IF (JM1 .LT. 1) GO TO 100
DO 90 I = 1, JM1
SUM = SUM + R(I,J)*WA1(I)
90 CONTINUE
100 CONTINUE
WA1(J) = (WA1(J) - SUM)/R(J,J)
110 CONTINUE
TEMP = DENORM(N,WA1)
PARL = ((FP/DELTA)/TEMP)/TEMP
120 CONTINUE
C
C CALCULATE AN UPPER BOUND, PARU, FOR THE ZERO OF THE FUNCTION.
C
DO 140 J = 1, N
SUM = ZERO
DO 130 I = 1, J
SUM = SUM + R(I,J)*QTB(I)
130 CONTINUE
L = IPVT(J)
WA1(J) = SUM/DIAG(L)
140 CONTINUE
GNORM = DENORM(N,WA1)
PARU = GNORM/DELTA
IF (PARU .EQ. ZERO) PARU = DWARF/MIN(DELTA,P1)
C
C IF THE INPUT PAR LIES OUTSIDE OF THE INTERVAL (PARL,PARU),
C SET PAR TO THE CLOSER ENDPOINT.
C
PAR = MAX(PAR,PARL)
PAR = MIN(PAR,PARU)
IF (PAR .EQ. ZERO) PAR = GNORM/DXNORM
C
C BEGINNING OF AN ITERATION.
C
150 CONTINUE
ITER = ITER + 1
C
C EVALUATE THE FUNCTION AT THE CURRENT VALUE OF PAR.
C
IF (PAR .EQ. ZERO) PAR = MAX(DWARF,P001*PARU)
TEMP = SQRT(PAR)
DO 160 J = 1, N
WA1(J) = TEMP*DIAG(J)
160 CONTINUE
CALL DQRSLV(N,R,LDR,IPVT,WA1,QTB,X,SIGMA,WA2)
DO 170 J = 1, N
WA2(J) = DIAG(J)*X(J)
170 CONTINUE
DXNORM = DENORM(N,WA2)
TEMP = FP
FP = DXNORM - DELTA
C
C IF THE FUNCTION IS SMALL ENOUGH, ACCEPT THE CURRENT VALUE
C OF PAR. ALSO TEST FOR THE EXCEPTIONAL CASES WHERE PARL
C IS ZERO OR THE NUMBER OF ITERATIONS HAS REACHED 10.
C
IF (ABS(FP) .LE. P1*DELTA
1 .OR. PARL .EQ. ZERO .AND. FP .LE. TEMP
2 .AND. TEMP .LT. ZERO .OR. ITER .EQ. 10) GO TO 220
C
C COMPUTE THE NEWTON CORRECTION.
C
DO 180 J = 1, N
L = IPVT(J)
WA1(J) = DIAG(L)*(WA2(L)/DXNORM)
180 CONTINUE
DO 210 J = 1, N
WA1(J) = WA1(J)/SIGMA(J)
TEMP = WA1(J)
JP1 = J + 1
IF (N .LT. JP1) GO TO 200
DO 190 I = JP1, N
WA1(I) = WA1(I) - R(I,J)*TEMP
190 CONTINUE
200 CONTINUE
210 CONTINUE
TEMP = DENORM(N,WA1)
PARC = ((FP/DELTA)/TEMP)/TEMP
C
C DEPENDING ON THE SIGN OF THE FUNCTION, UPDATE PARL OR PARU.
C
IF (FP .GT. ZERO) PARL = MAX(PARL,PAR)
IF (FP .LT. ZERO) PARU = MIN(PARU,PAR)
C
C COMPUTE AN IMPROVED ESTIMATE FOR PAR.
C
PAR = MAX(PARL,PAR+PARC)
C
C END OF AN ITERATION.
C
GO TO 150
220 CONTINUE
C
C TERMINATION.
C
IF (ITER .EQ. 0) PAR = ZERO
RETURN
C
C LAST CARD OF SUBROUTINE DMPAR.
C
END