*DECK CSVDC
SUBROUTINE CSVDC (X, LDX, N, P, S, E, U, LDU, V, LDV, WORK, JOB,
+ INFO)
C***BEGIN PROLOGUE CSVDC
C***PURPOSE Perform the singular value decomposition of a rectangular
C matrix.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D6
C***TYPE COMPLEX (SSVDC-S, DSVDC-D, CSVDC-C)
C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX,
C SINGULAR VALUE DECOMPOSITION
C***AUTHOR Stewart, G. W., (U. of Maryland)
C***DESCRIPTION
C
C CSVDC is a subroutine to reduce a complex NxP matrix X by
C unitary transformations U and V to diagonal form. The
C diagonal elements S(I) are the singular values of X. The
C columns of U are the corresponding left singular vectors,
C and the columns of V the right singular vectors.
C
C On Entry
C
C X COMPLEX(LDX,P), where LDX .GE. N.
C X contains the matrix whose singular value
C decomposition is to be computed. X is
C destroyed by CSVDC.
C
C LDX INTEGER.
C LDX is the leading dimension of the array X.
C
C N INTEGER.
C N is the number of rows of the matrix X.
C
C P INTEGER.
C P is the number of columns of the matrix X.
C
C LDU INTEGER.
C LDU is the leading dimension of the array U
C (see below).
C
C LDV INTEGER.
C LDV is the leading dimension of the array V
C (see below).
C
C WORK COMPLEX(N).
C WORK is a scratch array.
C
C JOB INTEGER.
C JOB controls the computation of the singular
C vectors. It has the decimal expansion AB
C with the following meaning
C
C A .EQ. 0 Do not compute the left singular
C vectors.
C A .EQ. 1 Return the N left singular vectors
C in U.
C A .GE. 2 Return the first MIN(N,P)
C left singular vectors in U.
C B .EQ. 0 Do not compute the right singular
C vectors.
C B .EQ. 1 Return the right singular vectors
C in V.
C
C On Return
C
C S COMPLEX(MM), where MM = MIN(N+1,P).
C The first MIN(N,P) entries of S contain the
C singular values of X arranged in descending
C order of magnitude.
C
C E COMPLEX(P).
C E ordinarily contains zeros. However see the
C discussion of INFO for exceptions.
C
C U COMPLEX(LDU,K), where LDU .GE. N. If JOBA .EQ. 1
C then K .EQ. N. If JOBA .GE. 2 then
C K .EQ. MIN(N,P).
C U contains the matrix of right singular vectors.
C U is not referenced if JOBA .EQ. 0. If N .LE. P
C or if JOBA .GT. 2, then U may be identified with X
C in the subroutine call.
C
C V COMPLEX(LDV,P), where LDV .GE. P.
C V contains the matrix of right singular vectors.
C V is not referenced if JOB .EQ. 0. If P .LE. N,
C then V may be identified with X in the
C subroutine call.
C
C INFO INTEGER.
C The singular values (and their corresponding
C singular vectors) S(INFO+1),S(INFO+2),...,S(M)
C are correct (here M=MIN(N,P)). Thus if
C INFO.EQ. 0, all the singular values and their
C vectors are correct. In any event, the matrix
C B = CTRANS(U)*X*V is the bidiagonal matrix
C with the elements of S on its diagonal and the
C elements of E on its super-diagonal (CTRANS(U)
C is the conjugate-transpose of U). Thus the
C singular values of X and B are the same.
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED CAXPY, CDOTC, CSCAL, CSROT, CSWAP, SCNRM2, SROTG
C***REVISION HISTORY (YYMMDD)
C 790319 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE CSVDC
INTEGER LDX,N,P,LDU,LDV,JOB,INFO
COMPLEX X(LDX,*),S(*),E(*),U(LDU,*),V(LDV,*),WORK(*)
C
C
INTEGER I,ITER,J,JOBU,K,KASE,KK,L,LL,LLS,LM1,LP1,LS,LU,M,MAXIT,
1 MM,MM1,MP1,NCT,NCTP1,NCU,NRT,NRTP1
COMPLEX CDOTC,T,R
REAL B,C,CS,EL,EMM1,F,G,SCNRM2,SCALE,SHIFT,SL,SM,SN,SMM1,T1,TEST,
1 ZTEST
LOGICAL WANTU,WANTV
COMPLEX CSIGN,ZDUM,ZDUM1,ZDUM2
REAL CABS1
CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
CSIGN(ZDUM1,ZDUM2) = ABS(ZDUM1)*(ZDUM2/ABS(ZDUM2))
C***FIRST EXECUTABLE STATEMENT CSVDC
C
C SET THE MAXIMUM NUMBER OF ITERATIONS.
C
MAXIT = 30
C
C DETERMINE WHAT IS TO BE COMPUTED.
C
WANTU = .FALSE.
WANTV = .FALSE.
JOBU = MOD(JOB,100)/10
NCU = N
IF (JOBU .GT. 1) NCU = MIN(N,P)
IF (JOBU .NE. 0) WANTU = .TRUE.
IF (MOD(JOB,10) .NE. 0) WANTV = .TRUE.
C
C REDUCE X TO BIDIAGONAL FORM, STORING THE DIAGONAL ELEMENTS
C IN S AND THE SUPER-DIAGONAL ELEMENTS IN E.
C
INFO = 0
NCT = MIN(N-1,P)
NRT = MAX(0,MIN(P-2,N))
LU = MAX(NCT,NRT)
IF (LU .LT. 1) GO TO 170
DO 160 L = 1, LU
LP1 = L + 1
IF (L .GT. NCT) GO TO 20
C
C COMPUTE THE TRANSFORMATION FOR THE L-TH COLUMN AND
C PLACE THE L-TH DIAGONAL IN S(L).
C
S(L) = CMPLX(SCNRM2(N-L+1,X(L,L),1),0.0E0)
IF (CABS1(S(L)) .EQ. 0.0E0) GO TO 10
IF (CABS1(X(L,L)) .NE. 0.0E0) S(L) = CSIGN(S(L),X(L,L))
CALL CSCAL(N-L+1,1.0E0/S(L),X(L,L),1)
X(L,L) = (1.0E0,0.0E0) + X(L,L)
10 CONTINUE
S(L) = -S(L)
20 CONTINUE
IF (P .LT. LP1) GO TO 50
DO 40 J = LP1, P
IF (L .GT. NCT) GO TO 30
IF (CABS1(S(L)) .EQ. 0.0E0) GO TO 30
C
C APPLY THE TRANSFORMATION.
C
T = -CDOTC(N-L+1,X(L,L),1,X(L,J),1)/X(L,L)
CALL CAXPY(N-L+1,T,X(L,L),1,X(L,J),1)
30 CONTINUE
C
C PLACE THE L-TH ROW OF X INTO E FOR THE
C SUBSEQUENT CALCULATION OF THE ROW TRANSFORMATION.
C
E(J) = CONJG(X(L,J))
40 CONTINUE
50 CONTINUE
IF (.NOT.WANTU .OR. L .GT. NCT) GO TO 70
C
C PLACE THE TRANSFORMATION IN U FOR SUBSEQUENT BACK
C MULTIPLICATION.
C
DO 60 I = L, N
U(I,L) = X(I,L)
60 CONTINUE
70 CONTINUE
IF (L .GT. NRT) GO TO 150
C
C COMPUTE THE L-TH ROW TRANSFORMATION AND PLACE THE
C L-TH SUPER-DIAGONAL IN E(L).
C
E(L) = CMPLX(SCNRM2(P-L,E(LP1),1),0.0E0)
IF (CABS1(E(L)) .EQ. 0.0E0) GO TO 80
IF (CABS1(E(LP1)) .NE. 0.0E0) E(L) = CSIGN(E(L),E(LP1))
CALL CSCAL(P-L,1.0E0/E(L),E(LP1),1)
E(LP1) = (1.0E0,0.0E0) + E(LP1)
80 CONTINUE
E(L) = -CONJG(E(L))
IF (LP1 .GT. N .OR. CABS1(E(L)) .EQ. 0.0E0) GO TO 120
C
C APPLY THE TRANSFORMATION.
C
DO 90 I = LP1, N
WORK(I) = (0.0E0,0.0E0)
90 CONTINUE
DO 100 J = LP1, P
CALL CAXPY(N-L,E(J),X(LP1,J),1,WORK(LP1),1)
100 CONTINUE
DO 110 J = LP1, P
CALL CAXPY(N-L,CONJG(-E(J)/E(LP1)),WORK(LP1),1,
1 X(LP1,J),1)
110 CONTINUE
120 CONTINUE
IF (.NOT.WANTV) GO TO 140
C
C PLACE THE TRANSFORMATION IN V FOR SUBSEQUENT
C BACK MULTIPLICATION.
C
DO 130 I = LP1, P
V(I,L) = E(I)
130 CONTINUE
140 CONTINUE
150 CONTINUE
160 CONTINUE
170 CONTINUE
C
C SET UP THE FINAL BIDIAGONAL MATRIX OR ORDER M.
C
M = MIN(P,N+1)
NCTP1 = NCT + 1
NRTP1 = NRT + 1
IF (NCT .LT. P) S(NCTP1) = X(NCTP1,NCTP1)
IF (N .LT. M) S(M) = (0.0E0,0.0E0)
IF (NRTP1 .LT. M) E(NRTP1) = X(NRTP1,M)
E(M) = (0.0E0,0.0E0)
C
C IF REQUIRED, GENERATE U.
C
IF (.NOT.WANTU) GO TO 300
IF (NCU .LT. NCTP1) GO TO 200
DO 190 J = NCTP1, NCU
DO 180 I = 1, N
U(I,J) = (0.0E0,0.0E0)
180 CONTINUE
U(J,J) = (1.0E0,0.0E0)
190 CONTINUE
200 CONTINUE
IF (NCT .LT. 1) GO TO 290
DO 280 LL = 1, NCT
L = NCT - LL + 1
IF (CABS1(S(L)) .EQ. 0.0E0) GO TO 250
LP1 = L + 1
IF (NCU .LT. LP1) GO TO 220
DO 210 J = LP1, NCU
T = -CDOTC(N-L+1,U(L,L),1,U(L,J),1)/U(L,L)
CALL CAXPY(N-L+1,T,U(L,L),1,U(L,J),1)
210 CONTINUE
220 CONTINUE
CALL CSCAL(N-L+1,(-1.0E0,0.0E0),U(L,L),1)
U(L,L) = (1.0E0,0.0E0) + U(L,L)
LM1 = L - 1
IF (LM1 .LT. 1) GO TO 240
DO 230 I = 1, LM1
U(I,L) = (0.0E0,0.0E0)
230 CONTINUE
240 CONTINUE
GO TO 270
250 CONTINUE
DO 260 I = 1, N
U(I,L) = (0.0E0,0.0E0)
260 CONTINUE
U(L,L) = (1.0E0,0.0E0)
270 CONTINUE
280 CONTINUE
290 CONTINUE
300 CONTINUE
C
C IF IT IS REQUIRED, GENERATE V.
C
IF (.NOT.WANTV) GO TO 350
DO 340 LL = 1, P
L = P - LL + 1
LP1 = L + 1
IF (L .GT. NRT) GO TO 320
IF (CABS1(E(L)) .EQ. 0.0E0) GO TO 320
DO 310 J = LP1, P
T = -CDOTC(P-L,V(LP1,L),1,V(LP1,J),1)/V(LP1,L)
CALL CAXPY(P-L,T,V(LP1,L),1,V(LP1,J),1)
310 CONTINUE
320 CONTINUE
DO 330 I = 1, P
V(I,L) = (0.0E0,0.0E0)
330 CONTINUE
V(L,L) = (1.0E0,0.0E0)
340 CONTINUE
350 CONTINUE
C
C TRANSFORM S AND E SO THAT THEY ARE REAL.
C
DO 380 I = 1, M
IF (CABS1(S(I)) .EQ. 0.0E0) GO TO 360
T = CMPLX(ABS(S(I)),0.0E0)
R = S(I)/T
S(I) = T
IF (I .LT. M) E(I) = E(I)/R
IF (WANTU) CALL CSCAL(N,R,U(1,I),1)
360 CONTINUE
IF (I .EQ. M) GO TO 390
IF (CABS1(E(I)) .EQ. 0.0E0) GO TO 370
T = CMPLX(ABS(E(I)),0.0E0)
R = T/E(I)
E(I) = T
S(I+1) = S(I+1)*R
IF (WANTV) CALL CSCAL(P,R,V(1,I+1),1)
370 CONTINUE
380 CONTINUE
390 CONTINUE
C
C MAIN ITERATION LOOP FOR THE SINGULAR VALUES.
C
MM = M
ITER = 0
400 CONTINUE
C
C QUIT IF ALL THE SINGULAR VALUES HAVE BEEN FOUND.
C
IF (M .EQ. 0) GO TO 660
C
C IF TOO MANY ITERATIONS HAVE BEEN PERFORMED, SET
C FLAG AND RETURN.
C
IF (ITER .LT. MAXIT) GO TO 410
INFO = M
GO TO 660
410 CONTINUE
C
C THIS SECTION OF THE PROGRAM INSPECTS FOR
C NEGLIGIBLE ELEMENTS IN THE S AND E ARRAYS. ON
C COMPLETION THE VARIABLES KASE AND L ARE SET AS FOLLOWS.
C
C KASE = 1 IF S(M) AND E(L-1) ARE NEGLIGIBLE AND L.LT.M
C KASE = 2 IF S(L) IS NEGLIGIBLE AND L.LT.M
C KASE = 3 IF E(L-1) IS NEGLIGIBLE, L.LT.M, AND
C S(L), ..., S(M) ARE NOT NEGLIGIBLE (QR STEP).
C KASE = 4 IF E(M-1) IS NEGLIGIBLE (CONVERGENCE).
C
DO 430 LL = 1, M
L = M - LL
IF (L .EQ. 0) GO TO 440
TEST = ABS(S(L)) + ABS(S(L+1))
ZTEST = TEST + ABS(E(L))
IF (ZTEST .NE. TEST) GO TO 420
E(L) = (0.0E0,0.0E0)
GO TO 440
420 CONTINUE
430 CONTINUE
440 CONTINUE
IF (L .NE. M - 1) GO TO 450
KASE = 4
GO TO 520
450 CONTINUE
LP1 = L + 1
MP1 = M + 1
DO 470 LLS = LP1, MP1
LS = M - LLS + LP1
IF (LS .EQ. L) GO TO 480
TEST = 0.0E0
IF (LS .NE. M) TEST = TEST + ABS(E(LS))
IF (LS .NE. L + 1) TEST = TEST + ABS(E(LS-1))
ZTEST = TEST + ABS(S(LS))
IF (ZTEST .NE. TEST) GO TO 460
S(LS) = (0.0E0,0.0E0)
GO TO 480
460 CONTINUE
470 CONTINUE
480 CONTINUE
IF (LS .NE. L) GO TO 490
KASE = 3
GO TO 510
490 CONTINUE
IF (LS .NE. M) GO TO 500
KASE = 1
GO TO 510
500 CONTINUE
KASE = 2
L = LS
510 CONTINUE
520 CONTINUE
L = L + 1
C
C PERFORM THE TASK INDICATED BY KASE.
C
GO TO (530, 560, 580, 610), KASE
C
C DEFLATE NEGLIGIBLE S(M).
C
530 CONTINUE
MM1 = M - 1
F = REAL(E(M-1))
E(M-1) = (0.0E0,0.0E0)
DO 550 KK = L, MM1
K = MM1 - KK + L
T1 = REAL(S(K))
CALL SROTG(T1,F,CS,SN)
S(K) = CMPLX(T1,0.0E0)
IF (K .EQ. L) GO TO 540
F = -SN*REAL(E(K-1))
E(K-1) = CS*E(K-1)
540 CONTINUE
IF (WANTV) CALL CSROT(P,V(1,K),1,V(1,M),1,CS,SN)
550 CONTINUE
GO TO 650
C
C SPLIT AT NEGLIGIBLE S(L).
C
560 CONTINUE
F = REAL(E(L-1))
E(L-1) = (0.0E0,0.0E0)
DO 570 K = L, M
T1 = REAL(S(K))
CALL SROTG(T1,F,CS,SN)
S(K) = CMPLX(T1,0.0E0)
F = -SN*REAL(E(K))
E(K) = CS*E(K)
IF (WANTU) CALL CSROT(N,U(1,K),1,U(1,L-1),1,CS,SN)
570 CONTINUE
GO TO 650
C
C PERFORM ONE QR STEP.
C
580 CONTINUE
C
C CALCULATE THE SHIFT.
C
SCALE = MAX(ABS(S(M)),ABS(S(M-1)),ABS(E(M-1)),
1 ABS(S(L)),ABS(E(L)))
SM = REAL(S(M))/SCALE
SMM1 = REAL(S(M-1))/SCALE
EMM1 = REAL(E(M-1))/SCALE
SL = REAL(S(L))/SCALE
EL = REAL(E(L))/SCALE
B = ((SMM1 + SM)*(SMM1 - SM) + EMM1**2)/2.0E0
C = (SM*EMM1)**2
SHIFT = 0.0E0
IF (B .EQ. 0.0E0 .AND. C .EQ. 0.0E0) GO TO 590
SHIFT = SQRT(B**2+C)
IF (B .LT. 0.0E0) SHIFT = -SHIFT
SHIFT = C/(B + SHIFT)
590 CONTINUE
F = (SL + SM)*(SL - SM) - SHIFT
G = SL*EL
C
C CHASE ZEROS.
C
MM1 = M - 1
DO 600 K = L, MM1
CALL SROTG(F,G,CS,SN)
IF (K .NE. L) E(K-1) = CMPLX(F,0.0E0)
F = CS*REAL(S(K)) + SN*REAL(E(K))
E(K) = CS*E(K) - SN*S(K)
G = SN*REAL(S(K+1))
S(K+1) = CS*S(K+1)
IF (WANTV) CALL CSROT(P,V(1,K),1,V(1,K+1),1,CS,SN)
CALL SROTG(F,G,CS,SN)
S(K) = CMPLX(F,0.0E0)
F = CS*REAL(E(K)) + SN*REAL(S(K+1))
S(K+1) = -SN*E(K) + CS*S(K+1)
G = SN*REAL(E(K+1))
E(K+1) = CS*E(K+1)
IF (WANTU .AND. K .LT. N)
1 CALL CSROT(N,U(1,K),1,U(1,K+1),1,CS,SN)
600 CONTINUE
E(M-1) = CMPLX(F,0.0E0)
ITER = ITER + 1
GO TO 650
C
C CONVERGENCE.
C
610 CONTINUE
C
C MAKE THE SINGULAR VALUE POSITIVE
C
IF (REAL(S(L)) .GE. 0.0E0) GO TO 620
S(L) = -S(L)
IF (WANTV) CALL CSCAL(P,(-1.0E0,0.0E0),V(1,L),1)
620 CONTINUE
C
C ORDER THE SINGULAR VALUE.
C
630 IF (L .EQ. MM) GO TO 640
IF (REAL(S(L)) .GE. REAL(S(L+1))) GO TO 640
T = S(L)
S(L) = S(L+1)
S(L+1) = T
IF (WANTV .AND. L .LT. P)
1 CALL CSWAP(P,V(1,L),1,V(1,L+1),1)
IF (WANTU .AND. L .LT. N)
1 CALL CSWAP(N,U(1,L),1,U(1,L+1),1)
L = L + 1
GO TO 630
640 CONTINUE
ITER = 0
M = M - 1
650 CONTINUE
GO TO 400
660 CONTINUE
RETURN
END