SUBROUTINE PILAPRNT( M, N, A, IA, JA, DESCA, IRPRNT, ICPRNT, $ CMATNM, NOUT, WORK ) * * -- ScaLAPACK tools routine (version 1.7) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * May 1, 1997 * * .. Scalar Arguments .. INTEGER IA, ICPRNT, IRPRNT, JA, M, N, NOUT * .. * .. Array Arguments .. CHARACTER*(*) CMATNM INTEGER DESCA( * ) INTEGER A( * ), WORK( * ) * .. * * Purpose * ======= * * PILAPRNT prints to the standard output a distributed matrix sub( A ) * denoting A(IA:IA+M-1,JA:JA+N-1). The local pieces are sent and * printed by the process of coordinates (IRPRNT, ICPRNT). * * Notes * ===== * * Each global data object is described by an associated description * vector. This vector stores the information required to establish * the mapping between an object element and its corresponding process * and memory location. * * Let A be a generic term for any 2D block cyclicly distributed array. * Such a global array has an associated description vector DESCA. * In the following comments, the character _ should be read as * "of the global array". * * NOTATION STORED IN EXPLANATION * --------------- -------------- -------------------------------------- * DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case, * DTYPE_A = 1. * CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating * the BLACS process grid A is distribu- * ted over. The context itself is glo- * bal, but the handle (the integer * value) may vary. * M_A (global) DESCA( M_ ) The number of rows in the global * array A. * N_A (global) DESCA( N_ ) The number of columns in the global * array A. * MB_A (global) DESCA( MB_ ) The blocking factor used to distribute * the rows of the array. * NB_A (global) DESCA( NB_ ) The blocking factor used to distribute * the columns of the array. * RSRC_A (global) DESCA( RSRC_ ) The process row over which the first * row of the array A is distributed. * CSRC_A (global) DESCA( CSRC_ ) The process column over which the * first column of the array A is * distributed. * LLD_A (local) DESCA( LLD_ ) The leading dimension of the local * array. LLD_A >= MAX(1,LOCr(M_A)). * * Let K be the number of rows or columns of a distributed matrix, * and assume that its process grid has dimension p x q. * LOCr( K ) denotes the number of elements of K that a process * would receive if K were distributed over the p processes of its * process column. * Similarly, LOCc( K ) denotes the number of elements of K that a * process would receive if K were distributed over the q processes of * its process row. * The values of LOCr() and LOCc() may be determined via a call to the * ScaLAPACK tool function, NUMROC: * LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ), * LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). * An upper bound for these quantities may be computed by: * LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A * LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A * * Arguments * ========= * * M (global input) INTEGER * The number of rows to be operated on i.e the number of rows * of the distributed submatrix sub( A ). M >= 0. * * N (global input) INTEGER * The number of columns to be operated on i.e the number of * columns of the distributed submatrix sub( A ). N >= 0. * * A (local input) @(typec) pointer into the local memory to a * local array of dimension (LLD_A, LOCc(JA+N-1) ) containing * the local pieces of the distributed matrix sub( A ). * * IA (global input) INTEGER * The row index in the global array A indicating the first * row of sub( A ). * * JA (global input) INTEGER * The column index in the global array A indicating the * first column of sub( A ). * * DESCA (global and local input) INTEGER array of dimension DLEN_. * The array descriptor for the distributed matrix A. * * IRPRNT (global input) INTEGER * The row index of the printing process. * * ICPRNT (global input) INTEGER * The column index of the printing process. * * CMATNM (global input) CHARACTER*(*) * Identifier of the distributed matrix to be printed. * * NOUT (global input) INTEGER * The unit number for output file. NOUT = 6, ouput to screen, * NOUT = 0, output to stderr. * * WORK (local workspace) @(typec) * Working array of minimum size equal to MB_A. * * ===================================================================== * * .. Parameters .. INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_, $ LLD_, MB_, M_, NB_, N_, RSRC_ PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1, $ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6, $ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 ) * .. * .. Local Scalars .. INTEGER H, I, IACOL, IAROW, IB, ICTXT, ICURCOL, $ ICURROW, II, IIA, IN, J, JB, JJ, JJA, JN, K, $ LDA, MYCOL, MYROW, NPCOL, NPROW * .. * .. External Subroutines .. EXTERNAL BLACS_BARRIER, BLACS_GRIDINFO, INFOG2L, $ IGERV2D, IGESD2D * .. * .. External Functions .. INTEGER ICEIL EXTERNAL ICEIL * .. * .. Intrinsic Functions .. INTRINSIC MIN * .. * .. Executable Statements .. * * Get grid parameters * ICTXT = DESCA( CTXT_ ) CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL ) * CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, $ IIA, JJA, IAROW, IACOL ) ICURROW = IAROW ICURCOL = IACOL II = IIA JJ = JJA LDA = DESCA( LLD_ ) * * Handle the first block of column separately * JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 ) JB = JN-JA+1 DO 60 H = 0, JB-1 IN = MIN( ICEIL( IA, DESCA( MB_ ) ) * DESCA( MB_ ), IA+M-1 ) IB = IN-IA+1 IF( ICURROW.EQ.IRPRNT .AND. ICURCOL.EQ.ICPRNT ) THEN IF( MYROW.EQ.IRPRNT .AND. MYCOL.EQ.ICPRNT ) THEN DO 10 K = 0, IB-1 WRITE( NOUT, FMT = 9999 ) $ CMATNM, IA+K, JA+H, A( II+K+(JJ+H-1)*LDA ) 10 CONTINUE END IF ELSE IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN CALL IGESD2D( ICTXT, IB, 1, A( II+(JJ+H-1)*LDA ), LDA, $ IRPRNT, ICPRNT ) ELSE IF( MYROW.EQ.IRPRNT .AND. MYCOL.EQ.ICPRNT ) THEN CALL IGERV2D( ICTXT, IB, 1, WORK, DESCA( MB_ ), $ ICURROW, ICURCOL ) DO 20 K = 1, IB WRITE( NOUT, FMT = 9999 ) $ CMATNM, IA+K-1, JA+H, WORK( K ) 20 CONTINUE END IF END IF IF( MYROW.EQ.ICURROW ) $ II = II + IB ICURROW = MOD( ICURROW+1, NPROW ) CALL BLACS_BARRIER( ICTXT, 'All' ) * * Loop over remaining block of rows * DO 50 I = IN+1, IA+M-1, DESCA( MB_ ) IB = MIN( DESCA( MB_ ), IA+M-I ) IF( ICURROW.EQ.IRPRNT .AND. ICURCOL.EQ.ICPRNT ) THEN IF( MYROW.EQ.IRPRNT .AND. MYCOL.EQ.ICPRNT ) THEN DO 30 K = 0, IB-1 WRITE( NOUT, FMT = 9999 ) $ CMATNM, I+K, JA+H, A( II+K+(JJ+H-1)*LDA ) 30 CONTINUE END IF ELSE IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN CALL IGESD2D( ICTXT, IB, 1, A( II+(JJ+H-1)*LDA ), $ LDA, IRPRNT, ICPRNT ) ELSE IF( MYROW.EQ.IRPRNT .AND. MYCOL.EQ.ICPRNT ) THEN CALL IGERV2D( ICTXT, IB, 1, WORK, DESCA( MB_ ), $ ICURROW, ICURCOL ) DO 40 K = 1, IB WRITE( NOUT, FMT = 9999 ) $ CMATNM, I+K-1, JA+H, WORK( K ) 40 CONTINUE END IF END IF IF( MYROW.EQ.ICURROW ) $ II = II + IB ICURROW = MOD( ICURROW+1, NPROW ) CALL BLACS_BARRIER( ICTXT, 'All' ) 50 CONTINUE * II = IIA ICURROW = IAROW 60 CONTINUE * IF( MYCOL.EQ.ICURCOL ) $ JJ = JJ + JB ICURCOL = MOD( ICURCOL+1, NPCOL ) CALL BLACS_BARRIER( ICTXT, 'All' ) * * Loop over remaining column blocks * DO 130 J = JN+1, JA+N-1, DESCA( NB_ ) JB = MIN( DESCA( NB_ ), JA+N-J ) DO 120 H = 0, JB-1 IN = MIN( ICEIL( IA, DESCA( MB_ ) ) * DESCA( MB_ ), IA+M-1 ) IB = IN-IA+1 IF( ICURROW.EQ.IRPRNT .AND. ICURCOL.EQ.ICPRNT ) THEN IF( MYROW.EQ.IRPRNT .AND. MYCOL.EQ.ICPRNT ) THEN DO 70 K = 0, IB-1 WRITE( NOUT, FMT = 9999 ) $ CMATNM, IA+K, J+H, A( II+K+(JJ+H-1)*LDA ) 70 CONTINUE END IF ELSE IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN CALL IGESD2D( ICTXT, IB, 1, A( II+(JJ+H-1)*LDA ), $ LDA, IRPRNT, ICPRNT ) ELSE IF( MYROW.EQ.IRPRNT .AND. MYCOL.EQ.ICPRNT ) THEN CALL IGERV2D( ICTXT, IB, 1, WORK, DESCA( MB_ ), $ ICURROW, ICURCOL ) DO 80 K = 1, IB WRITE( NOUT, FMT = 9999 ) $ CMATNM, IA+K-1, J+H, WORK( K ) 80 CONTINUE END IF END IF IF( MYROW.EQ.ICURROW ) $ II = II + IB ICURROW = MOD( ICURROW+1, NPROW ) CALL BLACS_BARRIER( ICTXT, 'All' ) * * Loop over remaining block of rows * DO 110 I = IN+1, IA+M-1, DESCA( MB_ ) IB = MIN( DESCA( MB_ ), IA+M-I ) IF( ICURROW.EQ.IRPRNT .AND. ICURCOL.EQ.ICPRNT ) THEN IF( MYROW.EQ.IRPRNT .AND. MYCOL.EQ.ICPRNT ) THEN DO 90 K = 0, IB-1 WRITE( NOUT, FMT = 9999 ) $ CMATNM, I+K, J+H, A( II+K+(JJ+H-1)*LDA ) 90 CONTINUE END IF ELSE IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN CALL IGESD2D( ICTXT, IB, 1, A( II+(JJ+H-1)*LDA ), $ LDA, IRPRNT, ICPRNT ) ELSE IF( MYROW.EQ.IRPRNT .AND. MYCOL.EQ.ICPRNT ) THEN CALL IGERV2D( ICTXT, IB, 1, WORK, DESCA( MB_ ), $ ICURROW, ICURCOL ) DO 100 K = 1, IB WRITE( NOUT, FMT = 9999 ) $ CMATNM, I+K-1, J+H, WORK( K ) 100 CONTINUE END IF END IF IF( MYROW.EQ.ICURROW ) $ II = II + IB ICURROW = MOD( ICURROW+1, NPROW ) CALL BLACS_BARRIER( ICTXT, 'All' ) 110 CONTINUE * II = IIA ICURROW = IAROW 120 CONTINUE * IF( MYCOL.EQ.ICURCOL ) $ JJ = JJ + JB ICURCOL = MOD( ICURCOL+1, NPCOL ) CALL BLACS_BARRIER( ICTXT, 'All' ) * 130 CONTINUE * 9999 FORMAT(A,'(',I6,',',I6,')=',I8) * RETURN * * End of PILAPRNT * END