PROGRAM PDNEPDRIVER * * -- ScaLAPACK testing driver (version 1.7) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * May 1, 1997 * * Purpose * ======= * * PDNEPDRIVER is the main test program for the DOUBLE PRECISION * SCALAPACK NEP routines. This test driver performs a Schur * decomposition followed by residual check of a Hessenberg matrix. * * The program must be driven by a short data file. An annotated * example of a data file can be obtained by deleting the first 3 * characters from the following 18 lines: * 'SCALAPACK, Version 1.4, NEP (Nonsymmetric EigenProblem) input file' * 'Intel iPSC/860 hypercube, gamma model.' * 'NEP.out' output file name (if any) * 6 device out * 8 number of problems sizes * 1 2 3 4 6 10 100 200 vales of N * 3 number of NB's * 6 20 40 values of NB * 4 number of process grids (ordered pairs of P & Q) * 1 2 1 4 values of P * 1 2 4 1 values of Q * 20.0 threshold * * Internal Parameters * =================== * * TOTMEM INTEGER, default = 2000000 * TOTMEM is a machine-specific parameter indicating the * maximum amount of available memory in bytes. * The user should customize TOTMEM to his platform. Remember * to leave room in memory for the operating system, the BLACS * buffer, etc. For example, on a system with 8 MB of memory * per process (e.g., one processor on an Intel iPSC/860), the * parameters we use are TOTMEM=6200000 (leaving 1.8 MB for OS, * code, BLACS buffer, etc). However, for PVM, we usually set * TOTMEM = 2000000. Some experimenting with the maximum value * of TOTMEM may be required. * * DBLESZ INTEGER, default = 8 bytes. * DBLESZ indicate the length in bytes on the given platform * for a double precision real. * MEM DOUBLE PRECISION array, dimension ( TOTMEM / DBLESZ ) * * All arrays used by SCALAPACK routines are allocated from * this array and referenced by pointers. The integer IPA, * for example, is a pointer to the starting element of MEM for * the matrix A. * * ===================================================================== * * .. Parameters .. INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DT_, $ LLD_, MB_, M_, NB_, N_, RSRC_ PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DT_ = 1, $ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6, $ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 ) INTEGER DBLESZ, TOTMEM, MEMSIZ, NTESTS DOUBLE PRECISION PADVAL, ZERO, ONE PARAMETER ( DBLESZ = 8, TOTMEM = 2000000, $ MEMSIZ = TOTMEM / DBLESZ, NTESTS = 20, $ PADVAL = -9923.0D+0, ZERO = 0.0D+0, $ ONE = 1.0D+0 ) * .. * .. Local Scalars .. LOGICAL CHECK CHARACTER*6 PASSED CHARACTER*80 OUTFILE INTEGER I, IAM, IASEED, ICTXT, III, IMIDPAD, INFO, IPA, $ IPOSTPAD, IPREPAD, IPW, IPWI, IPWR, IPZ, J, K, $ KFAIL, KPASS, KSKIP, KTESTS, LDA, LDZ, LWORK, $ MYCOL, MYROW, N, NB, NGRIDS, NMAT, NNB, NOUT, $ NP, NPCOL, NPROCS, NPROW, NQ, WORKSIZ REAL THRESH DOUBLE PRECISION ANORM, FRESID, NOPS, QRESID, TMFLOPS, ZNORM * .. * .. Local Arrays .. INTEGER DESCA( DLEN_ ), DESCZ( DLEN_ ), IERR( 2 ), $ IDUM( 1 ), NBVAL( NTESTS ), NVAL( NTESTS ), $ PVAL( NTESTS ), QVAL( NTESTS ) DOUBLE PRECISION CTIME( 1 ), MEM( MEMSIZ ), WTIME( 1 ) * .. * .. External Subroutines .. EXTERNAL BLACS_BARRIER, BLACS_EXIT, BLACS_GET, $ BLACS_GRIDEXIT, BLACS_GRIDINFO, BLACS_GRIDINIT, $ BLACS_PINFO, DESCINIT, IGSUM2D, PDCHEKPAD, $ PDFILLPAD, PDGEMM, PDLAHQR, PDLASET, PDMATGEN, $ PDNEPFCHK, PDNEPINFO, SLBOOT, SLCOMBINE, $ SLTIMER * .. * .. External Functions .. INTEGER ILCM, NUMROC DOUBLE PRECISION PDLAMCH, PDLANGE, PDLANHS EXTERNAL ILCM, NUMROC, PDLAMCH, PDLANGE, PDLANHS * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN * .. * .. Data statements .. DATA KFAIL, KPASS, KSKIP, KTESTS / 4*0 / * .. * .. Executable Statements .. * * Get starting information * CALL BLACS_PINFO( IAM, NPROCS ) IASEED = 100 CALL PDNEPINFO( OUTFILE, NOUT, NMAT, NVAL, NTESTS, NNB, NBVAL, $ NTESTS, NGRIDS, PVAL, NTESTS, QVAL, NTESTS, $ THRESH, MEM, IAM, NPROCS ) CHECK = ( THRESH.GE.0.0E+0 ) * * Print headings * IF( IAM.EQ.0 ) THEN WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9995 ) WRITE( NOUT, FMT = 9994 ) WRITE( NOUT, FMT = * ) END IF * * Loop over different process grids * DO 30 I = 1, NGRIDS * NPROW = PVAL( I ) NPCOL = QVAL( I ) * * Make sure grid information is correct * IERR( 1 ) = 0 IF( NPROW.LT.1 ) THEN IF( IAM.EQ.0 ) $ WRITE( NOUT, FMT = 9999 )'GRID', 'nprow', NPROW IERR( 1 ) = 1 ELSE IF( NPCOL.LT.1 ) THEN IF( IAM.EQ.0 ) $ WRITE( NOUT, FMT = 9999 )'GRID', 'npcol', NPCOL IERR( 1 ) = 1 ELSE IF( NPROW*NPCOL.GT.NPROCS ) THEN IF( IAM.EQ.0 ) $ WRITE( NOUT, FMT = 9998 )NPROW*NPCOL, NPROCS IERR( 1 ) = 1 END IF * IF( IERR( 1 ).GT.0 ) THEN IF( IAM.EQ.0 ) $ WRITE( NOUT, FMT = 9997 )'grid' KSKIP = KSKIP + 1 GO TO 30 END IF * * Define process grid * CALL BLACS_GET( -1, 0, ICTXT ) CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL ) CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL ) * * Go to bottom of process grid loop if this case doesn't use my * process * IF( MYROW.GE.NPROW .OR. MYCOL.GE.NPCOL ) $ GO TO 30 * DO 20 J = 1, NMAT * N = NVAL( J ) * * Make sure matrix information is correct * IERR( 1 ) = 0 IF( N.LT.1 ) THEN IF( IAM.EQ.0 ) $ WRITE( NOUT, FMT = 9999 )'MATRIX', 'N', N IERR( 1 ) = 1 END IF * * Check all processes for an error * CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1, 0 ) * IF( IERR( 1 ).GT.0 ) THEN IF( IAM.EQ.0 ) $ WRITE( NOUT, FMT = 9997 )'matrix' KSKIP = KSKIP + 1 GO TO 20 END IF * DO 10 K = 1, NNB * NB = NBVAL( K ) * * Make sure nb is legal * IERR( 1 ) = 0 IF( NB.LT.6 ) THEN IERR( 1 ) = 1 IF( IAM.EQ.0 ) $ WRITE( NOUT, FMT = 9999 )'NB', 'NB', NB END IF * * Check all processes for an error * CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1, 0 ) * IF( IERR( 1 ).GT.0 ) THEN IF( IAM.EQ.0 ) $ WRITE( NOUT, FMT = 9997 )'NB' KSKIP = KSKIP + 1 GO TO 10 END IF * * Padding constants * NP = NUMROC( N, NB, MYROW, 0, NPROW ) NQ = NUMROC( N, NB, MYCOL, 0, NPCOL ) IF( CHECK ) THEN IPREPAD = MAX( NB, NP ) IMIDPAD = NB IPOSTPAD = MAX( NB, NQ ) IPREPAD = IPREPAD + 1000 IMIDPAD = IMIDPAD + 1000 IPOSTPAD = IPOSTPAD + 1000 ELSE IPREPAD = 0 IMIDPAD = 0 IPOSTPAD = 0 END IF * * Initialize the array descriptor for the matrix A * CALL DESCINIT( DESCA, N, N, NB, NB, 0, 0, ICTXT, $ MAX( 1, NP )+IMIDPAD, IERR( 1 ) ) * * Initialize the array descriptor for the matrix Z * CALL DESCINIT( DESCZ, N, N, NB, NB, 0, 0, ICTXT, $ MAX( 1, NP )+IMIDPAD, IERR( 2 ) ) * LDA = DESCA( LLD_ ) LDZ = DESCZ( LLD_ ) * * Check all processes for an error * CALL IGSUM2D( ICTXT, 'All', ' ', 2, 1, IERR, 2, -1, 0 ) * IF( IERR( 1 ).LT.0 .OR. IERR( 2 ).LT.0 ) THEN IF( IAM.EQ.0 ) $ WRITE( NOUT, FMT = 9997 )'descriptor' KSKIP = KSKIP + 1 GO TO 10 END IF * * Assign pointers into MEM for SCALAPACK arrays, A is * allocated starting at position MEM( IPREPAD+1 ) * IPA = IPREPAD + 1 IPZ = IPA + DESCA( LLD_ )*NQ + IPOSTPAD + IPREPAD IPWR = IPZ + DESCZ( LLD_ )*NQ + IPOSTPAD + IPREPAD IPWI = IPWR + N + IPOSTPAD + IPREPAD IPW = IPWI + N + IPOSTPAD + IPREPAD III = N / NB IF( III*NB.LT.N ) $ III = III + 1 III = 7*III / ILCM( NPROW, NPCOL ) * * LWORK = 3*N + MAX( 2*MAX( LDA, LDZ )+2*NQ, III ) LWORK = LWORK + MAX(2*N, (8*ILCM(NPROW,NPCOL)+2)**2 ) * IF( CHECK ) THEN * * Figure the amount of workspace required by the * checking routines PDNEPFCHK and PDLANHS * WORKSIZ = LWORK + MAX( NP*DESCA( NB_ ), $ DESCA( MB_ )*NQ ) + IPOSTPAD * ELSE * WORKSIZ = LWORK + IPOSTPAD * END IF * * Check for adequate memory for problem size * IERR( 1 ) = 0 IF( IPW+WORKSIZ.GT.MEMSIZ ) THEN IF( IAM.EQ.0 ) $ WRITE( NOUT, FMT = 9996 )'Schur reduction', $ ( IPW+WORKSIZ )*DBLESZ IERR( 1 ) = 1 END IF * * Check all processes for an error * CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1, 0 ) * IF( IERR( 1 ).GT.0 ) THEN IF( IAM.EQ.0 ) $ WRITE( NOUT, FMT = 9997 )'MEMORY' KSKIP = KSKIP + 1 GO TO 10 END IF * * Generate matrix Z = In * CALL PDLASET( 'All', N, N, ZERO, ONE, MEM( IPZ ), 1, 1, $ DESCZ ) * * Generate matrix A upper Hessenberg * CALL PDMATGEN( ICTXT, 'No transpose', 'No transpose', $ DESCA( M_ ), DESCA( N_ ), DESCA( MB_ ), $ DESCA( NB_ ), MEM( IPA ), DESCA( LLD_ ), $ DESCA( RSRC_ ), DESCA( CSRC_ ), IASEED, 0, $ NP, 0, NQ, MYROW, MYCOL, NPROW, NPCOL ) CALL PDLASET( 'Lower', MAX( 0, N-2 ), MAX( 0, N-2 ), $ ZERO, ZERO, MEM( IPA ), MIN( N, 3 ), 1, $ DESCA ) * * Calculate inf-norm of A for residual error-checking * IF( CHECK ) THEN CALL PDFILLPAD( ICTXT, NP, NQ, MEM( IPA-IPREPAD ), $ DESCA( LLD_ ), IPREPAD, IPOSTPAD, $ PADVAL ) CALL PDFILLPAD( ICTXT, NP, NQ, MEM( IPZ-IPREPAD ), $ DESCZ( LLD_ ), IPREPAD, IPOSTPAD, $ PADVAL ) CALL PDFILLPAD( ICTXT, WORKSIZ-IPOSTPAD, 1, $ MEM( IPW-IPREPAD ), WORKSIZ-IPOSTPAD, $ IPREPAD, IPOSTPAD, PADVAL ) ANORM = PDLANHS( 'I', N, MEM( IPA ), 1, 1, DESCA, $ MEM( IPW ) ) CALL PDCHEKPAD( ICTXT, 'PDLANHS', NP, NQ, $ MEM( IPA-IPREPAD ), DESCA( LLD_ ), $ IPREPAD, IPOSTPAD, PADVAL ) CALL PDCHEKPAD( ICTXT, 'PDLANHS', WORKSIZ-IPOSTPAD, 1, $ MEM( IPW-IPREPAD ), WORKSIZ-IPOSTPAD, $ IPREPAD, IPOSTPAD, PADVAL ) * CALL PDFILLPAD( ICTXT, N, 1, MEM( IPWR-IPREPAD ), N, $ IPREPAD, IPOSTPAD, PADVAL ) CALL PDFILLPAD( ICTXT, N, 1, MEM( IPWI-IPREPAD ), N, $ IPREPAD, IPOSTPAD, PADVAL ) CALL PDFILLPAD( ICTXT, LWORK, 1, MEM( IPW-IPREPAD ), $ LWORK, IPREPAD, IPOSTPAD, PADVAL ) * END IF * CALL SLBOOT( ) CALL BLACS_BARRIER( ICTXT, 'All' ) CALL SLTIMER( 1 ) * * Perform NEP factorization * CALL PDLAHQR( .TRUE., .TRUE., N, 1, N, MEM( IPA ), DESCA, $ MEM( IPWR ), MEM( IPWI ), 1, N, MEM( IPZ ), $ DESCZ, MEM( IPW ), LWORK, IDUM, 0, INFO ) * CALL SLTIMER( 1 ) * IF( INFO.NE.0 ) THEN IF( IAM.EQ.0 ) $ WRITE( NOUT, FMT = * )'PDLAHQR INFO=', INFO KFAIL = KFAIL + 1 GO TO 10 END IF * IF( CHECK ) THEN * * Check for memory overwrite in NEP factorization * CALL PDCHEKPAD( ICTXT, 'PDLAHQR (A)', NP, NQ, $ MEM( IPA-IPREPAD ), DESCA( LLD_ ), $ IPREPAD, IPOSTPAD, PADVAL ) CALL PDCHEKPAD( ICTXT, 'PDLAHQR (Z)', NP, NQ, $ MEM( IPZ-IPREPAD ), DESCZ( LLD_ ), $ IPREPAD, IPOSTPAD, PADVAL ) CALL PDCHEKPAD( ICTXT, 'PDLAHQR (WR)', N, 1, $ MEM( IPWR-IPREPAD ), N, IPREPAD, $ IPOSTPAD, PADVAL ) CALL PDCHEKPAD( ICTXT, 'PDLAHQR (WI)', N, 1, $ MEM( IPWI-IPREPAD ), N, IPREPAD, $ IPOSTPAD, PADVAL ) CALL PDCHEKPAD( ICTXT, 'PDLAHQR (WORK)', LWORK, 1, $ MEM( IPW-IPREPAD ), LWORK, IPREPAD, $ IPOSTPAD, PADVAL ) * CALL PDFILLPAD( ICTXT, WORKSIZ-IPOSTPAD, 1, $ MEM( IPW-IPREPAD ), WORKSIZ-IPOSTPAD, $ IPREPAD, IPOSTPAD, PADVAL ) * * Compute || Z * H * Z**T - H0 || / ( N*|| H0 ||*EPS ) * CALL PDNEPFCHK( N, MEM( IPA ), 1, 1, DESCA, IASEED, $ MEM( IPZ ), 1, 1, DESCZ, ANORM, $ FRESID, MEM( IPW ) ) * CALL PDCHEKPAD( ICTXT, 'PDNEPFCHK (A)', NP, NQ, $ MEM( IPA-IPREPAD ), DESCA( LLD_ ), $ IPREPAD, IPOSTPAD, PADVAL ) CALL PDCHEKPAD( ICTXT, 'PDNEPFCHK (Z)', NP, NQ, $ MEM( IPZ-IPREPAD ), DESCZ( LLD_ ), $ IPREPAD, IPOSTPAD, PADVAL ) CALL PDCHEKPAD( ICTXT, 'PDNEPFCHK (WORK)', $ WORKSIZ-IPOSTPAD, 1, $ MEM( IPW-IPREPAD ), WORKSIZ-IPOSTPAD, $ IPREPAD, IPOSTPAD, PADVAL ) * * Compute || (Z**T)*Z - In ||_1 * CALL PDLASET( 'All', N, N, ZERO, ONE, MEM( IPA ), 1, $ 1, DESCA ) CALL PDGEMM( 'Transpose', 'No transpose', N, N, N, $ -ONE, MEM( IPZ ), 1, 1, DESCZ, $ MEM( IPZ ), 1, 1, DESCZ, ONE, MEM( IPA ), $ 1, 1, DESCA ) ZNORM = PDLANGE( '1', N, N, MEM( IPA ), 1, 1, DESCA, $ MEM( IPW ) ) QRESID = ZNORM / ( DBLE( N )*PDLAMCH( ICTXT, 'P' ) ) * * Test residual and detect NaN result * IF( ( FRESID.LE.THRESH ) .AND. $ ( ( FRESID-FRESID ).EQ.0.0D+0 ) .AND. $ ( QRESID.LE.THRESH ) .AND. $ ( ( QRESID-QRESID ).EQ.0.0D+0 ) ) THEN KPASS = KPASS + 1 PASSED = 'PASSED' ELSE KFAIL = KFAIL + 1 PASSED = 'FAILED' IF( IAM.EQ.0 ) THEN WRITE( NOUT, FMT = 9986 )FRESID WRITE( NOUT, FMT = 9985 )QRESID END IF END IF * ELSE * * Don't perform the checking, only timing * KPASS = KPASS + 1 FRESID = FRESID - FRESID QRESID = QRESID - QRESID PASSED = 'BYPASS' * END IF * * Gather maximum of all CPU and WALL clock timings * CALL SLCOMBINE( ICTXT, 'All', '>', 'W', 1, 1, WTIME ) CALL SLCOMBINE( ICTXT, 'All', '>', 'C', 1, 1, CTIME ) * * Print results * IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN * * 18 N^3 flops for PxLAHQR * NOPS = 18.0D+0*DBLE( N )**3 * * Calculate total megaflops -- factorization only, * -- for WALL and CPU time, and print output * * Print WALL time if machine supports it * IF( WTIME( 1 ).GT.0.0D+0 ) THEN TMFLOPS = NOPS / ( WTIME( 1 )*1.0D+6 ) ELSE TMFLOPS = 0.0D+0 END IF IF( WTIME( 1 ).GE.0.0D+0 ) $ WRITE( NOUT, FMT = 9993 )'WALL', N, NB, NPROW, $ NPCOL, WTIME( 1 ), TMFLOPS, PASSED * * Print CPU time if machine supports it * IF( CTIME( 1 ).GT.0.0D+0 ) THEN TMFLOPS = NOPS / ( CTIME( 1 )*1.0D+6 ) ELSE TMFLOPS = 0.0D+0 END IF * IF( CTIME( 1 ).GE.0.0D+0 ) $ WRITE( NOUT, FMT = 9993 )'CPU ', N, NB, NPROW, $ NPCOL, CTIME( 1 ), TMFLOPS, PASSED END IF * 10 CONTINUE * 20 CONTINUE * CALL BLACS_GRIDEXIT( ICTXT ) * 30 CONTINUE * * Print ending messages and close output file * IF( IAM.EQ.0 ) THEN KTESTS = KPASS + KFAIL + KSKIP WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9992 )KTESTS IF( CHECK ) THEN WRITE( NOUT, FMT = 9991 )KPASS WRITE( NOUT, FMT = 9989 )KFAIL ELSE WRITE( NOUT, FMT = 9990 )KPASS END IF WRITE( NOUT, FMT = 9988 )KSKIP WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9987 ) IF( NOUT.NE.6 .AND. NOUT.NE.0 ) $ CLOSE ( NOUT ) END IF * CALL BLACS_EXIT( 0 ) * 9999 FORMAT( 'ILLEGAL ', A6, ': ', A5, ' = ', I3, $ '; It should be at least 1' ) 9998 FORMAT( 'ILLEGAL GRID: nprow*npcol = ', I4, '. It can be at most', $ I4 ) 9997 FORMAT( 'Bad ', A6, ' parameters: going on to next test case.' ) 9996 FORMAT( 'Unable to perform ', A, ': need TOTMEM of at least', $ I11 ) 9995 FORMAT( 'TIME N NB P Q NEP Time MFLOPS CHECK' ) 9994 FORMAT( '---- ----- --- ---- ---- -------- -------- ------' ) 9993 FORMAT( A4, 1X, I5, 1X, I3, 1X, I4, 1X, I4, 1X, F8.2, 1X, F8.2, $ 1X, A6 ) 9992 FORMAT( 'Finished ', I6, ' tests, with the following results:' ) 9991 FORMAT( I5, ' tests completed and passed residual checks.' ) 9990 FORMAT( I5, ' tests completed without checking.' ) 9989 FORMAT( I5, ' tests completed and failed residual checks.' ) 9988 FORMAT( I5, ' tests skipped because of illegal input values.' ) 9987 FORMAT( 'END OF TESTS.' ) 9986 FORMAT( '||H - Q*S*Q^T|| / (||H|| * N * eps) = ', G25.7 ) 9985 FORMAT( '||Q^T*Q - I|| / ( N * eps ) ', G25.7 ) * STOP * * End of PDNEPDRIVER * END