/* --------------------------------------------------------------------- * * -- PBLAS routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "pblas.h" #include "PBpblas.h" #include "PBtools.h" #include "PBblacs.h" #include "PBblas.h" #ifdef __STDC__ void pdatrmv_( F_CHAR_T UPLO, F_CHAR_T TRANS, F_CHAR_T DIAG, int * N, double * ALPHA, double * A, int * IA, int * JA, int * DESCA, double * X, int * IX, int * JX, int * DESCX, int * INCX, double * BETA, double * Y, int * IY, int * JY, int * DESCY, int * INCY ) #else void pdatrmv_( UPLO, TRANS, DIAG, N, ALPHA, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX, BETA, Y, IY, JY, DESCY, INCY ) /* * .. Scalar Arguments .. */ F_CHAR_T DIAG, TRANS, UPLO; int * IA, * INCX, * INCY, * IX, * IY, * JA, * JX, * JY, * N; double * ALPHA, * BETA; /* * .. Array Arguments .. */ int * DESCA, * DESCX, * DESCY; double * A, * X, * Y; #endif { /* * Purpose * ======= * * PDATRMV performs one of the matrix-vector operations * * sub( Y ) := abs( alpha )*abs( sub( A ) )*abs( sub( X ) ) + * abs( beta*sub( Y ) ), * or * * sub( Y ) := abs( alpha )*abs( sub( A )' )*abs( sub( X ) ) + * abs( beta*sub( Y ) ), * * where * * sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1), * * sub( X ) denotes X(IX:IX,JX:JX+N-1), if INCX = M_X, * X(IX:IX+N-1,JX:JX), if INCX = 1 and INCX <> M_X, * and, * * sub( Y ) denotes Y(IY:IY,JY:JY+N-1), if INCY = M_Y, * Y(IY:IY+N-1,JY:JY), if INCY = 1 and INCY <> M_Y. * * Alpha and beta are real scalars, sub( Y ) is a real subvector, * sub( X ) is a subvector and sub( A ) is an n by n triangular subma- * trix. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * UPLO (global input) CHARACTER*1 * On entry, UPLO specifies whether the submatrix sub( A ) is * an upper or lower triangular submatrix as follows: * * UPLO = 'U' or 'u' sub( A ) is an upper triangular * submatrix, * * UPLO = 'L' or 'l' sub( A ) is a lower triangular * submatrix. * * TRANS (global input) CHARACTER*1 * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' * sub( Y ) := |alpha|*|sub( A )|*|sub( X )| + * |beta*sub( Y )|. * * TRANS = 'T' or 't' * sub( Y ) := |alpha|*|sub( A )'|*|sub( X )| + * |beta*sub( Y )|. * * TRANS = 'C' or 'c' * sub( Y ) := |alpha|*|sub( A )'|*|sub( X )| + * |beta*sub( Y )|. * * DIAG (global input) CHARACTER*1 * On entry, DIAG specifies whether or not sub( A ) is unit * triangular as follows: * * DIAG = 'U' or 'u' sub( A ) is assumed to be unit trian- * gular, * * DIAG = 'N' or 'n' sub( A ) is not assumed to be unit tri- * angular. * * N (global input) INTEGER * On entry, N specifies the order of the submatrix sub( A ). * N must be at least zero. * * ALPHA (global input) DOUBLE PRECISION * On entry, ALPHA specifies the scalar alpha. When ALPHA is * supplied as zero then the local entries of the arrays A * and X corresponding to the entries of the submatrix sub( A ) * and the subvector sub( X ) need not be set on input. * * A (local input) DOUBLE PRECISION array * On entry, A is an array of dimension (LLD_A, Ka), where Ka is * at least Lc( 1, JA+N-1 ). Before entry, this array contains * the local entries of the matrix A. * Before entry with UPLO = 'U' or 'u', this array contains the * local entries corresponding to the entries of the upper tri- * angular submatrix sub( A ), and the local entries correspon- * ding to the entries of the strictly lower triangular part of * the submatrix sub( A ) are not referenced. * Before entry with UPLO = 'L' or 'l', this array contains the * local entries corresponding to the entries of the lower tri- * angular submatrix sub( A ), and the local entries correspon- * ding to the entries of the strictly upper triangular part of * the submatrix sub( A ) are not referenced. * Note that when DIAG = 'U' or 'u', the local entries corres- * ponding to the diagonal elements of the submatrix sub( A ) * are not referenced either, but are assumed to be unity. * * IA (global input) INTEGER * On entry, IA specifies A's global row index, which points to * the beginning of the submatrix sub( A ). * * JA (global input) INTEGER * On entry, JA specifies A's global column index, which points * to the beginning of the submatrix sub( A ). * * DESCA (global and local input) INTEGER array * On entry, DESCA is an integer array of dimension DLEN_. This * is the array descriptor for the matrix A. * * X (local input) DOUBLE PRECISION array * On entry, X is an array of dimension (LLD_X, Kx), where LLD_X * is at least MAX( 1, Lr( 1, IX ) ) when INCX = M_X and * MAX( 1, Lr( 1, IX+Lx-1 ) ) otherwise, and, Kx is at least * Lc( 1, JX+Lx-1 ) when INCX = M_X and Lc( 1, JX ) otherwise. * Lx is N when TRANS = 'N' or 'n' and M otherwise. Before en- * try, this array contains the local entries of the matrix X. * * IX (global input) INTEGER * On entry, IX specifies X's global row index, which points to * the beginning of the submatrix sub( X ). * * JX (global input) INTEGER * On entry, JX specifies X's global column index, which points * to the beginning of the submatrix sub( X ). * * DESCX (global and local input) INTEGER array * On entry, DESCX is an integer array of dimension DLEN_. This * is the array descriptor for the matrix X. * * INCX (global input) INTEGER * On entry, INCX specifies the global increment for the * elements of X. Only two values of INCX are supported in * this version, namely 1 and M_X. INCX must not be zero. * * BETA (global input) DOUBLE PRECISION * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then the local entries of the array Y * corresponding to the entries of the subvector sub( Y ) need * not be set on input. * * Y (local input/local output) DOUBLE PRECISION array * On entry, Y is an array of dimension (LLD_Y, Ky), where LLD_Y * is at least MAX( 1, Lr( 1, IY ) ) when INCY = M_Y and * MAX( 1, Lr( 1, IY+Ly-1 ) ) otherwise, and, Ky is at least * Lc( 1, JY+Ly-1 ) when INCY = M_Y and Lc( 1, JY ) otherwise. * Ly is M when TRANS = 'N' or 'n' and N otherwise. Before en- * try, this array contains the local entries of the matrix Y. * On exit, sub( Y ) is overwritten by the updated subvector. * * IY (global input) INTEGER * On entry, IY specifies Y's global row index, which points to * the beginning of the submatrix sub( Y ). * * JY (global input) INTEGER * On entry, JY specifies Y's global column index, which points * to the beginning of the submatrix sub( Y ). * * DESCY (global and local input) INTEGER array * On entry, DESCY is an integer array of dimension DLEN_. This * is the array descriptor for the matrix Y. * * INCY (global input) INTEGER * On entry, INCY specifies the global increment for the * elements of Y. Only two values of INCY are supported in * this version, namely 1 and M_Y. INCY must not be zero. * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char DiagA, TranOp, UploA, Yroc, * one, top; int Acol, Ai, Aii, Aimb1, Ainb1, Aj, Ajj, Akp, Akq, Ald, Amb, Amp, Amp0, Anb, Anq, Anq0, Arow, XAfr, XAld, Xi, Xj, YAfr, YAld, YApbY, YAsum, Ycol, Yi, Yii, Yj, Yjj, Yld, Ynp, Ynq, Yrow, ctxt, info, ione=1, k, kb, ktmp, mycol, myrow, nb, notran, nounit, npcol, nprow, size, upper, usiz; double * tbeta; PBTYP_T * type, * utyp; /* * .. Local Arrays .. */ int Ad [DLEN_], Ad0[DLEN_], XAd[DLEN_], Xd[DLEN_], YAd[DLEN_], Yd [DLEN_]; char * Aptr = NULL, * XA = NULL, * YA = NULL; /* .. * .. Executable Statements .. * */ upper = ( ( UploA = Mupcase( F2C_CHAR( UPLO )[0] ) ) == CUPPER ); notran = ( ( TranOp = Mupcase( F2C_CHAR( TRANS )[0] ) ) == CNOTRAN ); nounit = ( ( DiagA = Mupcase( F2C_CHAR( DIAG )[0] ) ) == CNOUNIT ); PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad ); PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd ); PB_CargFtoC( *IY, *JY, DESCY, &Yi, &Yj, Yd ); #ifndef NO_ARGCHK /* * Test the input parameters */ Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); if( !( info = ( ( nprow == -1 ) ? -( 801 + CTXT_ ) : 0 ) ) ) { if( ( !upper ) && ( UploA != CLOWER ) ) { PB_Cwarn( ctxt, __LINE__, "PDATRMV", "Illegal UPLO = %c\n", UploA ); info = -1; } else if( ( !notran ) && ( TranOp != CTRAN ) && ( TranOp != CCOTRAN ) ) { PB_Cwarn( ctxt, __LINE__, "PDATRMV", "Illegal TRANS = %c\n", TranOp ); info = -2; } else if( ( !nounit ) && ( DiagA != CUNIT ) ) { PB_Cwarn( ctxt, __LINE__, "PDATRMV", "Illegal DIAG = %c\n", DiagA ); info = -3; } PB_Cchkmat( ctxt, "PDATRMV", "A", *N, 4, *N, 4, Ai, Aj, Ad, 9, &info ); PB_Cchkvec( ctxt, "PDATRMV", "X", *N, 4, Xi, Xj, Xd, *INCX, 13, &info ); PB_Cchkvec( ctxt, "PDATRMV", "Y", *N, 4, Yi, Yj, Yd, *INCY, 19, &info ); } if( info ) { PB_Cabort( ctxt, "PDATRMV", info ); return; } #endif /* * Quick return if possible */ if( ( *N == 0 ) || ( ( ALPHA[REAL_PART] == ZERO ) && ( BETA [REAL_PART] == ONE ) ) ) return; /* * Retrieve process grid information */ #ifdef NO_ARGCHK Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); #endif /* * Get type structure */ type = utyp = PB_Cdtypeset(); size = usiz = type->size; /* * and when alpha is zero */ if( ALPHA[REAL_PART] == ZERO ) { /* * Retrieve sub( Y )'s local information: Yii, Yjj, Yrow, Ycol */ PB_Cinfog2l( Yi, Yj, Yd, nprow, npcol, myrow, mycol, &Yii, &Yjj, &Yrow, &Ycol ); if( *INCY == Yd[M_] ) { /* * sub( Y ) resides in (a) process row(s) */ if( ( myrow == Yrow ) || ( Yrow < 0 ) ) { /* * Make sure I own some data and scale sub( Y ) */ Ynq = PB_Cnumroc( *N, Yj, Yd[INB_], Yd[NB_], mycol, Yd[CSRC_], npcol ); if( Ynq > 0 ) { Yld = Yd[LLD_]; dascal_( &Ynq, ((char *) BETA), Mptr( ((char *) Y), Yii, Yjj, Yld, usiz ), &Yld ); } } } else { /* * sub( Y ) resides in (a) process column(s) */ if( ( mycol == Ycol ) || ( Ycol < 0 ) ) { /* * Make sure I own some data and scale sub( Y ) */ Ynp = PB_Cnumroc( *N, Yi, Yd[IMB_], Yd[MB_], myrow, Yd[RSRC_], nprow ); if( Ynp > 0 ) { dascal_( &Ynp, ((char *) BETA), Mptr( ((char *) Y), Yii, Yjj, Yd[LLD_], usiz ), INCY ); } } } return; } /* * Compute descriptor Ad0 for sub( A ) */ PB_Cdescribe( *N, *N, Ai, Aj, Ad, nprow, npcol, myrow, mycol, &Aii, &Ajj, &Ald, &Aimb1, &Ainb1, &Amb, &Anb, &Arow, &Acol, Ad0 ); Yroc = ( *INCY == Yd[M_] ? CROW : CCOLUMN ); if( notran ) { /* * Reuse sub( Y ) and/or create vector YA in process columns spanned by sub( A ) */ PB_CInOutV( utyp, COLUMN, *N, *N, Ad0, 1, ((char *) BETA), ((char *) Y), Yi, Yj, Yd, &Yroc, ((char**)(&tbeta)), &YA, YAd, &YAfr, &YAsum, &YApbY ); /* * Replicate sub( X ) in process rows spanned by sub( A ) -> XA */ PB_CInV( type, NOCONJG, ROW, *N, *N, Ad0, 1, ((char *) X), Xi, Xj, Xd, ( *INCX == Xd[M_] ? ROW : COLUMN ), &XA, XAd, &XAfr ); } else { /* * Reuse sub( Y ) and/or create vector YA in process rows spanned by sub( A ) */ PB_CInOutV( utyp, ROW, *N, *N, Ad0, 1, ((char *) BETA), ((char *) Y), Yi, Yj, Yd, &Yroc, ((char**)(&tbeta)), &YA, YAd, &YAfr, &YAsum, &YApbY ); /* * Replicate sub( X ) in process columns spanned by sub( A ) -> XA */ PB_CInV( type, NOCONJG, COLUMN, *N, *N, Ad0, 1, ((char *) X), Xi, Xj, Xd, ( *INCX == Xd[M_] ? ROW : COLUMN ), &XA, XAd, &XAfr ); } one = type->one; /* * Local matrix-vector multiply iff I own some data */ Aimb1 = Ad0[IMB_ ]; Ainb1 = Ad0[INB_ ]; Amb = Ad0[MB_]; Anb = Ad0[NB_]; Acol = Ad0[CSRC_]; Arow = Ad0[RSRC_]; Amp = PB_Cnumroc( *N, 0, Aimb1, Amb, myrow, Arow, nprow ); Anq = PB_Cnumroc( *N, 0, Ainb1, Anb, mycol, Acol, npcol ); if( ( Amp > 0 ) && ( Anq > 0 ) ) { Aptr = Mptr( ((char *) A), Aii, Ajj, Ald, size ); XAld = XAd[LLD_]; YAld = YAd[LLD_]; /* * Scale YA in the case sub( Y ) has been reused */ if( notran && !( YApbY ) ) { /* * YA resides in (a) process column(s) */ if( ( mycol == YAd[CSRC_] ) || ( YAd[CSRC_] < 0 ) ) { /* * Make sure I own some data and scale YA */ if( Amp > 0 ) dascal_( &Amp, ((char *) tbeta), YA, &ione ); } } else if( !( notran ) && !( YApbY ) ) { /* * YA resides in (a) process row(s) */ if( ( myrow == YAd[RSRC_] ) || ( YAd[RSRC_] < 0 ) ) { /* * Make sure I own some data and scale YA */ if( Anq > 0 ) dascal_( &Anq, ((char *) tbeta), YA, &YAld ); } } /* * Computational partitioning size is computed as the product of the logical * value returned by pilaenv_ and 2 * lcm( nprow, npcol ) */ nb = 2 * pilaenv_( &ctxt, C2F_CHAR( &utyp->type ) ) * PB_Clcm( ( Arow >= 0 ? nprow : 1 ), ( Acol >= 0 ? npcol : 1 ) ); if( upper ) { if( notran ) { for( k = 0; k < *N; k += nb ) { kb = *N - k; kb = MIN( kb, nb ); Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow ); Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol ); Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol ); if( Akp > 0 && Anq0 > 0 ) { dagemv_( TRANS, &Akp, &Anq0, ((char *) ALPHA), Mptr( Aptr, 0, Akq, Ald, size ), &Ald, Mptr( XA, 0, Akq, XAld, size ), &XAld, one, YA, &ione ); } PB_Cptrm( type, utyp, LEFT, UPPER, &TranOp, &DiagA, kb, 1, ((char *) ALPHA), Aptr, k, k, Ad0, Mptr( XA, 0, Akq, XAld, size ), XAld, Mptr( YA, Akp, 0, YAld, usiz ), YAld, PB_Ctzatrmv ); } } else { for( k = 0; k < *N; k += nb ) { kb = *N - k; kb = MIN( kb, nb ); Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow ); Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol ); Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol ); if( Akp > 0 && Anq0 > 0 ) { dagemv_( TRANS, &Akp, &Anq0, ((char *) ALPHA), Mptr( Aptr, 0, Akq, Ald, size ), &Ald, XA, &ione, one, Mptr( YA, 0, Akq, YAld, usiz ), &YAld ); } PB_Cptrm( type, utyp, LEFT, UPPER, &TranOp, &DiagA, kb, 1, ((char *) ALPHA), Aptr, k, k, Ad0, Mptr( XA, Akp, 0, XAld, size ), XAld, Mptr( YA, 0, Akq, YAld, usiz ), YAld, PB_Ctzatrmv ); } } } else { if( notran ) { for( k = 0; k < *N; k += nb ) { kb = *N - k; ktmp = k + ( kb = MIN( kb, nb ) ); Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow ); Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol ); PB_Cptrm( type, utyp, LEFT, LOWER, &TranOp, &DiagA, kb, 1, ((char *) ALPHA), Aptr, k, k, Ad0, Mptr( XA, 0, Akq, XAld, size ), XAld, Mptr( YA, Akp, 0, YAld, usiz ), YAld, PB_Ctzatrmv ); Akp = PB_Cnumroc( ktmp, 0, Aimb1, Amb, myrow, Arow, nprow ); Amp0 = Amp - Akp; Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol ); if( Amp0 > 0 && Anq0 > 0 ) { dagemv_( TRANS, &Amp0, &Anq0, ((char *) ALPHA), Mptr( Aptr, Akp, Akq, Ald, size ), &Ald, Mptr( XA, 0, Akq, XAld, size ), &XAld, one, Mptr( YA, Akp, 0, YAld, usiz ), &ione ); } } } else { for( k = 0; k < *N; k += nb ) { kb = *N - k; ktmp = k + ( kb = MIN( kb, nb ) ); Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow ); Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol ); PB_Cptrm( type, utyp, LEFT, LOWER, &TranOp, &DiagA, kb, 1, ((char *) ALPHA), Aptr, k, k, Ad0, Mptr( XA, Akp, 0, XAld, size ), XAld, Mptr( YA, 0, Akq, YAld, usiz ), YAld, PB_Ctzatrmv ); Akp = PB_Cnumroc( ktmp, 0, Aimb1, Amb, myrow, Arow, nprow ); Amp0 = Amp - Akp; Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol ); if( Amp0 > 0 && Anq0 > 0 ) { dagemv_( TRANS, &Amp0, &Anq0, one, Mptr( Aptr, Akp, Akq, Ald, size ), &Ald, Mptr( XA, Akp, 0, XAld, size ), &ione, one, Mptr( YA, 0, Akq, YAld, usiz ), &YAld ); } } } } } if( XAfr ) free( XA ); if( notran ) { /* * Combine the partial column results into YA */ if( YAsum && ( Amp > 0 ) ) { top = *PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET ); Cdgsum2d( ctxt, ROW, &top, Amp, 1, YA, YAd[LLD_], myrow, YAd[CSRC_] ); } } else { /* * Combine the partial row results into YA */ if( YAsum && ( Anq > 0 ) ) { top = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET ); Cdgsum2d( ctxt, COLUMN, &top, 1, Anq, YA, YAd[LLD_], YAd[RSRC_], mycol ); } } /* * sub( Y ) := beta * sub( Y ) + YA (if necessary) */ if( YApbY ) { /* * Retrieve sub( Y )'s local information: Yii, Yjj, Yrow, Ycol */ PB_Cinfog2l( Yi, Yj, Yd, nprow, npcol, myrow, mycol, &Yii, &Yjj, &Yrow, &Ycol ); if( *INCY == Yd[M_] ) { /* * sub( Y ) resides in (a) process row(s) */ if( ( myrow == Yrow ) || ( Yrow < 0 ) ) { /* * Make sure I own some data and scale sub( Y ) */ Ynq = PB_Cnumroc( *N, Yj, Yd[INB_], Yd[NB_], mycol, Yd[CSRC_], npcol ); if( Ynq > 0 ) { Yld = Yd[LLD_]; dascal_( &Ynq, ((char *) BETA), Mptr( ((char *) Y), Yii, Yjj, Yld, usiz ), &Yld ); } } } else { /* * sub( Y ) resides in (a) process column(s) */ if( ( mycol == Ycol ) || ( Ycol < 0 ) ) { /* * Make sure I own some data and scale sub( Y ) */ Ynp = PB_Cnumroc( *N, Yi, Yd[IMB_], Yd[MB_], myrow, Yd[RSRC_], nprow ); if( Ynp > 0 ) { dascal_( &Ynp, ((char *) BETA), Mptr( ((char *) Y), Yii, Yjj, Yd[LLD_], usiz ), INCY ); } } } if( notran ) { PB_Cpaxpby( utyp, NOCONJG, *N, 1, one, YA, 0, 0, YAd, COLUMN, one, ((char *) Y), Yi, Yj, Yd, &Yroc ); } else { PB_Cpaxpby( utyp, NOCONJG, 1, *N, one, YA, 0, 0, YAd, ROW, one, ((char *) Y), Yi, Yj, Yd, &Yroc ); } } if( YAfr ) free( YA ); /* * End of PDATRMV */ }