/* --------------------------------------------------------------------- * * -- PBLAS routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "pblas.h" #include "PBpblas.h" #include "PBtools.h" #include "PBblacs.h" #include "PBblas.h" #ifdef __STDC__ void pdagemv_( F_CHAR_T TRANS, int * M, int * N, double * ALPHA, double * A, int * IA, int * JA, int * DESCA, double * X, int * IX, int * JX, int * DESCX, int * INCX, double * BETA, double * Y, int * IY, int * JY, int * DESCY, int * INCY ) #else void pdagemv_( TRANS, M, N, ALPHA, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX, BETA, Y, IY, JY, DESCY, INCY ) /* * .. Scalar Arguments .. */ F_CHAR_T TRANS; int * IA, * INCX, * INCY, * IX, * IY, * JA, * JX, * JY, * M, * N; double * ALPHA, * BETA; /* * .. Array Arguments .. */ int * DESCA, * DESCX, * DESCY; double * A, * X, * Y; #endif { /* * Purpose * ======= * * PDAGEMV performs one of the matrix-vector operations * * sub( Y ) := abs( alpha )*abs( sub( A ) )*abs( sub( X ) ) + * abs( beta*sub( Y ) ), * or * * sub( Y ) := abs( alpha )*abs( sub( A )' )*abs( sub( X ) ) + * abs( beta*sub( Y ) ), * * where * * sub( A ) denotes A(IA:IA+M-1,JA:JA+N-1). * * When TRANS = 'N', * * sub( X ) denotes X(IX:IX,JX:JX+N-1), if INCX = M_X, * X(IX:IX+N-1,JX:JX), if INCX = 1 and INCX <> M_X, * and, * * sub( Y ) denotes Y(IY:IY,JY:JY+M-1), if INCY = M_Y, * Y(IY:IY+M-1,JY:JY), if INCY = 1 and INCY <> M_Y, * and, otherwise * * sub( X ) denotes X(IX:IX,JX:JX+M-1), if INCX = M_X, * X(IX:IX+M-1,JX:JX), if INCX = 1 and INCX <> M_X, * and, * * sub( Y ) denotes Y(IY:IY,JY:JY+N-1), if INCY = M_Y, * Y(IY:IY+N-1,JY:JY), if INCY = 1 and INCY <> M_Y. * * Alpha and beta are real scalars, sub( Y ) is a real subvector, * sub( X ) is a subvector and sub( A ) is an m by n submatrix. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * TRANS (global input) CHARACTER*1 * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' * sub( Y ) := |alpha|*|sub( A ) | * |sub( X )| + * |beta*sub( Y )|, * * TRANS = 'T' or 't', * sub( Y ) := |alpha|*|sub( A )'| * |sub( X )| + * |beta*sub( Y )|, * * TRANS = 'C' or 'c', * sub( Y ) := |alpha|*|sub( A )'| * |sub( X )| + * |beta*sub( Y )|. * * M (global input) INTEGER * On entry, M specifies the number of rows of the submatrix * sub( A ). M must be at least zero. * * N (global input) INTEGER * On entry, N specifies the number of columns of the submatrix * sub( A ). N must be at least zero. * * ALPHA (global input) DOUBLE PRECISION * On entry, ALPHA specifies the scalar alpha. When ALPHA is * supplied as zero then the local entries of the arrays A * and X corresponding to the entries of the submatrix sub( A ) * and the subvector sub( X ) need not be set on input. * * A (local input) DOUBLE PRECISION array * On entry, A is an array of dimension (LLD_A, Ka), where Ka is * at least Lc( 1, JA+N-1 ). Before entry, this array contains * the local entries of the matrix A. * * IA (global input) INTEGER * On entry, IA specifies A's global row index, which points to * the beginning of the submatrix sub( A ). * * JA (global input) INTEGER * On entry, JA specifies A's global column index, which points * to the beginning of the submatrix sub( A ). * * DESCA (global and local input) INTEGER array * On entry, DESCA is an integer array of dimension DLEN_. This * is the array descriptor for the matrix A. * * X (local input) DOUBLE PRECISION array * On entry, X is an array of dimension (LLD_X, Kx), where LLD_X * is at least MAX( 1, Lr( 1, IX ) ) when INCX = M_X and * MAX( 1, Lr( 1, IX+Lx-1 ) ) otherwise, and, Kx is at least * Lc( 1, JX+Lx-1 ) when INCX = M_X and Lc( 1, JX ) otherwise. * Lx is N when TRANS = 'N' or 'n' and M otherwise. Before en- * try, this array contains the local entries of the matrix X. * * IX (global input) INTEGER * On entry, IX specifies X's global row index, which points to * the beginning of the submatrix sub( X ). * * JX (global input) INTEGER * On entry, JX specifies X's global column index, which points * to the beginning of the submatrix sub( X ). * * DESCX (global and local input) INTEGER array * On entry, DESCX is an integer array of dimension DLEN_. This * is the array descriptor for the matrix X. * * INCX (global input) INTEGER * On entry, INCX specifies the global increment for the * elements of X. Only two values of INCX are supported in * this version, namely 1 and M_X. INCX must not be zero. * * BETA (global input) DOUBLE PRECISION * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then the local entries of the array Y * corresponding to the entries of the subvector sub( Y ) need * not be set on input. * * Y (local input/local output) DOUBLE PRECISION array * On entry, Y is an array of dimension (LLD_Y, Ky), where LLD_Y * is at least MAX( 1, Lr( 1, IY ) ) when INCY = M_Y and * MAX( 1, Lr( 1, IY+Ly-1 ) ) otherwise, and, Ky is at least * Lc( 1, JY+Ly-1 ) when INCY = M_Y and Lc( 1, JY ) otherwise. * Ly is M when TRANS = 'N' or 'n' and N otherwise. Before en- * try, this array contains the local entries of the matrix Y. * On exit, sub( Y ) is overwritten by the updated subvector. * * IY (global input) INTEGER * On entry, IY specifies Y's global row index, which points to * the beginning of the submatrix sub( Y ). * * JY (global input) INTEGER * On entry, JY specifies Y's global column index, which points * to the beginning of the submatrix sub( Y ). * * DESCY (global and local input) INTEGER array * On entry, DESCY is an integer array of dimension DLEN_. This * is the array descriptor for the matrix Y. * * INCY (global input) INTEGER * On entry, INCY specifies the global increment for the * elements of Y. Only two values of INCY are supported in * this version, namely 1 and M_Y. INCY must not be zero. * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char TrA, Yroc, * one, * tbeta, top; int Acol, Ai, Aii, Aimb1, Ainb1, Aj, Ajj, Ald, Amb, Amp, Anb, Anq, Arow, XAfr, Xi, Xj, YAfr, YApbY, YAsum, Ycol, Yi, Yii, Yj, Yjj, Yld, Ynp, Ynq, Yrow, ctxt, info, ione=1, mycol, myrow, nota, npcol, nprow; PBTYP_T * type, * utyp; /* * .. Local Arrays .. */ int Ad [DLEN_], Ad0[DLEN_], XAd[DLEN_], Xd[DLEN_], YAd[DLEN_], Yd [DLEN_]; char * XA = NULL, * YA = NULL; /* .. * .. Executable Statements .. * */ nota = ( ( TrA = Mupcase( F2C_CHAR( TRANS )[0] ) ) == CNOTRAN ); PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad ); PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd ); PB_CargFtoC( *IY, *JY, DESCY, &Yi, &Yj, Yd ); #ifndef NO_ARGCHK /* * Test the input parameters */ Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); if( !( info = ( ( nprow == -1 ) ? -( 801 + CTXT_ ) : 0 ) ) ) { if( ( !nota ) && ( TrA != CTRAN ) && ( TrA != CCOTRAN ) ) { PB_Cwarn( ctxt, __LINE__, "PDAGEMV", "Illegal TRANS=%c\n", TrA ); info = -1; } PB_Cchkmat( ctxt, "PDAGEMV", "A", *M, 2, *N, 3, Ai, Aj, Ad, 8, &info ); if( nota ) { PB_Cchkvec( ctxt, "PDAGEMV", "X", *N, 3, Xi, Xj, Xd, *INCX, 12, &info ); PB_Cchkvec( ctxt, "PDAGEMV", "Y", *M, 2, Yi, Yj, Yd, *INCY, 18, &info ); } else { PB_Cchkvec( ctxt, "PDAGEMV", "X", *M, 2, Xi, Xj, Xd, *INCX, 12, &info ); PB_Cchkvec( ctxt, "PDAGEMV", "Y", *N, 3, Yi, Yj, Yd, *INCY, 18, &info ); } } if( info ) { PB_Cabort( ctxt, "PDAGEMV", info ); return; } #endif /* * Quick return if possible */ if( ( *M == 0 ) || ( *N == 0 ) || ( ( ALPHA[REAL_PART] == ZERO ) && ( BETA[REAL_PART] == ONE ) ) ) return; /* * Retrieve process grid information */ #ifdef NO_ARGCHK Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); #endif /* * Get type structure */ type = utyp = PB_Cdtypeset(); /* * When alpha is zero */ if( ALPHA[REAL_PART] == ZERO ) { /* * Retrieve sub( Y )'s local information: Yii, Yjj, Yrow, Ycol */ PB_Cinfog2l( Yi, Yj, Yd, nprow, npcol, myrow, mycol, &Yii, &Yjj, &Yrow, &Ycol ); if( *INCY == Yd[M_] ) { /* * sub( Y ) resides in (a) process row(s) */ if( ( myrow == Yrow ) || ( Yrow < 0 ) ) { /* * Make sure I own some data and scale sub( Y ) */ Ynq = PB_Cnumroc( ( nota ? *M : *N ), Yj, Yd[INB_], Yd[NB_], mycol, Yd[CSRC_], npcol ); if( Ynq > 0 ) { Yld = Yd[LLD_]; dascal_( &Ynq, ((char *) BETA), Mptr( ((char *) Y), Yii, Yjj, Yld, utyp->size ), &Yld ); } } } else { /* * sub( Y ) resides in (a) process column(s) */ if( ( mycol == Ycol ) || ( Ycol < 0 ) ) { /* * Make sure I own some data and scale sub( Y ) */ Ynp = PB_Cnumroc( ( nota ? *M : *N ), Yi, Yd[IMB_], Yd[MB_], myrow, Yd[RSRC_], nprow ); if( Ynp > 0 ) { dascal_( &Ynp, ((char *) BETA), Mptr( ((char *) Y), Yii, Yjj, Yd[LLD_], utyp->size ), INCY ); } } } return; } /* * Compute descriptor Ad0 for sub( A ) */ PB_Cdescribe( *M, *N, Ai, Aj, Ad, nprow, npcol, myrow, mycol, &Aii, &Ajj, &Ald, &Aimb1, &Ainb1, &Amb, &Anb, &Arow, &Acol, Ad0 ); Yroc = ( *INCY == Yd[M_] ? CROW : CCOLUMN ); if( nota ) { /* * Reuse sub( Y ) and/or create vector YA in process columns spanned by sub( A ) */ PB_CInOutV( utyp, COLUMN, *M, *N, Ad0, 1, ((char *) BETA), ((char *) Y), Yi, Yj, Yd, &Yroc, &tbeta, &YA, YAd, &YAfr, &YAsum, &YApbY ); /* * Replicate sub( X ) in process rows spanned by sub( A ) -> XA */ PB_CInV( type, NOCONJG, ROW, *M, *N, Ad0, 1, ((char *) X), Xi, Xj, Xd, ( *INCX == Xd[M_] ? ROW : COLUMN ), &XA, XAd, &XAfr ); /* * Local matrix-vector multiply iff I own some data */ Amp = PB_Cnumroc( *M, 0, Ad0[IMB_], Ad0[MB_], myrow, Ad0[RSRC_], nprow ); Anq = PB_Cnumroc( *N, 0, Ad0[INB_], Ad0[NB_], mycol, Ad0[CSRC_], npcol ); if( ( Amp > 0 ) && ( Anq > 0 ) ) { dagemv_( TRANS, &Amp, &Anq, ((char *) ALPHA), Mptr( ((char *) A), Aii, Ajj, Ald, type->size), &Ald, XA, &XAd[LLD_], tbeta, YA, &ione ); } if( XAfr ) free( XA ); /* * Combine the partial column results into YA */ if( YAsum && ( Amp > 0 ) ) { top = *PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET ); Cdgsum2d( ctxt, ROW, &top, Amp, 1, YA, YAd[LLD_], myrow, YAd[CSRC_] ); } } else { /* * Reuse sub( Y ) and/or create vector YA in process rows spanned by sub( A ) */ PB_CInOutV( utyp, ROW, *M, *N, Ad0, 1, ((char *) BETA), ((char *) Y), Yi, Yj, Yd, &Yroc, &tbeta, &YA, YAd, &YAfr, &YAsum, &YApbY ); /* * Replicate sub( X ) in process columns spanned by sub( A ) -> XA */ PB_CInV( type, NOCONJG, COLUMN, *M, *N, Ad0, 1, ((char *) X), Xi, Xj, Xd, ( *INCX == Xd[M_] ? ROW : COLUMN ), &XA, XAd, &XAfr ); /* * Local matrix-vector multiply iff I own some data */ Amp = PB_Cnumroc( *M, 0, Ad0[IMB_], Ad0[MB_], myrow, Ad0[RSRC_], nprow ); Anq = PB_Cnumroc( *N, 0, Ad0[INB_], Ad0[NB_], mycol, Ad0[CSRC_], npcol ); if( ( Amp > 0 ) && ( Anq > 0 ) ) { dagemv_( TRANS, &Amp, &Anq, ((char *) ALPHA), Mptr( ((char *) A), Aii, Ajj, Ald, type->size ), &Ald, XA, &ione, tbeta, YA, &YAd[LLD_] ); } if( XAfr ) free( XA ); /* * Combine the partial row results into YA */ if( YAsum && ( Anq > 0 ) ) { top = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET ); Cdgsum2d( ctxt, COLUMN, &top, 1, Anq, YA, YAd[LLD_], YAd[RSRC_], mycol ); } } /* * sub( Y ) := beta * sub( Y ) + YA (if necessary) */ if( YApbY ) { /* * Retrieve sub( Y )'s local information: Yii, Yjj, Yrow, Ycol */ PB_Cinfog2l( Yi, Yj, Yd, nprow, npcol, myrow, mycol, &Yii, &Yjj, &Yrow, &Ycol ); if( *INCY == Yd[M_] ) { /* * sub( Y ) resides in (a) process row(s) */ if( ( myrow == Yrow ) || ( Yrow < 0 ) ) { /* * Make sure I own some data and scale sub( Y ) */ Ynq = PB_Cnumroc( ( nota ? *M : *N ), Yj, Yd[INB_], Yd[NB_], mycol, Yd[CSRC_], npcol ); if( Ynq > 0 ) { Yld = Yd[LLD_]; dascal_( &Ynq, ((char *) BETA), Mptr( ((char *) Y), Yii, Yjj, Yld, utyp->size ), &Yld ); } } } else { /* * sub( Y ) resides in (a) process column(s) */ if( ( mycol == Ycol ) || ( Ycol < 0 ) ) { /* * Make sure I own some data and scale sub( Y ) */ Ynp = PB_Cnumroc( ( nota ? *M : *N ), Yi, Yd[IMB_], Yd[MB_], myrow, Yd[RSRC_], nprow ); if( Ynp > 0 ) { dascal_( &Ynp, ((char *) BETA), Mptr( ((char *) Y), Yii, Yjj, Yd[LLD_], utyp->size ), INCY ); } } } one = utyp->one; if( nota ) { PB_Cpaxpby( utyp, NOCONJG, *M, 1, one, YA, 0, 0, YAd, COLUMN, one, ((char *) Y), Yi, Yj, Yd, &Yroc ); } else { PB_Cpaxpby( utyp, NOCONJG, 1, *N, one, YA, 0, 0, YAd, ROW, one, ((char *) Y), Yi, Yj, Yd, &Yroc ); } } if( YAfr ) free( YA ); /* * End of PDAGEMV */ }