/* --------------------------------------------------------------------- * * -- PBLAS routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "pblas.h" #include "PBpblas.h" #include "PBtools.h" #include "PBblacs.h" #include "PBblas.h" #ifdef __STDC__ void pcswap_( int * N, float * X, int * IX, int * JX, int * DESCX, int * INCX, float * Y, int * IY, int * JY, int * DESCY, int * INCY ) #else void pcswap_( N, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY ) /* * .. Scalar Arguments .. */ int * INCX, * INCY, * IX, * IY, * JX, * JY, * N; /* * .. Array Arguments .. */ int * DESCX, * DESCY; float * X, * Y; #endif { /* * Purpose * ======= * * PCSWAP swaps two subvectors, * * sub( Y ) := sub( X ) and sub( X ) := sub( Y ) * * where sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X, * X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X, * * sub( Y ) denotes Y(IY,JY:JY+N-1) if INCY = M_Y, * Y(IY:IY+N-1,JY) if INCY = 1 and INCY <> M_Y. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * N (global input) INTEGER * On entry, N specifies the length of the subvectors to be * swapped. N must be at least zero. * * X (local input/local output) COMPLEX array * On entry, X is an array of dimension (LLD_X, Kx), where LLD_X * is at least MAX( 1, Lr( 1, IX ) ) when INCX = M_X and * MAX( 1, Lr( 1, IX+N-1 ) ) otherwise, and, Kx is at least * Lc( 1, JX+N-1 ) when INCX = M_X and Lc( 1, JX ) otherwise. * Before entry, this array contains the local entries of the * matrix X. On exit, sub( X ) is overwritten with sub( Y ). * * IX (global input) INTEGER * On entry, IX specifies X's global row index, which points to * the beginning of the submatrix sub( X ). * * JX (global input) INTEGER * On entry, JX specifies X's global column index, which points * to the beginning of the submatrix sub( X ). * * DESCX (global and local input) INTEGER array * On entry, DESCX is an integer array of dimension DLEN_. This * is the array descriptor for the matrix X. * * INCX (global input) INTEGER * On entry, INCX specifies the global increment for the * elements of X. Only two values of INCX are supported in * this version, namely 1 and M_X. INCX must not be zero. * * Y (local input/local output) COMPLEX array * On entry, Y is an array of dimension (LLD_Y, Ky), where LLD_Y * is at least MAX( 1, Lr( 1, IY ) ) when INCY = M_Y and * MAX( 1, Lr( 1, IY+N-1 ) ) otherwise, and, Ky is at least * Lc( 1, JY+N-1 ) when INCY = M_Y and Lc( 1, JY ) otherwise. * Before entry, this array contains the local entries of the * matrix Y. On exit, sub( Y ) is overwritten with sub( X ). * * IY (global input) INTEGER * On entry, IY specifies Y's global row index, which points to * the beginning of the submatrix sub( Y ). * * JY (global input) INTEGER * On entry, JY specifies Y's global column index, which points * to the beginning of the submatrix sub( Y ). * * DESCY (global and local input) INTEGER array * On entry, DESCY is an integer array of dimension DLEN_. This * is the array descriptor for the matrix Y. * * INCY (global input) INTEGER * On entry, INCY specifies the global increment for the * elements of Y. Only two values of INCY are supported in * this version, namely 1 and M_Y. INCY must not be zero. * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char Xscope, Yscope, * one, * top, tran, * zero; int OneBlock, OneDgrid, RRorCC, Square, Xcol, Xi, XisD, XisR, Xinb1D, XinbD, XisRow, Xii, Xj, Xjj, Xld, Xlinc, Xm, XmyprocD, XmyprocR, Xn, XnbD, XnpD, XnprocsD, XnprocsR, XprocD, XprocR, Xroc, Xrow, Ycol, Yi, Yii, Yinb1D, YinbD, YisD, YisR, YisRow, Yj, Yjj, Yld, Ylinc, Ym, YmyprocD, YmyprocR, Yn, YnbD, YnpD, YnprocsD, YnprocsR, YprocD, YprocR, Yroc, Yrow, cdst, csrc, ctxt, dst, gcdPQ, info, ione=1, k, l, lcmPQ, lcmb, mycol, myrow, npcol, npq, nprow, p, q, rdst, rsrc, src, size; PBTYP_T * type; PB_VM_T VM; /* * .. Local Arrays .. */ int Xd[DLEN_], Yd[DLEN_]; char * buf = NULL; /* .. * .. Executable Statements .. * */ PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd ); PB_CargFtoC( *IY, *JY, DESCY, &Yi, &Yj, Yd ); #ifndef NO_ARGCHK /* * Test the input parameters */ Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); if( !( info = ( ( nprow == -1 ) ? -( 501 + CTXT_ ) : 0 ) ) ) { PB_Cchkvec( ctxt, "PCSWAP", "X", *N, 1, Xi, Xj, Xd, *INCX, 5, &info ); PB_Cchkvec( ctxt, "PCSWAP", "Y", *N, 1, Yi, Yj, Yd, *INCY, 10, &info ); } if( info ) { PB_Cabort( ctxt, "PCSWAP", info ); return; } #endif /* * Quick return if possible */ if( *N == 0 ) return; /* * Retrieve process grid information */ #ifdef NO_ARGCHK Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); #endif /* * Determine if sub( X ) is distributed or not */ if( ( XisRow = ( *INCX == Xd[M_] ) ) != 0 ) XisD = ( ( Xd[CSRC_] >= 0 ) && ( ( XnprocsD = npcol ) > 1 ) ); else XisD = ( ( Xd[RSRC_] >= 0 ) && ( ( XnprocsD = nprow ) > 1 ) ); /* * Determine if sub( Y ) is distributed or not */ if( ( YisRow = ( *INCY == Yd[M_] ) ) != 0 ) YisD = ( ( Yd[CSRC_] >= 0 ) && ( ( YnprocsD = npcol ) > 1 ) ); else YisD = ( ( Yd[RSRC_] >= 0 ) && ( ( YnprocsD = nprow ) > 1 ) ); /* * Are sub( X ) and sub( Y ) both row or column vectors ? */ RRorCC = ( ( XisRow && YisRow ) || ( !( XisRow ) && !( YisRow ) ) ); /* * XisD && YisD <=> both vector operands are indeed distributed */ if( XisD && YisD ) { /* * Retrieve sub( X )'s local information: Xii, Xjj, Xrow, Xcol ... */ PB_Cinfog2l( Xi, Xj, Xd, nprow, npcol, myrow, mycol, &Xii, &Xjj, &Xrow, &Xcol ); if( XisRow ) { XinbD = Xd[INB_ ]; XnbD = Xd[NB_ ]; Xld = Xd[LLD_]; Xlinc = Xld; XprocD = Xcol; XmyprocD = mycol; XprocR = Xrow; XmyprocR = myrow; XnprocsR = nprow; XisR = ( ( Xrow == -1 ) || ( XnprocsR == 1 ) ); Mfirstnb( Xinb1D, *N, Xj, XinbD, XnbD ); } else { XinbD = Xd[IMB_ ]; XnbD = Xd[MB_ ]; Xld = Xd[LLD_]; Xlinc = 1; XprocD = Xrow; XmyprocD = myrow; XprocR = Xcol; XmyprocR = mycol; XnprocsR = npcol; XisR = ( ( Xcol == -1 ) || ( XnprocsR == 1 ) ); Mfirstnb( Xinb1D, *N, Xi, XinbD, XnbD ); } /* * Retrieve sub( Y )'s local information: Yii, Yjj, Yrow, Ycol ... */ PB_Cinfog2l( Yi, Yj, Yd, nprow, npcol, myrow, mycol, &Yii, &Yjj, &Yrow, &Ycol ); if( YisRow ) { YinbD = Yd[INB_ ]; YnbD = Yd[NB_ ]; Yld = Yd[LLD_]; Ylinc = Yld; YprocD = Ycol; YmyprocD = mycol; YprocR = Yrow; YmyprocR = myrow; YnprocsR = nprow; YisR = ( ( Yrow == -1 ) || ( YnprocsR == 1 ) ); Mfirstnb( Yinb1D, *N, Yj, YinbD, YnbD ); } else { YinbD = Yd[IMB_ ]; YnbD = Yd[MB_ ]; Yld = Yd[LLD_]; Ylinc = 1; YprocD = Yrow; YmyprocD = myrow; YprocR = Ycol; YmyprocR = mycol; YnprocsR = npcol; YisR = ( ( Ycol == -1 ) || ( YnprocsR == 1 ) ); Mfirstnb( Yinb1D, *N, Yi, YinbD, YnbD ); } /* * Do sub( X ) and sub( Y ) span more than one process ? */ OneDgrid = ( ( XnprocsD == 1 ) && ( YnprocsD == 1 ) ); OneBlock = ( ( Xinb1D >= *N ) && ( Yinb1D >= *N ) ); /* * Are sub( X ) and sub( Y ) distributed in the same manner ? */ Square = ( ( Xinb1D == Yinb1D ) && ( XnbD == YnbD ) && ( XnprocsD == YnprocsD ) ); if( !( XisR ) ) { /* * sub( X ) is distributed but not replicated */ if( YisR ) { /* * If sub( X ) is not replicated, but sub( Y ) is, a process row or column * YprocR need to be selected. It will contain the non-replicated vector to * swap sub( X ) with. */ if( RRorCC ) { /* * sub( X ) and sub( Y ) are both row or column vectors */ if( ( OneDgrid || OneBlock || Square ) && ( XprocD == YprocD ) ) { /* * sub( X ) and sub( Y ) start in the same process row or column XprocD=YprocD. * Enforce a purely local operation by choosing YprocR to be equal to XprocR. */ YprocR = XprocR; } else { /* * Otherwise, communication has to occur, so choose the next process row or * column for YprocR to maximize the number of links, i.e reduce contention. */ YprocR = MModAdd1( XprocR, XnprocsR ); } } else { /* * sub( X ) and sub( Y ) are distributed in orthogonal directions, what is * chosen for YprocR does not really matter. Select the process origin. */ YprocR = XprocD; } } else { /* * Neither sub( X ) nor sub( Y ) are replicated. If I am not in process row or * column XprocR and not in process row or column YprocR, then quick return. */ if( ( XmyprocR != XprocR ) && ( YmyprocR != YprocR ) ) return; } } else { /* * sub( X ) is distributed and replicated (so no quick return possible) */ if( YisR ) { /* * sub( Y ) is distributed and replicated as well */ if( RRorCC ) { /* * sub( X ) and sub( Y ) are both row or column vectors */ if( ( OneDgrid || OneBlock || Square ) && ( XprocD == YprocD ) ) { /* * sub( X ) and sub( Y ) start in the same process row or column XprocD=YprocD. * Enforce a purely local operation by choosing XprocR and YprocR to be equal * to zero. */ XprocR = YprocR = 0; } else { /* * Otherwise, communication has to occur, so select YprocR to be zero and the * next process row or column for XprocR in order to maximize the number of * used links, i.e reduce contention. */ YprocR = 0; XprocR = MModAdd1( YprocR, YnprocsR ); } } else { /* * sub( X ) and sub( Y ) are distributed in orthogonal directions, select the * origin processes. */ XprocR = YprocD; YprocR = XprocD; } } else { /* * sub( Y ) is distributed, but not replicated */ if( RRorCC ) { /* * sub( X ) and sub( Y ) are both row or column vectors */ if( ( OneDgrid || OneBlock || Square ) && ( XprocD == YprocD ) ) { /* * sub( X ) and sub( Y ) start in the same process row or column XprocD=YprocD. * Enforce a purely local operation by choosing XprocR to be equal to YprocR. */ XprocR = YprocR; } else { /* * Otherwise, communication has to occur, so choose the next process row or * column for XprocR to maximize the number of links, i.e reduce contention. */ XprocR = MModAdd1( YprocR, YnprocsR ); } } else { /* * sub( X ) and sub( Y ) are distributed in orthogonal directions, what is * chosen for XprocR does not really matter. Select the origin process. */ XprocR = YprocD; } } } /* * Even if sub( X ) and/or sub( Y ) are replicated, only two process row or * column are active, namely XprocR and YprocR. If any of those operands is * replicated, broadcast will occur (unless there is an easy way out). */ type = PB_Cctypeset(); size = type->size; /* * A purely local operation occurs iff the operands start in the same process * and, if either the grid is mono-dimensional or there is a single local block * to be swapped or if both operands are aligned. */ if( ( ( RRorCC && ( XprocD == YprocD ) && ( XprocR == YprocR ) ) || ( !( RRorCC ) && ( XprocD == YprocR ) && ( XprocR == YprocD ) ) ) && ( OneDgrid || OneBlock || ( RRorCC && Square ) ) ) { if( ( !XisR && ( XmyprocR == XprocR ) && !YisR && ( YmyprocR == YprocR ) ) || ( !XisR && YisR && ( YmyprocR == YprocR ) ) || ( !YisR && XisR && ( XmyprocR == XprocR ) ) || ( XisR && YisR ) ) { XnpD = PB_Cnumroc( *N, 0, Xinb1D, XnbD, XmyprocD, XprocD, XnprocsD ); YnpD = PB_Cnumroc( *N, 0, Yinb1D, YnbD, YmyprocD, YprocD, YnprocsD ); if( ( XnpD > 0 ) && ( YnpD > 0 ) ) { cswap_( &XnpD, Mptr( ((char *) X), Xii, Xjj, Xld, size ), &Xlinc, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), &Ylinc ); } if( RRorCC && XisR && YisR ) return; } } else if( ( RRorCC && OneDgrid ) || OneBlock || Square ) { /* * Otherwise, it may be possible to swap the distributed vectors in a single * message exchange iff the grid is mono-dimensional and the operands are * distributed in the same direction, or there is just one block to be exchanged * or if both operands are similarly distributed in their respective direction. */ if( RRorCC && ( XprocR != YprocR ) ) { /* * Both operands are distributed in the same direction, but reside in different * process rows or columns. */ if( XmyprocR == XprocR ) { XnpD = PB_Cnumroc( *N, 0, Xinb1D, XnbD, XmyprocD, XprocD, XnprocsD ); if( XnpD > 0 ) { dst = YprocD + MModSub( XmyprocD, XprocD, XnprocsD ); dst = MPosMod( dst, YnprocsD ); if( XisRow ) { Ccgesd2d( ctxt, 1, XnpD, Mptr( ((char*) X), Xii, Xjj, Xld, size ), Xld, YprocR, dst ); Ccgerv2d( ctxt, 1, XnpD, Mptr( ((char*) X), Xii, Xjj, Xld, size ), Xld, YprocR, dst ); } else { Ccgesd2d( ctxt, XnpD, 1, Mptr( ((char*) X), Xii, Xjj, Xld, size ), Xld, dst, YprocR ); Ccgerv2d( ctxt, XnpD, 1, Mptr( ((char*) X), Xii, Xjj, Xld, size ), Xld, dst, YprocR ); } } } if( YmyprocR == YprocR ) { YnpD = PB_Cnumroc( *N, 0, Yinb1D, YnbD, YmyprocD, YprocD, YnprocsD ); if( YnpD > 0 ) { dst = XprocD + MModSub( YmyprocD, YprocD, YnprocsD ); dst = MPosMod( dst, XnprocsD ); if( YisRow ) { Ccgesd2d( ctxt, 1, YnpD, Mptr( ((char*) Y), Yii, Yjj, Yld, size ), Yld, XprocR, dst ); Ccgerv2d( ctxt, 1, YnpD, Mptr( ((char*) Y), Yii, Yjj, Yld, size ), Yld, XprocR, dst ); } else { Ccgesd2d( ctxt, YnpD, 1, Mptr( ((char*) Y), Yii, Yjj, Yld, size ), Yld, dst, XprocR ); Ccgerv2d( ctxt, YnpD, 1, Mptr( ((char*) Y), Yii, Yjj, Yld, size ), Yld, dst, XprocR ); } } } } else { /* * General case when just one message needs to be exchanged */ if( XmyprocR == XprocR ) { /* * The processes owning a piece of sub( X ) send it to the corresponding * process owning s piece of sub ( Y ). */ XnpD = PB_Cnumroc( *N, 0, Xinb1D, XnbD, XmyprocD, XprocD, XnprocsD ); if( XnpD > 0 ) { dst = YprocD + MModSub( XmyprocD, XprocD, XnprocsD ); dst = MPosMod( dst, YnprocsD ); if( YisRow ) { rdst = YprocR; cdst = dst; } else { rdst = dst; cdst = YprocR; } if( ( myrow == rdst ) && ( mycol == cdst ) ) { cswap_( &XnpD, Mptr( ((char *) X), Xii, Xjj, Xld, size ), &Xlinc, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), &Ylinc ); } else { if( XisRow ) Ccgesd2d( ctxt, 1, XnpD, Mptr( ((char *) X), Xii, Xjj, Xld, size ), Xld, rdst, cdst ); else Ccgesd2d( ctxt, XnpD, 1, Mptr( ((char *) X), Xii, Xjj, Xld, size ), Xld, rdst, cdst ); } } } if( YmyprocR == YprocR ) { /* * The processes owning a piece of sub( Y ) receive the corresponding piece * of sub( X ) and send the piece of sub( Y ) they own to the same process. */ YnpD = PB_Cnumroc( *N, 0, Yinb1D, YnbD, YmyprocD, YprocD, YnprocsD ); if( YnpD > 0 ) { src = XprocD + MModSub( YmyprocD, YprocD, YnprocsD ); src = MPosMod( src, XnprocsD ); if( XisRow ) { rsrc = XprocR; csrc = src; } else { rsrc = src; csrc = XprocR; } if( ( myrow != rsrc ) || ( mycol != csrc ) ) { buf = PB_Cmalloc( YnpD * size ); if( XisRow ) Ccgerv2d( ctxt, 1, YnpD, buf, 1, rsrc, csrc ); else Ccgerv2d( ctxt, YnpD, 1, buf, YnpD, rsrc, csrc ); if( YisRow ) Ccgesd2d( ctxt, 1, YnpD, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), Yld, rsrc, csrc ); else Ccgesd2d( ctxt, YnpD, 1, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), Yld, rsrc, csrc ); ccopy_( &YnpD, buf, &ione, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), &Ylinc ); if( buf ) free( buf ); } } } if( XmyprocR == XprocR ) { /* * The processes owning a piece of sub( X ) receive the corresponding piece * of sub( Y ). */ if( XnpD > 0 ) { if( ( myrow != rdst ) || ( mycol != cdst ) ) { buf = PB_Cmalloc( XnpD * size ); if( YisRow ) Ccgerv2d( ctxt, 1, XnpD, buf, 1, rdst, cdst ); else Ccgerv2d( ctxt, XnpD, 1, buf, XnpD, rdst, cdst ); ccopy_( &XnpD, buf, &ione, Mptr( ((char *) X), Xii, Xjj, Xld, size ), &Xlinc ); if( buf ) free( buf ); } } } } } else if( ( XmyprocR == XprocR ) || ( YmyprocR == YprocR ) ) { /* * General case */ tran = ( RRorCC ? CNOTRAN : CTRAN ); if( XisRow ) { Xscope = CCOLUMN; Xm = 1; rsrc = XprocR; } else { Xscope = CROW; Xn = 1; csrc = XprocR; } if( YisRow ) { Yscope = CCOLUMN; Ym = 1; rdst = YprocR; } else { Yscope = CROW; Yn = 1; cdst = YprocR; } lcmb = PB_Clcm( XnprocsD * XnbD, YnprocsD * YnbD ); one = type->one; zero = type->zero; gcdPQ = PB_Cgcd( XnprocsD, YnprocsD ); lcmPQ = ( XnprocsD / gcdPQ ) * YnprocsD; for( k = 0; k < gcdPQ; k++ ) { p = 0; q = k; for( l = 0; l < lcmPQ; l++ ) { Xroc = MModAdd( XprocD, p, XnprocsD ); Yroc = MModAdd( YprocD, q, YnprocsD ); if( ( XmyprocD == Xroc ) || ( YmyprocD == Yroc ) ) { XnpD = PB_Cnumroc( *N, 0, Xinb1D, XnbD, Xroc, XprocD, XnprocsD ); YnpD = PB_Cnumroc( *N, 0, Yinb1D, YnbD, Yroc, YprocD, YnprocsD ); PB_CVMinit( &VM, 0, XnpD, YnpD, Xinb1D, Yinb1D, XnbD, YnbD, p, q, XnprocsD, YnprocsD, lcmb ); if( npq = PB_CVMnpq( &VM ) ) { if( ( RRorCC && ( Xroc == Yroc ) && ( XprocR == YprocR ) ) || ( !( RRorCC ) && ( Xroc == YprocR ) && ( XprocR == Yroc ) ) ) { /* * If I am at the intersection of the process cross, or simply common to the * process rows or columns owning sub( X ) and sub( Y ) */ if( ( YmyprocD == Yroc ) && ( YmyprocR == YprocR ) ) { PB_CVMswp( type, &VM, ROW, &Xscope, &tran, npq, Mptr( ((char *) X), Xii, Xjj, Xld, size ), Xlinc, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), Ylinc ); } } else { /* * Perform the message exchange: pack the data I own, send it, receive the * remote data, and unpack it. */ if( ( XmyprocR == XprocR ) && ( XmyprocD == Xroc ) ) { if( XisRow ) { Xn = npq; } else { Xm = npq; } if( YisRow ) { Yn = npq; cdst = Yroc; } else { Ym = npq; rdst = Yroc; } buf = PB_Cmalloc( npq * size ); PB_CVMpack( type, &VM, ROW, &Xscope, PACKING, NOTRAN, npq, 1, one, Mptr( ((char *) X), Xii, Xjj, Xld, size ), Xld, zero, buf, Xm ); Ccgesd2d( ctxt, Xm, Xn, buf, Xm, rdst, cdst ); Ccgerv2d( ctxt, Ym, Yn, buf, Ym, rdst, cdst ); PB_CVMpack( type, &VM, ROW, &Xscope, UNPACKING, &tran, npq, 1, zero, Mptr( ((char *) X), Xii, Xjj, Xld, size ), Xld, one, buf, Ym ); if( buf ) free ( buf ); } if( ( YmyprocR == YprocR ) && ( YmyprocD == Yroc ) ) { if( XisRow ) { Xn = npq; csrc = Xroc; } else { Xm = npq; rsrc = Xroc; } if( YisRow ) { Yn = npq; } else { Ym = npq; } buf = PB_Cmalloc( npq * size ); PB_CVMpack( type, &VM, COLUMN, &Yscope, PACKING, NOTRAN, npq, 1, one, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), Yld, zero, buf, Ym ); Ccgesd2d( ctxt, Ym, Yn, buf, Ym, rsrc, csrc ); Ccgerv2d( ctxt, Xm, Xn, buf, Xm, rsrc, csrc ); PB_CVMpack( type, &VM, COLUMN, &Yscope, UNPACKING, &tran, npq, 1, zero, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), Yld, one, buf, Xm ); if( buf ) free ( buf ); } } } } p = MModAdd1( p, XnprocsD ); q = MModAdd1( q, YnprocsD ); } } } if( XisR ) { /* * Replicate sub( X ) when necessary */ XnpD = PB_Cnumroc( *N, 0, Xinb1D, XnbD, XmyprocD, XprocD, XnprocsD ); if( XnpD > 0 ) { if( XisRow ) { top = PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET ); if( XmyprocR == XprocR ) Ccgebs2d( ctxt, COLUMN, top, 1, XnpD, Mptr( ((char *) X), Xii, Xjj, Xld, size ), Xld ); else Ccgebr2d( ctxt, COLUMN, top, 1, XnpD, Mptr( ((char *) X), Xii, Xjj, Xld, size ), Xld, XprocR, XmyprocD ); } else { top = PB_Ctop( &ctxt, BCAST, ROW, TOP_GET ); if( XmyprocR == XprocR ) Ccgebs2d( ctxt, ROW, top, XnpD, 1, Mptr( ((char *) X), Xii, Xjj, Xld, size ), Xld ); else Ccgebr2d( ctxt, ROW, top, XnpD, 1, Mptr( ((char *) X), Xii, Xjj, Xld, size ), Xld, XmyprocD, XprocR ); } } } if( YisR ) { /* * Replicate sub( Y ) when necessary */ YnpD = PB_Cnumroc( *N, 0, Yinb1D, YnbD, YmyprocD, YprocD, YnprocsD ); if( YnpD > 0 ) { if( YisRow ) { top = PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET ); if( YmyprocR == YprocR ) Ccgebs2d( ctxt, COLUMN, top, 1, YnpD, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), Yld ); else Ccgebr2d( ctxt, COLUMN, top, 1, YnpD, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), Yld, YprocR, YmyprocD ); } else { top = PB_Ctop( &ctxt, BCAST, ROW, TOP_GET ); if( YmyprocR == YprocR ) Ccgebs2d( ctxt, ROW, top, YnpD, 1, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), Yld ); else Ccgebr2d( ctxt, ROW, top, YnpD, 1, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), Yld, YmyprocD, YprocR ); } } } } else if( !( XisD ) && YisD ) { /* * sub( X ) is not distributed and sub( Y ) is distributed. */ PB_CpswapND( PB_Cctypeset(), *N, ((char *) X), Xi, Xj, Xd, *INCX, ((char *) Y), Yi, Yj, Yd, *INCY ); } else if( XisD && !( YisD ) ) { /* * sub( X ) is distributed and sub( Y ) is not distributed. */ PB_CpswapND( PB_Cctypeset(), *N, ((char *) Y), Yi, Yj, Yd, *INCY, ((char *) X), Xi, Xj, Xd, *INCX ); } else { /* * Neither sub( X ) nor sub( Y ) are distributed. */ PB_CpswapNN( PB_Cctypeset(), *N, ((char *) X), Xi, Xj, Xd, *INCX, ((char *) Y), Yi, Yj, Yd, *INCY ); } /* * End of PCSWAP */ }