/* --------------------------------------------------------------------- * * -- PBLAS routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "pblas.h" #include "PBpblas.h" #include "PBtools.h" #include "PBblacs.h" #include "PBblas.h" #ifdef __STDC__ void pcher_( F_CHAR_T UPLO, int * N, float * ALPHA, float * X, int * IX, int * JX, int * DESCX, int * INCX, float * A, int * IA, int * JA, int * DESCA ) #else void pcher_( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, A, IA, JA, DESCA ) /* * .. Scalar Arguments .. */ F_CHAR_T UPLO; int * IA, * INCX, * IX, * JA, * JX, * N; float * ALPHA; /* * .. Array Arguments .. */ int * DESCA, * DESCX; float * A, * X; #endif { /* * Purpose * ======= * * PCHER performs the Hermitian rank 1 operation * * sub( A ) := alpha*sub( X )*conjg( sub( X )' ) + sub( A ), * * where * * sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1), and, * * sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X, * X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X. * * Alpha is a real scalar, sub( X ) is an n element subvector and * sub( A ) is an n by n Hermitian submatrix. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * UPLO (global input) CHARACTER*1 * On entry, UPLO specifies whether the local pieces of * the array A containing the upper or lower triangular part * of the Hermitian submatrix sub( A ) are to be referenced as * follows: * * UPLO = 'U' or 'u' Only the local pieces corresponding to * the upper triangular part of the * Hermitian submatrix sub( A ) are to be * referenced, * * UPLO = 'L' or 'l' Only the local pieces corresponding to * the lower triangular part of the * Hermitian submatrix sub( A ) are to be * referenced. * * N (global input) INTEGER * On entry, N specifies the order of the submatrix sub( A ). * N must be at least zero. * * ALPHA (global input) REAL * On entry, ALPHA specifies the scalar alpha. When ALPHA is * supplied as zero then the local entries of the array X * corresponding to the entries of the subvector sub( X ) need * not be set on input. * * X (local input) COMPLEX array * On entry, X is an array of dimension (LLD_X, Kx), where LLD_X * is at least MAX( 1, Lr( 1, IX ) ) when INCX = M_X and * MAX( 1, Lr( 1, IX+N-1 ) ) otherwise, and, Kx is at least * Lc( 1, JX+N-1 ) when INCX = M_X and Lc( 1, JX ) otherwise. * Before entry, this array contains the local entries of the * matrix X. * * IX (global input) INTEGER * On entry, IX specifies X's global row index, which points to * the beginning of the submatrix sub( X ). * * JX (global input) INTEGER * On entry, JX specifies X's global column index, which points * to the beginning of the submatrix sub( X ). * * DESCX (global and local input) INTEGER array * On entry, DESCX is an integer array of dimension DLEN_. This * is the array descriptor for the matrix X. * * INCX (global input) INTEGER * On entry, INCX specifies the global increment for the * elements of X. Only two values of INCX are supported in * this version, namely 1 and M_X. INCX must not be zero. * * A (local input/local output) COMPLEX array * On entry, A is an array of dimension (LLD_A, Ka), where Ka is * at least Lc( 1, JA+N-1 ). Before entry, this array contains * the local entries of the matrix A. * Before entry with UPLO = 'U' or 'u', this array contains * the local entries corresponding to the upper triangular part * of the Hermitian submatrix sub( A ), and the local entries * corresponding to the strictly lower triangular of sub( A ) * are not referenced. On exit, the upper triangular part of * sub( A ) is overwritten by the upper triangular part of the * updated submatrix. * Before entry with UPLO = 'L' or 'l', this array contains * the local entries corresponding to the lower triangular part * of the Hermitian submatrix sub( A ), and the local entries * corresponding to the strictly upper triangular of sub( A ) * are not referenced. On exit, the lower triangular part of * sub( A ) is overwritten by the lower triangular part of the * updated submatrix. * Note that the imaginary parts of the local entries corres- * ponding to the diagonal elements of sub( A ) need not be * set, they are assumed to be zero, and on exit they are set * to zero. * * IA (global input) INTEGER * On entry, IA specifies A's global row index, which points to * the beginning of the submatrix sub( A ). * * JA (global input) INTEGER * On entry, JA specifies A's global column index, which points * to the beginning of the submatrix sub( A ). * * DESCA (global and local input) INTEGER array * On entry, DESCA is an integer array of dimension DLEN_. This * is the array descriptor for the matrix A. * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char UploA; int Acol, Ai, Aii, Aimb1, Ainb1, Aj, Ajj, Akp, Akq, Ald, Amb, Amp, Amp0, Anb, Anq, Anq0, Arow, XCfr, XCld, XRfr, XRld, Xi, Xj, ctxt, info, ione=1, k, kb, ktmp, mycol, myrow, nb, npcol, nprow, size, upper; cmplx Calpha; PBTYP_T * type; /* * .. Local Arrays .. */ int Ad[DLEN_], Ad0[DLEN_], XCd0[DLEN_], XRd0[DLEN_], Xd[DLEN_]; char * Aptr = NULL, * XC = NULL, * XR = NULL; /* .. * .. Executable Statements .. * */ upper = ( ( UploA = Mupcase( F2C_CHAR( UPLO )[0] ) ) == CUPPER ); PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad ); PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd ); #ifndef NO_ARGCHK /* * Test the input parameters */ Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); if( !( info = ( ( nprow == -1 ) ? -( 701 + CTXT_ ) : 0 ) ) ) { if( ( !upper ) && ( UploA != CLOWER ) ) { PB_Cwarn( ctxt, __LINE__, "PCHER", "Illegal UPLO = %c\n", UploA ); info = -1; } PB_Cchkvec( ctxt, "PCHER", "X", *N, 2, Xi, Xj, Xd, *INCX, 7, &info ); PB_Cchkmat( ctxt, "PCHER", "A", *N, 2, *N, 2, Ai, Aj, Ad, 12, &info ); } if( info ) { PB_Cabort( ctxt, "PCHER", info ); return; } #endif /* * Quick return if possible */ if( ( *N == 0 ) || ( ALPHA[REAL_PART] == ZERO ) ) return; /* * Retrieve process grid information */ #ifdef NO_ARGCHK Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); #endif /* * Get type structure */ type = PB_Cctypeset(); /* * Compute descriptor Ad0 for sub( A ) */ PB_Cdescribe( *N, *N, Ai, Aj, Ad, nprow, npcol, myrow, mycol, &Aii, &Ajj, &Ald, &Aimb1, &Ainb1, &Amb, &Anb, &Arow, &Acol, Ad0 ); /* * Replicate sub( X ) in process rows (XR) and process columns (XC) spanned by * sub( A ) */ if( *INCX == Xd[M_] ) { PB_CInV( type, NOCONJG, ROW, *N, *N, Ad0, 1, ((char *) X), Xi, Xj, Xd, ROW, &XR, XRd0, &XRfr ); PB_CInV( type, NOCONJG, COLUMN, *N, *N, Ad0, 1, XR, 0, 0, XRd0, ROW, &XC, XCd0, &XCfr ); } else { PB_CInV( type, NOCONJG, COLUMN, *N, *N, Ad0, 1, ((char *) X), Xi, Xj, Xd, COLUMN, &XC, XCd0, &XCfr ); PB_CInV( type, NOCONJG, ROW, *N, *N, Ad0, 1, XC, 0, 0, XCd0, COLUMN, &XR, XRd0, &XRfr ); } /* * Local rank-1 update if I own some data */ Amp = PB_Cnumroc( *N, 0, Aimb1, Amb, myrow, Arow, nprow ); Anq = PB_Cnumroc( *N, 0, Ainb1, Anb, mycol, Acol, npcol ); if( ( Amp > 0 ) && ( Anq > 0 ) ) { size = type->size; Aptr = Mptr( ((char *) A), Aii, Ajj, Ald, size ); /* * Computational partitioning size is computed as the product of the logical * value returned by pilaenv_ and 2 * lcm( nprow, npcol ). */ nb = 2 * pilaenv_( &ctxt, C2F_CHAR( &type->type ) ) * PB_Clcm( ( Arow >= 0 ? nprow : 1 ), ( Acol >= 0 ? npcol : 1 ) ); XCld = XCd0[LLD_]; XRld = XRd0[LLD_]; Calpha[REAL_PART] = ALPHA[REAL_PART]; Calpha[IMAG_PART] = ZERO; if( upper ) { for( k = 0; k < *N; k += nb ) { kb = *N - k; kb = MIN( kb, nb ); Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow ); Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol ); Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol ); if( Akp > 0 && Anq0 > 0 ) cgerc_( &Akp, &Anq0, ((char *) Calpha), XC, &ione, Mptr( XR, 0, Akq, XRld, size ), &XRld, Mptr( Aptr, 0, Akq, Ald, size ), &Ald ); PB_Cpsyr( type, UPPER, kb, 1, ((char *) Calpha), Mptr( XC, Akp, 0, XCld, size ), XCld, Mptr( XR, 0, Akq, XRld, size ), XRld, Aptr, k, k, Ad0, PB_Ctzher ); } } else { for( k = 0; k < *N; k += nb ) { kb = *N - k; ktmp = k + ( kb = MIN( kb, nb ) ); Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow ); Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol ); PB_Cpsyr( type, LOWER, kb, 1, ((char *) Calpha), Mptr( XC, Akp, 0, XCld, size ), XCld, Mptr( XR, 0, Akq, XRld, size ), XRld, Aptr, k, k, Ad0, PB_Ctzher ); Akp = PB_Cnumroc( ktmp, 0, Aimb1, Amb, myrow, Arow, nprow ); Amp0 = Amp - Akp; Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol ); if( Amp0 > 0 && Anq0 > 0 ) cgerc_( &Amp0, &Anq0, ((char *) Calpha), Mptr( XC, Akp, 0, XCld, size ), &ione, Mptr( XR, 0, Akq, XRld, size ), &XRld, Mptr( Aptr, Akp, Akq, Ald, size ), &Ald ); } } } if( XRfr ) free( XR ); if( XCfr ) free( XC ); /* * End of PCHER */ }