SUBROUTINE CSYR( UPLO, N, ALPHA, X, INCX, A, LDA ) * * -- PBLAS auxiliary routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * .. Scalar Arguments .. CHARACTER*1 UPLO INTEGER INCX, LDA, N COMPLEX ALPHA * .. * .. Array Arguments .. COMPLEX A( LDA, * ), X( * ) * .. * * Purpose * ======= * * CSYR performs the symmetric rank 1 operation * * A := alpha*x*x' + A, * * where alpha is a complex scalar, x is an n element vector and A is an * n by n SY matrix. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * On entry, UPLO specifies which part of the matrix A is to be * referenced as follows: * * UPLO = 'L' or 'l' the lower trapezoid of A is referenced, * * UPLO = 'U' or 'u' the upper trapezoid of A is referenced, * * otherwise all of the matrix A is referenced. * * N (input) INTEGER * On entry, N specifies the order of the matrix A. N must be at * least zero. * * ALPHA (input) COMPLEX * On entry, ALPHA specifies the scalar alpha. * * X (input) COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented * array X must contain the vector x. * * INCX (input) INTEGER * On entry, INCX specifies the increment for the elements of X. * INCX must not be zero. * * A (input/output) COMPLEX array * On entry, A is an array of dimension (LDA,N). Before entry * with UPLO = 'U' or 'u', the leading n by n part of the array * A must contain the upper triangular part of the symmetric ma- * trix and the strictly lower triangular part of A is not refe- * renced. On exit, the upper triangular part of the array A is * overwritten by the upper triangular part of the updated ma- * trix. When UPLO = 'L' or 'l', the leading n by n part of the * the array A must contain the lower triangular part of the * symmetric matrix and the strictly upper trapezoidal part of A * is not referenced. On exit, the lower triangular part of the * array A is overwritten by the lower triangular part of the * updated matrix. * * LDA (input) INTEGER * On entry, LDA specifies the leading dimension of the array A. * LDA must be at least max( 1, N ). * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I, INFO, IX, J, JX, KX COMPLEX TEMP * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = 1 ELSE IF( N.LT.0 ) THEN INFO = 2 ELSE IF( INCX.EQ.0 ) THEN INFO = 5 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = 7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CSYR', INFO ) RETURN END IF * * Quick return if possible. * IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) ) $ RETURN * * Set the start point in X if the increment is not unity. * KX = 1 IF( INCX.LE.0 ) THEN KX = 1 - ( N-1 )*INCX ELSE IF( INCX.NE.1 ) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF( LSAME( UPLO, 'U' ) ) THEN * * Form A when A is stored in upper triangle. * IF( INCX.EQ.1 ) THEN DO 20 J = 1, N IF( X( J ).NE.ZERO ) THEN TEMP = ALPHA*X( J ) DO 10 I = 1, J A( I, J ) = A( I, J ) + X( I )*TEMP 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1, N IF( X( JX ).NE.ZERO ) THEN TEMP = ALPHA*X( JX ) IX = KX DO 30 I = 1, J A( I, J ) = A( I, J ) + X( IX )*TEMP IX = IX + INCX 30 CONTINUE END IF JX = JX + INCX 40 CONTINUE END IF ELSE * * Form A when A is stored in lower triangle. * IF( INCX.EQ.1 ) THEN DO 60 J = 1, N IF( X( J ).NE.ZERO ) THEN TEMP = ALPHA*X( J ) DO 50 I = J, N A( I, J ) = A( I, J ) + X( I )*TEMP 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1, N IF( X( JX ).NE.ZERO ) THEN TEMP = ALPHA*X( JX ) IX = JX DO 70 I = J, N A( I, J ) = A( I, J ) + X( IX )*TEMP IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF * RETURN * * End of CSYR * END