/* --------------------------------------------------------------------- * * -- PBLAS auxiliary routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "../pblas.h" #include "../PBpblas.h" #include "../PBtools.h" #include "../PBblacs.h" #include "../PBblas.h" #ifdef __STDC__ void PB_CptrsmAB( PBTYP_T * TYPE, char * VARIANT, char * SIDE, char * UPLO, char * TRANSA, char * DIAG, int M, int N, char * ALPHA, char * A, int IA, int JA, int * DESCA, char * B, int IB, int JB, int * DESCB ) #else void PB_CptrsmAB( TYPE, VARIANT, SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, IA, JA, DESCA, B, IB, JB, DESCB ) /* * .. Scalar Arguments .. */ char * DIAG, * SIDE, * TRANSA, * UPLO, * VARIANT; int IA, IB, JA, JB, M, N; char * ALPHA; PBTYP_T * TYPE; /* * .. Array Arguments .. */ int * DESCA, * DESCB; char * A, * B; #endif { /* * Purpose * ======= * * PB_CptrsmAB solves one of the matrix equations * * op( sub( A ) )*X = alpha*sub( B ), or * * X*op( sub( A ) ) = alpha*sub( B ), * * where * * sub( A ) denotes A(IA:IA+M-1,JA:JA+M-1) if SIDE = 'L', * A(IA:IA+N-1,JA:JA+N-1) if SIDE = 'R', and, * * sub( B ) denotes B(IB:IB+M-1,JB:JB+N-1). * * Alpha is a scalar, X and sub( B ) are m by n submatrices, sub( A ) is * a unit, or non-unit, upper or lower triangular submatrix and op( Y ) * is one of * * op( Y ) = Y or op( Y ) = Y' or op( Y ) = conjg( Y' ). * * The submatrix X is overwritten on sub( B ). * * This is the outer-product algorithm using the logical aggregation * blocking technique. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * TYPE (local input) pointer to a PBTYP_T structure * On entry, TYPE is a pointer to a structure of type PBTYP_T, * that contains type information (See pblas.h). * * VARIANT (global input) pointer to CHAR * On entry, VARIANT specifies whether the left- or right-loo- * king variant of the algorithm should be used for the transpo- * se cases only, that is TRANSA is not 'N' or 'n'. When VARIANT * is 'L' or 'l', the left-looking variant is used, otherwise * the right-looking algorithm is selected. * * SIDE (global input) pointer to CHAR * On entry, SIDE specifies whether op( sub( A ) ) appears on * the left or right of X as follows: * * SIDE = 'L' or 'l' op( sub( A ) )*X = alpha*sub( B ), * * SIDE = 'R' or 'r' X*op( sub( A ) ) = alpha*sub( B ). * * UPLO (global input) pointer to CHAR * On entry, UPLO specifies whether the submatrix sub( A ) is * an upper or lower triangular submatrix as follows: * * UPLO = 'U' or 'u' sub( A ) is an upper triangular * submatrix, * * UPLO = 'L' or 'l' sub( A ) is a lower triangular * submatrix. * * TRANSA (global input) pointer to CHAR * On entry, TRANSA specifies the form of op( sub( A ) ) to be * used in the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( sub( A ) ) = sub( A ), * * TRANSA = 'T' or 't' op( sub( A ) ) = sub( A )', * * TRANSA = 'C' or 'c' op( sub( A ) ) = conjg( sub( A )' ). * * DIAG (global input) pointer to CHAR * On entry, DIAG specifies whether or not sub( A ) is unit * triangular as follows: * * DIAG = 'U' or 'u' sub( A ) is assumed to be unit trian- * gular, * * DIAG = 'N' or 'n' sub( A ) is not assumed to be unit tri- * angular. * * M (global input) INTEGER * On entry, M specifies the number of rows of the submatrix * sub( B ). M must be at least zero. * * N (global input) INTEGER * On entry, N specifies the number of columns of the submatrix * sub( B ). N must be at least zero. * * ALPHA (global input) pointer to CHAR * On entry, ALPHA specifies the scalar alpha. When ALPHA is * supplied as zero then the local entries of the array B * corresponding to the entries of the submatrix sub( B ) need * not be set on input. * * A (local input) pointer to CHAR * On entry, A is an array of dimension (LLD_A, Ka), where Ka is * at least Lc( 1, JA+M-1 ) when SIDE = 'L' or 'l' and is at * least Lc( 1, JA+N-1 ) otherwise. Before entry, this array * contains the local entries of the matrix A. * Before entry with UPLO = 'U' or 'u', this array contains the * local entries corresponding to the entries of the upper tri- * angular submatrix sub( A ), and the local entries correspon- * ding to the entries of the strictly lower triangular part of * the submatrix sub( A ) are not referenced. * Before entry with UPLO = 'L' or 'l', this array contains the * local entries corresponding to the entries of the lower tri- * angular submatrix sub( A ), and the local entries correspon- * ding to the entries of the strictly upper triangular part of * the submatrix sub( A ) are not referenced. * Note that when DIAG = 'U' or 'u', the local entries corres- * ponding to the diagonal elements of the submatrix sub( A ) * are not referenced either, but are assumed to be unity. * * IA (global input) INTEGER * On entry, IA specifies A's global row index, which points to * the beginning of the submatrix sub( A ). * * JA (global input) INTEGER * On entry, JA specifies A's global column index, which points * to the beginning of the submatrix sub( A ). * * DESCA (global and local input) INTEGER array * On entry, DESCA is an integer array of dimension DLEN_. This * is the array descriptor for the matrix A. * * B (local input/local output) pointer to CHAR * On entry, B is an array of dimension (LLD_B, Kb), where Kb is * at least Lc( 1, JB+N-1 ). Before entry, this array contains * the local entries of the matrix B. * On exit, the local entries of this array corresponding to the * to the entries of the submatrix sub( B ) are overwritten by * the local entries of the m by n solution submatrix. * * IB (global input) INTEGER * On entry, IB specifies B's global row index, which points to * the beginning of the submatrix sub( B ). * * JB (global input) INTEGER * On entry, JB specifies B's global column index, which points * to the beginning of the submatrix sub( B ). * * DESCB (global and local input) INTEGER array * On entry, DESCB is an integer array of dimension DLEN_. This * is the array descriptor for the matrix B. * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char conjg, * negone, * one, * talph, top, * zero; int Afr, Bcol, Bcurcol, Bcurimb1, Bcurinb1, Bcurrow, Bfr, Bii, Bimb, Bimb1, Binb, Binb1, Bjj, Bld, Bmb, Bmp, Bmp0, Bnb, Bnq, Bnq0, Brow, WAfr, WAoff, WBfr, WBsum, ctxt, k, kb, kbb, kmax, ktmp, lside, mn, mycol, myrow, notran, npcol, nprow, size, upper; GEMM_T gemm; GSUM2D_T gsum2d; /* * .. Local Arrays .. */ int Bd0[DLEN_], DBUFA[DLEN_], DBUFB[DLEN_], WAd[DLEN_], WBd[DLEN_]; char * Aptr = NULL, * Bptr = NULL, * Bptr0 = NULL, * WA = NULL, * WB = NULL; /* .. * .. Executable Statements .. * */ lside = ( Mupcase( SIDE [0] ) == CLEFT ); upper = ( Mupcase( UPLO [0] ) == CUPPER ); notran = ( Mupcase( TRANSA[0] ) == CNOTRAN ); size = TYPE->size; negone = TYPE->negone; one = TYPE->one; zero = TYPE->zero; gsum2d = TYPE->Cgsum2d; gemm = TYPE->Fgemm; talph = ALPHA; kb = pilaenv_( &ctxt, C2F_CHAR( &TYPE->type ) ); /* * Retrieve process grid information */ Cblacs_gridinfo( ( ctxt = DESCA[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); /* * Retrieve sub( B )'s local information: Bii, Bjj, Brow, Bcol, Bld ... */ Bimb = DESCB[IMB_]; Binb = DESCB[INB_]; Bmb = DESCB[MB_ ]; Bnb = DESCB[NB_ ]; Bld = DESCB[LLD_]; PB_Cinfog2l( IB, JB, DESCB, nprow, npcol, myrow, mycol, &Bii, &Bjj, &Brow, &Bcol ); Bimb1 = PB_Cfirstnb( M, IB, Bimb, Bmb ); Bmp0 = PB_Cnumroc( M, 0, Bimb1, Bmb, myrow, Brow, nprow ); Binb1 = PB_Cfirstnb( N, JB, Binb, Bnb ); Bnq0 = PB_Cnumroc( N, 0, Binb1, Bnb, mycol, Bcol, npcol ); if( ( Bmp0 > 0 ) && ( Bnq0 > 0 ) ) Bptr0 = Mptr( B, Bii, Bjj, Bld, size ); if( notran ) { if( lside ) { if( upper ) { kmax = ( ( M - 1 ) / kb ) * kb; for( k = kmax; k >= 0; k -= kb ) { kbb = M - k; kbb = MIN( kbb, kb ); ktmp = k + kbb; /* * Accumulate A( IA:IA+ktmp-1, JA+k:JA+k+kbb-1 ) */ PB_CGatherV( TYPE, REUSE, BACKWARD, ktmp, kbb, A, IA, JA+k, DESCA, COLUMN, &Aptr, DBUFA, &Afr ); /* * Replicate A(IA:IA+ktmp-1, JA+k:JA+k+kbb-1) over B(IB:IB+ktmp-1, JB:JB+N-1) */ PB_Cdescset( Bd0, ktmp, N, Bimb1, Binb1, Bmb, Bnb, Brow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, COLUMN, ktmp, N, Bd0, kbb, Aptr, 0, 0, DBUFA, COLUMN, &WA, WAd, &WAfr ); /* * Solve B( IB+k:IB+ktmp-1, JB:JB+N-1 ) with talph */ PB_CptrsmAB0( TYPE, SIDE, UPLO, DIAG, kbb, N, talph, WA, k, 0, WAd, B, IB+k, JB, DESCB, &Bptr, DBUFB, &Bfr ); /* * Update B( IB:IB+k-1, JB:JB+N-1 ) */ if( k > 0 ) { /* * Replicate B( IB+k:IB+ktmp-1, JB:JB+N-1 ) over B( IB:IB+k-1, JB:JB+N-1 ) */ PB_Cdescset( Bd0, k, N, Bimb1, Binb1, Bmb, Bnb, Brow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, ROW, k, N, Bd0, kbb, Bptr, 0, 0, DBUFB, ROW, &WB, WBd, &WBfr ); /* * Local update */ Bmp = PB_Cnumroc( k, 0, Bimb1, Bmb, myrow, Brow, nprow ); if( ( Bmp > 0 ) && ( Bnq0 > 0 ) ) gemm( C2F_CHAR( NOTRAN ), C2F_CHAR( NOTRAN ), &Bmp, &Bnq0, &kbb, negone, WA, &WAd[LLD_], WB, &WBd[LLD_], talph, Bptr0, &Bld ); if( WBfr ) free( WB ); talph = one; } if( WAfr ) free( WA ); if( Bfr ) free( Bptr ); if( Afr ) free( Aptr ); } } else { for( k = 0; k < M; k += kb ) { ktmp = M - k; kbb = MIN( ktmp, kb ); /* * Accumulate A( IA+k:IA+M-1, JA+k:JA+k+kbb-1 ) */ PB_CGatherV( TYPE, REUSE, FORWARD, ktmp, kbb, A, IA+k, JA+k, DESCA, COLUMN, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA+k:IA+M-1, JA+k:JA+k+kbb-1 ) over B( IB+k:IB+M-1, JB:JB+N-1 ) */ Bcurimb1 = PB_Cfirstnb( ktmp, IB+k, Bimb, Bmb ); Bcurrow = PB_Cindxg2p( k, Bimb1, Bmb, Brow, Brow, nprow ); PB_Cdescset( Bd0, ktmp, N, Bcurimb1, Binb1, Bmb, Bnb, Bcurrow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, COLUMN, ktmp, N, Bd0, kbb, Aptr, 0, 0, DBUFA, COLUMN, &WA, WAd, &WAfr ); /* * Solve B( IB+k:IB+k+kbb-1, JB:JB+N-1 ) with talph */ PB_CptrsmAB0( TYPE, SIDE, UPLO, DIAG, kbb, N, talph, WA, 0, 0, WAd, B, IB+k, JB, DESCB, &Bptr, DBUFB, &Bfr ); /* * Update B( IB+k+kbb:IB+M-1, JB:JB+N-1 ) */ if( ( ktmp = ktmp - kbb ) > 0 ) { /* * Replicate B(IB+k:IB+k+kbb-1, JB:JB+N-1) over B(IB+k+kbb:IB+M-1, JB:JB+N-1) */ Bcurimb1 = PB_Cfirstnb( ktmp, IB+k+kbb, Bimb, Bmb ); Bcurrow = PB_Cindxg2p( k+kbb, Bimb1, Bmb, Brow, Brow, nprow ); PB_Cdescset( Bd0, ktmp, N, Bcurimb1, Binb1, Bmb, Bnb, Bcurrow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, ROW, ktmp, N, Bd0, kbb, Bptr, 0, 0, DBUFB, ROW, &WB, WBd, &WBfr ); /* * Local update */ Bmp = PB_Cnumroc( ktmp, k+kbb, Bimb1, Bmb, myrow, Brow, nprow ); if( ( Bmp > 0 ) && ( Bnq0 > 0 ) ) { WAoff = PB_Cnumroc( kbb, 0, WAd[IMB_], WAd[MB_], myrow, WAd[RSRC_], nprow ); gemm( C2F_CHAR( NOTRAN ), C2F_CHAR( NOTRAN ), &Bmp, &Bnq0, &kbb, negone, Mptr( WA, WAoff, 0, WAd[LLD_], size ), &WAd[LLD_], WB, &WBd[LLD_], talph, Mptr( Bptr0, Bmp0-Bmp, 0, Bld, size ), &Bld ); } if( WBfr ) free( WB ); talph = one; } if( WAfr ) free( WA ); if( Bfr ) free( Bptr ); if( Afr ) free( Aptr ); } } } else { if( upper ) { for( k = 0; k < N; k += kb ) { ktmp = N - k; kbb = MIN( ktmp, kb ); /* * Accumulate A( IA+k:IA+k+kbb-1, JA+k:JA+N-1 ) */ PB_CGatherV( TYPE, REUSE, FORWARD, kbb, ktmp, A, IA+k, JA+k, DESCA, ROW, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA+k:IA+k+kbb-1, JA+k:JA+N-1 ) over B( IB:IB+M-1, JB+k:JB+N-1 ) */ Bcurinb1 = PB_Cfirstnb( ktmp, JB+k, Binb, Bnb ); Bcurcol = PB_Cindxg2p( k, Binb1, Bnb, Bcol, Bcol, npcol ); PB_Cdescset( Bd0, M, ktmp, Bimb1, Bcurinb1, Bmb, Bnb, Brow, Bcurcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, ROW, M, ktmp, Bd0, kbb, Aptr, 0, 0, DBUFA, ROW, &WA, WAd, &WAfr ); /* * Solve B( IB:IB+M-1, JB+k:JB+k+kbb-1 ) with talph */ PB_CptrsmAB0( TYPE, SIDE, UPLO, DIAG, M, kbb, talph, WA, 0, 0, WAd, B, IB, JB+k, DESCB, &Bptr, DBUFB, &Bfr ); /* * Update B( IB:IB+M-1, JB+k+kbb:JB+N-1 ) */ if( ( ktmp = ktmp - kbb ) > 0 ) { /* * Replicate B(IB:IB+M-1, JB+k:JB+k+kbb-1) over B(IB:IB+M-1, JB+k+kbb:JB+N-1) */ Bcurinb1 = PB_Cfirstnb( ktmp, JB+k+kbb, Binb, Bnb ); Bcurcol = PB_Cindxg2p( k+kbb, Binb1, Bnb, Bcol, Bcol, npcol ); PB_Cdescset( Bd0, M, ktmp, Bimb1, Bcurinb1, Bmb, Bnb, Brow, Bcurcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, COLUMN, M, ktmp, Bd0, kbb, Bptr, 0, 0, DBUFB, COLUMN, &WB, WBd, &WBfr ); /* * Local update */ Bnq = PB_Cnumroc( ktmp, k+kbb, Binb1, Bnb, mycol, Bcol, npcol ); if( ( Bmp0 > 0 ) && ( Bnq > 0 ) ) { WAoff = PB_Cnumroc( kbb, 0, WAd[INB_], WAd[NB_], mycol, WAd[CSRC_], npcol ); gemm( C2F_CHAR( NOTRAN ), C2F_CHAR( NOTRAN ), &Bmp0, &Bnq, &kbb, negone, WB, &WBd[LLD_], Mptr( WA, 0, WAoff, WAd[LLD_], size ), &WAd[LLD_], talph, Mptr( Bptr0, 0, Bnq0-Bnq, Bld, size ), &Bld ); } if( WBfr ) free( WB ); talph = one; } if( WAfr ) free( WA ); if( Bfr ) free( Bptr ); if( Afr ) free( Aptr ); } } else { kmax = ( ( N - 1 ) / kb ) * kb; for( k = kmax; k >= 0; k -= kb ) { kbb = N - k; kbb = MIN( kbb, kb ); ktmp = k + kbb; /* * Accumulate A( IA+k:IA+k+kbb-1, JA:JA+ktmp-1 ) */ PB_CGatherV( TYPE, REUSE, BACKWARD, kbb, ktmp, A, IA+k, JA, DESCA, ROW, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA+k:IA+k+kbb-1, JA:JA+ktmp-1 ) over B(IB:IB+M-1, JB:JB+ktmp-1) */ PB_Cdescset( Bd0, M, ktmp, Bimb1, Binb1, Bmb, Bnb, Brow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, ROW, M, ktmp, Bd0, kbb, Aptr, 0, 0, DBUFA, ROW, &WA, WAd, &WAfr ); /* * Solve B( IB:IB+M-1, JB+k:JB+ktmp-1 ) with talph */ PB_CptrsmAB0( TYPE, SIDE, UPLO, DIAG, M, kbb, talph, WA, 0, k, WAd, B, IB, JB+k, DESCB, &Bptr, DBUFB, &Bfr ); /* * Update B( IB:IB+M-1, JB:JB+k-1 ) */ if( k > 0 ) { /* * Replicate B( IB:IB+M-1, JB+k:JB+ktmp-1 ) over B( IB:IB+M-1, JB:JB+k-1 ) */ PB_Cdescset( Bd0, M, k, Bimb1, Binb1, Bmb, Bnb, Brow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, COLUMN, M, k, Bd0, kbb, Bptr, 0, 0, DBUFB, COLUMN, &WB, WBd, &WBfr ); /* * Local update */ Bnq = PB_Cnumroc( k, 0, Binb1, Bnb, mycol, Bcol, npcol ); if( ( Bmp0 > 0 ) && ( Bnq > 0 ) ) gemm( C2F_CHAR( NOTRAN ), C2F_CHAR( NOTRAN ), &Bmp0, &Bnq, &kbb, negone, WB, &WBd[LLD_], WA, &WAd[LLD_], talph, Bptr0, &Bld ); if( WBfr ) free( WB ); talph = one; } if( WAfr ) free( WA ); if( Bfr ) free( Bptr ); if( Afr ) free( Aptr ); } } } } else { if( Mupcase( VARIANT[0] ) == CRIGHT ) { /* * Right looking variant for the transpose cases */ conjg = ( ( Mupcase( TRANSA[0] ) == CCOTRAN ) ? CCONJG : CNOCONJG ); if( lside ) { if( !upper ) { /* * Left Lower (Conjugate) Transpose */ kmax = ( ( M - 1 ) / kb ) * kb; for( k = kmax; k >= 0; k -= kb ) { kbb = M - k; kbb = MIN( kbb, kb ); ktmp = k + kbb; /* * Accumulate A( IA+k:IA+k+kbb-1, JA:JA+ktmp-1 ) */ PB_CGatherV( TYPE, REUSE, BACKWARD, kbb, ktmp, A, IA+k, JA, DESCA, ROW, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA+k:IA+k+kbb-1, JA:JA+ktmp-1 )' over B(IB:IB+ktmp-1, JB:JB+N-1) */ PB_Cdescset( Bd0, ktmp, N, Bimb1, Binb1, Bmb, Bnb, Brow, Bcol, ctxt, Bld ); PB_CInV( TYPE, &conjg, COLUMN, ktmp, N, Bd0, kbb, Aptr, 0, 0, DBUFA, ROW, &WA, WAd, &WAfr ); /* * Solve B( IB+k:IB+ktmp-1, JB:JB+N-1 ) with talph */ PB_CptrsmAB0( TYPE, SIDE, UPPER, DIAG, kbb, N, talph, WA, k, 0, WAd, B, IB+k, JB, DESCB, &Bptr, DBUFB, &Bfr ); /* * Update B( IB:IB+k-1, JB:JB+N-1 ) */ if( k > 0 ) { /* * Replicate B( IB+k:IB+ktmp-1, JB:JB+N-1 ) over B( IB:IB+k-1, JB:JB+N-1 ) */ PB_Cdescset( Bd0, k, N, Bimb1, Binb1, Bmb, Bnb, Brow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, ROW, k, N, Bd0, kbb, Bptr, 0, 0, DBUFB, ROW, &WB, WBd, &WBfr ); /* * Local update */ Bmp = PB_Cnumroc( k, 0, Bimb1, Bmb, myrow, Brow, nprow ); if( ( Bmp > 0 ) && ( Bnq0 > 0 ) ) gemm( C2F_CHAR( NOTRAN ), C2F_CHAR( NOTRAN ), &Bmp, &Bnq0, &kbb, negone, WA, &WAd[LLD_], WB, &WBd[LLD_], talph, Bptr0, &Bld ); if( WBfr ) free( WB ); talph = one; } if( WAfr ) free( WA ); if( Bfr ) free( Bptr ); if( Afr ) free( Aptr ); } } else { /* * Left Upper (Conjugate) Transpose */ for( k = 0; k < M; k += kb ) { ktmp = M - k; kbb = MIN( ktmp, kb ); /* * Accumulate A( IA+k:IA+k+kbb-1, JA+k:JA+M-1 ) */ PB_CGatherV( TYPE, REUSE, FORWARD, kbb, ktmp, A, IA+k, JA+k, DESCA, ROW, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA+k:IA+k+kbb-1, JA+k:JA+M-1 )' over B( IB+k:IB+M-1, JB:JB+N-1 ) */ Bcurimb1 = PB_Cfirstnb( ktmp, IB+k, Bimb, Bmb ); Bcurrow = PB_Cindxg2p( k, Bimb1, Bmb, Brow, Brow, nprow ); PB_Cdescset( Bd0, ktmp, N, Bcurimb1, Binb1, Bmb, Bnb, Bcurrow, Bcol, ctxt, Bld ); PB_CInV( TYPE, &conjg, COLUMN, ktmp, N, Bd0, kbb, Aptr, 0, 0, DBUFA, ROW, &WA, WAd, &WAfr ); /* * Solve B( IB+k:IB+k+kbb-1, JB:JB+N-1 ) with talph */ PB_CptrsmAB0( TYPE, SIDE, LOWER, DIAG, kbb, N, talph, WA, 0, 0, WAd, B, IB+k, JB, DESCB, &Bptr, DBUFB, &Bfr ); /* * Update B( IB+k+kbb:IB+M-1, JB:JB+N-1 ) */ if( ( ktmp = ktmp - kbb ) > 0 ) { /* * Replicate B(IB+k:IB+k+kbb-1, JB:JB+N-1) over B(IB+k+kbb:IB+M-1, JB:JB+N-1) */ Bcurimb1 = PB_Cfirstnb( ktmp, IB+k+kbb, Bimb, Bmb ); Bcurrow = PB_Cindxg2p( k+kbb, Bimb1, Bmb, Brow, Brow, nprow ); PB_Cdescset( Bd0, ktmp, N, Bcurimb1, Binb1, Bmb, Bnb, Bcurrow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, ROW, ktmp, N, Bd0, kbb, Bptr, 0, 0, DBUFB, ROW, &WB, WBd, &WBfr ); /* * Local update */ Bmp = PB_Cnumroc( ktmp, k+kbb, Bimb1, Bmb, myrow, Brow, nprow ); if( ( Bmp > 0 ) && ( Bnq0 > 0 ) ) { WAoff = PB_Cnumroc( kbb, 0, WAd[IMB_], WAd[MB_], myrow, WAd[RSRC_], nprow ); gemm( C2F_CHAR( NOTRAN ), C2F_CHAR( NOTRAN ), &Bmp, &Bnq0, &kbb, negone, Mptr( WA, WAoff, 0, WAd[LLD_], size ), &WAd[LLD_], WB, &WBd[LLD_], talph, Mptr( Bptr0, Bmp0-Bmp, 0, Bld, size ), &Bld ); } if( WBfr ) free( WB ); talph = one; } if( WAfr ) free( WA ); if( Bfr ) free( Bptr ); if( Afr ) free( Aptr ); } } } else { if( !upper ) { /* * Right Lower (Conjugate) Transpose */ for( k = 0; k < N; k += kb ) { ktmp = N - k; kbb = MIN( ktmp, kb ); /* * Accumulate A( IA+k:IA+N-1, JA+k:JA+k+kbb-1 ) */ PB_CGatherV( TYPE, REUSE, FORWARD, ktmp, kbb, A, IA+k, JA+k, DESCA, COLUMN, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA+k:IA+N-1, JA+k:JA+k+kbb-1 )' over B( IB:IB+M-1, JB+k:JB+N-1 ) */ Bcurinb1 = PB_Cfirstnb( ktmp, JB+k, Binb, Bnb ); Bcurcol = PB_Cindxg2p( k, Binb1, Bnb, Bcol, Bcol, npcol ); PB_Cdescset( Bd0, M, ktmp, Bimb1, Bcurinb1, Bmb, Bnb, Brow, Bcurcol, ctxt, Bld ); PB_CInV( TYPE, &conjg, ROW, M, ktmp, Bd0, kbb, Aptr, 0, 0, DBUFA, COLUMN, &WA, WAd, &WAfr ); /* * Solve B( IB:IB+M-1, JB+k:JB+k+kbb-1 ) with talph */ PB_CptrsmAB0( TYPE, SIDE, UPPER, DIAG, M, kbb, talph, WA, 0, 0, WAd, B, IB, JB+k, DESCB, &Bptr, DBUFB, &Bfr ); /* * Update B( IB:IB+M-1, JB+k+kbb:JB+N-1 ) */ if( ( ktmp = ktmp - kbb ) > 0 ) { /* * Replicate B(IB:IB+M-1, JB+k:JB+k+kbb-1) over B(IB:IB+M-1, JB+k+kbb:JB+N-1) */ Bcurinb1 = PB_Cfirstnb( ktmp, JB+k+kbb, Binb, Bnb ); Bcurcol = PB_Cindxg2p( k+kbb, Binb1, Bnb, Bcol, Bcol, npcol ); PB_Cdescset( Bd0, M, ktmp, Bimb1, Bcurinb1, Bmb, Bnb, Brow, Bcurcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, COLUMN, M, ktmp, Bd0, kbb, Bptr, 0, 0, DBUFB, COLUMN, &WB, WBd, &WBfr ); /* * Local update */ Bnq = PB_Cnumroc( ktmp, k+kbb, Binb1, Bnb, mycol, Bcol, npcol ); if( ( Bmp0 > 0 ) && ( Bnq > 0 ) ) { WAoff = PB_Cnumroc( kbb, 0, WAd[INB_], WAd[NB_], mycol, WAd[CSRC_], npcol ); gemm( C2F_CHAR( NOTRAN ), C2F_CHAR( NOTRAN ), &Bmp0, &Bnq, &kbb, negone, WB, &WBd[LLD_], Mptr( WA, 0, WAoff, WAd[LLD_], size ), &WAd[LLD_], talph, Mptr( Bptr0, 0, Bnq0-Bnq, Bld, size ), &Bld ); } if( WBfr ) free( WB ); talph = one; } if( WAfr ) free( WA ); if( Bfr ) free( Bptr ); if( Afr ) free( Aptr ); } } else { /* * Right Upper (Conjugate) Transpose */ kmax = ( ( N - 1 ) / kb ) * kb; for( k = kmax; k >= 0; k -= kb ) { kbb = N - k; kbb = MIN( kbb, kb ); ktmp = k + kbb; /* * Accumulate A( IA:IA+ktmp-1, JA+k:JA+k+kbb-1 ) */ PB_CGatherV( TYPE, REUSE, BACKWARD, ktmp, kbb, A, IA, JA+k, DESCA, COLUMN, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA:IA+ktmp-1, JA+k:JA+k+kbb-1 )' over B(IB:IB+M-1, JB:JB+ktmp-1) */ PB_Cdescset( Bd0, M, ktmp, Bimb1, Binb1, Bmb, Bnb, Brow, Bcol, ctxt, Bld ); PB_CInV( TYPE, &conjg, ROW, M, ktmp, Bd0, kbb, Aptr, 0, 0, DBUFA, COLUMN, &WA, WAd, &WAfr ); /* * Solve B( IB:IB+M-1, JB+k:JB+ktmp-1 ) with talph */ PB_CptrsmAB0( TYPE, SIDE, LOWER, DIAG, M, kbb, talph, WA, 0, k, WAd, B, IB, JB+k, DESCB, &Bptr, DBUFB, &Bfr ); /* * Update B( IB:IB+M-1, JB:JB+k-1 ) */ if( k > 0 ) { /* * Replicate B( IB:IB+M-1, JB+k:JB+ktmp-1 ) over B( IB:IB+M-1, JB:JB+k-1 ) */ PB_Cdescset( Bd0, M, k, Bimb1, Binb1, Bmb, Bnb, Brow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, COLUMN, M, k, Bd0, kbb, Bptr, 0, 0, DBUFB, COLUMN, &WB, WBd, &WBfr ); /* * Local update */ Bnq = PB_Cnumroc( k, 0, Binb1, Bnb, mycol, Bcol, npcol ); if( ( Bmp0 > 0 ) && ( Bnq > 0 ) ) gemm( C2F_CHAR( NOTRAN ), C2F_CHAR( NOTRAN ), &Bmp0, &Bnq, &kbb, negone, WB, &WBd[LLD_], WA, &WAd[LLD_], talph, Bptr0, &Bld ); if( WBfr ) free( WB ); talph = one; } if( WAfr ) free( WA ); if( Bfr ) free( Bptr ); if( Afr ) free( Aptr ); } } } } else { /* * Left looking variant for the transpose cases */ if( lside ) { top = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET ); if( upper ) { /* * Accumulate A( IA:IA+Bimb1-1, JA:JA+Bimb1-1 ) */ PB_CGatherV( TYPE, REUSE, FORWARD, Bimb1, Bimb1, A, IA, JA, DESCA, COLUMN, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA:IA+Bimb1-1, JA:JA+Bimb1-1 ) over B(IB:IB+Bimb1-1, JB:JB+N-1) */ PB_Cdescset( Bd0, Bimb1, N, Bimb1, Binb1, Bmb, Bnb, Brow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, COLUMN, Bimb1, N, Bd0, Bimb1, Aptr, 0, 0, DBUFA, COLUMN, &WA, WAd, &WAfr ); /* * Solve B( IB:IB+Bimb1-1, JB:JB+N-1 ) */ if( ( ( Brow < 0 ) || ( myrow == Brow ) ) && ( Bnq0 > 0 ) ) TYPE->Ftrsm( C2F_CHAR( SIDE ), C2F_CHAR( UPLO ), C2F_CHAR( TRANSA ), C2F_CHAR( DIAG ), &Bimb1, &Bnq0, ALPHA, WA, &WAd[LLD_], Bptr0, &Bld ); if( WAfr ) free( WA ); if( Afr ) free( Aptr ); /* * Update and solve remaining rows of sub( B ) */ for( k = Bimb1; k < M; k += kb ) { kbb = M - k; kbb = MIN( kbb, kb ); ktmp = k + kbb; /* * Accumulate A( IA:IA+ktmp-1, JA+k:JA+ktmp-1 ) */ PB_CGatherV( TYPE, REUSE, FORWARD, ktmp, kbb, A, IA, JA+k, DESCA, COLUMN, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA:IA+ktmp-1, JA+k:JA+ktmp-1 ) over B(IB:IB+ktmp-1, JB:JB+N-1) */ PB_Cdescset( Bd0, ktmp, N, Bimb1, Binb1, Bmb, Bnb, Brow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, COLUMN, ktmp, N, Bd0, kbb, Aptr, 0, 0, DBUFA, COLUMN, &WA, WAd, &WAfr ); /* * WB := A( IA:IA+k-1, JA+k:JA+ktmp-1 )' * B( IB:IB+k-1, JB:JB+N-1 ) */ PB_COutV( TYPE, ROW, INIT, ktmp, N, Bd0, kbb, &WB, WBd, &WBfr, &WBsum ); Bmp = PB_Cnumroc( k, 0, Bimb1, Bmb, myrow, Brow, nprow ); if( ( Bnq0 > 0 ) && ( Bmp > 0 ) ) gemm( C2F_CHAR( TRANSA ), C2F_CHAR( NOTRAN ), &kbb, &Bnq0, &Bmp, one, WA, &WAd[LLD_], Bptr0, &Bld, zero, WB, &WBd[LLD_] ); if( WBsum ) { WBd[RSRC_] = PB_Cindxg2p( k, Bimb1, Bmb, Brow, Brow, nprow ); if( Bnq0 > 0 ) gsum2d( ctxt, COLUMN, &top, kbb, Bnq0, WB, WBd[LLD_], WBd[RSRC_], mycol ); } /* * Add WB to B( IB+k:IB+ktmp-1, JB:JB+N-1 ) and solve it with * A( IA+k:IA+ktmp-1, JA+k:JA+ktmp-1 ) */ PB_CptrsmAB1( TYPE, SIDE, UPLO, TRANSA, DIAG, kbb, N, ALPHA, WA, k, 0, WAd, B, IB+k, JB, DESCB, WB, WBd ); if( WBfr ) free( WB ); if( WAfr ) free( WA ); if( Afr ) free( Aptr ); } } else { /* * Solve last block of rows of sub( B ) */ Bcurimb1 = PB_Clastnb( M, IB, Bimb, Bmb ); k = M - Bcurimb1; /* * Accumulate A( IA+k:IA+M-1, JA+k:JA+M-1 ) */ PB_CGatherV( TYPE, REUSE, BACKWARD, Bcurimb1, Bcurimb1, A, IA+k, JA+k, DESCA, COLUMN, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA+k:IA+M-1, JA+k:JA+M-1 ) over B( IB+k:IB+M-1, JB:JB+N-1 ) */ Bcurrow = PB_Cindxg2p( k, Bimb1, Bmb, Brow, Brow, nprow ); PB_Cdescset( Bd0, Bcurimb1, N, Bcurimb1, Binb1, Bmb, Bnb, Bcurrow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, COLUMN, Bcurimb1, N, Bd0, Bcurimb1, Aptr, 0, 0, DBUFA, COLUMN, &WA, WAd, &WAfr ); /* * Solve B( IB+k:IB+M-1, JB:JB+N-1 ) */ if( ( ( Brow < 0 ) || ( myrow == Bcurrow ) ) && ( Bnq0 > 0 ) ) TYPE->Ftrsm( C2F_CHAR( SIDE ), C2F_CHAR( UPLO ), C2F_CHAR( TRANSA ), C2F_CHAR( DIAG ), &Bcurimb1, &Bnq0, ALPHA, WA, &WAd[LLD_], Mptr( Bptr0, Bmp0-Bcurimb1, 0, Bld, size ), &Bld ); if( WAfr ) free( WA ); if( Afr ) free( Aptr ); if( ( mn = M - Bcurimb1 ) <= 0 ) return; /* * Update and solve remaining rows of sub( B ) */ kmax = ( ( mn - 1 ) / kb ) * kb; for( k = kmax; k >= 0; k -= kb ) { ktmp = M - k; kbb = mn - k; kbb = MIN( kbb, kb ); /* * Accumulate A( IA+k:IA+M-1, JA+k:JA+k+kbb-1 ) */ PB_CGatherV( TYPE, REUSE, BACKWARD, ktmp, kbb, A, IA+k, JA+k, DESCA, COLUMN, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA+k:IA+M-1, JA+k:JA+k+kbb-1 ) over B( IB+k:IB+M-1, JB:JB+N-1 ) */ Bcurimb1 = PB_Cfirstnb( ktmp, IB+k, Bimb, Bmb ); Bcurrow = PB_Cindxg2p( k, Bimb1, Bmb, Brow, Brow, nprow ); PB_Cdescset( Bd0, ktmp, N, Bcurimb1, Binb1, Bmb, Bnb, Bcurrow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, COLUMN, ktmp, N, Bd0, kbb, Aptr, 0, 0, DBUFA, COLUMN, &WA, WAd, &WAfr ); /* * WB := A( IA+k+kbb:IA+M-1, JA+k:JA+k+kbb-1 )'* B( IB+k+kbb:IB+M-1, JB:JB+N-1 ) */ PB_COutV( TYPE, ROW, INIT, ktmp, N, Bd0, kbb, &WB, WBd, &WBfr, &WBsum ); Bmp = PB_Cnumroc( ktmp-kbb, k+kbb, Bimb1, Bmb, myrow, Brow, nprow ); if( ( Bnq0 > 0 ) && ( Bmp > 0 ) ) { WAoff = PB_Cnumroc( kbb, 0, WAd[IMB_], WAd[MB_], myrow, WAd[RSRC_], nprow ); gemm( C2F_CHAR( TRANSA ), C2F_CHAR( NOTRAN ), &kbb, &Bnq0, &Bmp, one, Mptr( WA, WAoff, 0, WAd[LLD_], size ), &WAd[LLD_], Mptr( Bptr0, Bmp0-Bmp, 0, Bld, size ), &Bld, zero, WB, &WBd[LLD_] ); } if( WBsum ) { WBd[RSRC_] = PB_Cindxg2p( k + kbb - 1, Bimb1, Bmb, Brow, Brow, nprow ); if( Bnq0 > 0 ) gsum2d( ctxt, COLUMN, &top, kbb, Bnq0, WB, WBd[LLD_], WBd[RSRC_], mycol ); } /* * Add WB to B( IB+k:IB+k+kbb-1, JB:JB+N-1 ) and solve it with * A( IA+k:IA+k+kbb-1, JA+k:JA+k+kbb-1 ) */ PB_CptrsmAB1( TYPE, SIDE, UPLO, TRANSA, DIAG, kbb, N, ALPHA, WA, 0, 0, WAd, B, IB+k, JB, DESCB, WB, WBd ); if( WBfr ) free( WB ); if( WAfr ) free( WA ); if( Afr ) free( Aptr ); } } } else { top = *PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET ); if( upper ) { /* * Solve last block of columns of sub( B ) */ Bcurinb1 = PB_Clastnb( N, JB, Binb, Bnb ); k = N - Bcurinb1; /* * Accumulate A( IA+k:IA+N-1, JA+k:JA+N-1 ) */ PB_CGatherV( TYPE, REUSE, BACKWARD, Bcurinb1, Bcurinb1, A, IA+k, JA+k, DESCA, ROW, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA+k:IA+N-1, JA+k:JA+N-1 ) over B( IB:IB+M-1, JB+k:JB+N-1 ) */ Bcurcol = PB_Cindxg2p( k, Binb1, Bnb, Bcol, Bcol, npcol ); PB_Cdescset( Bd0, M, Bcurinb1, Bimb1, Bcurinb1, Bmb, Bnb, Brow, Bcurcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, ROW, M, Bcurinb1, Bd0, Bcurinb1, Aptr, 0, 0, DBUFA, ROW, &WA, WAd, &WAfr ); /* * Solve B( IB:IB+M-1, JB+k:JB+N-1 ) */ if( ( ( Bcol < 0 ) || ( mycol == Bcurcol ) ) && ( Bmp0 > 0 ) ) TYPE->Ftrsm( C2F_CHAR( SIDE ), C2F_CHAR( UPLO ), C2F_CHAR( TRANSA ), C2F_CHAR( DIAG ), &Bmp0, &Bcurinb1, ALPHA, WA, &WAd[LLD_], Mptr( Bptr0, 0, Bnq0-Bcurinb1, Bld, size ), &Bld ); if( WAfr ) free( WA ); if( Afr ) free( Aptr ); if( ( mn = N - Bcurinb1 ) <= 0 ) return; /* * Update and solve remaining columns of sub( B ) */ kmax = ( ( mn - 1 ) / kb ) * kb; for( k = kmax; k >= 0; k -= kb ) { ktmp = N - k; kbb = mn - k; kbb = MIN( kbb, kb ); /* * Accumulate A( IA+k:IA+k+kbb-1, JA+k:JA+N-1 ) */ PB_CGatherV( TYPE, REUSE, BACKWARD, kbb, ktmp, A, IA+k, JA+k, DESCA, ROW, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA+k:IA+k+kbb-1, JA+k:JA+N-1 ) over B( IB:IB+M-1, JB+k:JB+N-1 ) */ Bcurinb1 = PB_Cfirstnb( ktmp, JB+k, Binb, Bnb ); Bcurcol = PB_Cindxg2p( k, Binb1, Bnb, Bcol, Bcol, npcol ); PB_Cdescset( Bd0, M, ktmp, Bimb1, Bcurinb1, Bmb, Bnb, Brow, Bcurcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, ROW, M, ktmp, Bd0, kbb, Aptr, 0, 0, DBUFA, ROW, &WA, WAd, &WAfr ); /* * WB := B( IB:IB+M-1, JB+k+kbb:JB+N-1 ) * A(IA+k:IA+k+kbb-1, JA+k+kbb:JA+N-1)' */ PB_COutV( TYPE, COLUMN, INIT, M, ktmp, Bd0, kbb, &WB, WBd, &WBfr, &WBsum ); Bnq = PB_Cnumroc( ktmp-kbb, k+kbb, Binb1, Bnb, mycol, Bcol, npcol ); if( ( Bmp0 > 0 ) && ( Bnq > 0 ) ) { WAoff = PB_Cnumroc( kbb, 0, WAd[INB_], WAd[NB_], mycol, WAd[CSRC_], npcol ); gemm( C2F_CHAR( NOTRAN ), C2F_CHAR( TRANSA ), &Bmp0, &kbb, &Bnq, one, Mptr( Bptr0, 0, Bnq0-Bnq, Bld, size ), &Bld, Mptr( WA, 0, WAoff, WAd[LLD_], size ), &WAd[LLD_], zero, WB, &WBd[LLD_] ); } if( WBsum ) { WBd[CSRC_] = PB_Cindxg2p( k + kbb - 1, Binb1, Bnb, Bcol, Bcol, npcol ); if( Bmp0 > 0 ) gsum2d( ctxt, ROW, &top, Bmp0, kbb, WB, WBd[LLD_], myrow, WBd[CSRC_] ); } /* * Add WB to B( IB:IB+M-1, JB+k:JB+k+kbb-1 ) and solve it with * A( IA+k:IA+k+kbb-1, JA+k:JA+k+kbb-1 ) */ PB_CptrsmAB1( TYPE, SIDE, UPLO, TRANSA, DIAG, M, kbb, ALPHA, WA, 0, 0, WAd, B, IB, JB+k, DESCB, WB, WBd ); if( WBfr ) free( WB ); if( WAfr ) free( WA ); if( Afr ) free( Aptr ); } } else { /* * Accumulate A( IA:IA+Binb1-1, JA:JA+Binb1-1 ) */ PB_CGatherV( TYPE, REUSE, FORWARD, Binb1, Binb1, A, IA, JA, DESCA, ROW, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA:IA+Binb1-1, JA:JA+Binb1-1 ) over B(IB:IB+M-1, JB:JB+Binb1-1) */ PB_Cdescset( Bd0, M, Binb1, Bimb1, Binb1, Bmb, Bnb, Brow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, ROW, M, Binb1, Bd0, Binb1, Aptr, 0, 0, DBUFA, ROW, &WA, WAd, &WAfr ); /* * Solve B( IB:IB+M-1, JB:JB+Binb1-1 ) */ if( ( ( Bcol < 0 ) || ( mycol == Bcol ) ) && ( Bmp0 > 0 ) ) TYPE->Ftrsm( C2F_CHAR( SIDE ), C2F_CHAR( UPLO ), C2F_CHAR( TRANSA ), C2F_CHAR( DIAG ), &Bmp0, &Binb1, ALPHA, WA, &WAd[LLD_], Bptr0, &Bld ); if( WAfr ) free( WA ); if( Afr ) free( Aptr ); /* * Update and solve remaining columns of sub( B ) */ for( k = Binb1; k < N; k += kb ) { kbb = N - k; kbb = MIN( kbb, kb ); ktmp = k + kbb; /* * Accumulate A( IA+k:IA+ktmp-1, JA:JA+ktmp-1 ) */ PB_CGatherV( TYPE, REUSE, FORWARD, kbb, ktmp, A, IA+k, JA, DESCA, ROW, &Aptr, DBUFA, &Afr ); /* * Replicate A( IA+k:IA+ktmp-1, JA:JA+ktmp-1 ) over B( IB:IB+M-1, JB:JB+ktmp-1 ) */ PB_Cdescset( Bd0, M, ktmp, Bimb1, Binb1, Bmb, Bnb, Brow, Bcol, ctxt, Bld ); PB_CInV( TYPE, NOCONJG, ROW, M, ktmp, Bd0, kbb, Aptr, 0, 0, DBUFA, ROW, &WA, WAd, &WAfr ); /* * WB := B( IB:IB+M-1, JB:JB+k-1 ) * A( IA+k:IA+ktmp-1, JA:JA+k-1 )' */ PB_COutV( TYPE, COLUMN, INIT, M, ktmp, Bd0, kbb, &WB, WBd, &WBfr, &WBsum ); Bnq = PB_Cnumroc( k, 0, Binb1, Bnb, mycol, Bcol, npcol ); if( ( Bmp0 > 0 ) && ( Bnq > 0 ) ) gemm( C2F_CHAR( NOTRAN ), C2F_CHAR( TRANSA ), &Bmp0, &kbb, &Bnq, one, Bptr0, &Bld, WA, &WAd[LLD_], zero, WB, &WBd[LLD_] ); if( WBsum ) { WBd[CSRC_] = PB_Cindxg2p( k, Binb1, Bnb, Bcol, Bcol, npcol ); if( Bmp0 > 0 ) gsum2d( ctxt, ROW, &top, Bmp0, kbb, WB, WBd[LLD_], myrow, WBd[CSRC_] ); } /* * Add WB to B( IB:IB+M-1, JB+k:JB+ktmp-1 ) and solve it with * A( IA+k:IA+ktmp-1, JA+k:JA+ktmp-1 ) */ PB_CptrsmAB1( TYPE, SIDE, UPLO, TRANSA, DIAG, M, kbb, ALPHA, WA, 0, k, WAd, B, IB, JB+k, DESCB, WB, WBd ); if( WAfr ) free( WA ); if( Afr ) free( Aptr ); if( WBfr ) free( WB ); } } } } } /* * End of PB_CptrsmAB */ }