/* --------------------------------------------------------------------- * * -- PBLAS auxiliary routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "../pblas.h" #include "../PBpblas.h" #include "../PBtools.h" #include "../PBblacs.h" #include "../PBblas.h" #ifdef __STDC__ void PB_Cptradd( PBTYP_T * TYPE, char * DIRECAC, char * UPLO, char * TRANS, int M, int N, char * ALPHA, char * A, int IA, int JA, int * DESCA, char * BETA, char * C, int IC, int JC, int * DESCC ) #else void PB_Cptradd( TYPE, DIRECAC, UPLO, TRANS, M, N, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC ) /* * .. Scalar Arguments .. */ char * DIRECAC, * TRANS, * UPLO; int IA, IC, JA, JC, M, N; char * ALPHA, * BETA; PBTYP_T * TYPE; /* * .. Array Arguments .. */ int * DESCA, * DESCC; char * A, * C; #endif { /* * Purpose * ======= * * PB_Cptradd adds a trapezoidal matrix to another * * sub( C ) := beta*sub( C ) + alpha*op( sub( A ) ) * * where * * sub( C ) denotes C(IC:IC+M-1,JC:JC+N-1), and, op( X ) is one of * * op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ). * * Thus, op( sub( A ) ) denotes A(IA:IA+M-1,JA:JA+N-1) if TRANS = 'N', * A(IA:IA+N-1,JA:JA+M-1)' if TRANS = 'T', * conjg(A(IA:IA+N-1,JA:JA+M-1)') if TRANS = 'C', * * Alpha and beta are scalars, sub( C ) and op( sub( A ) ) are m by n * upper or lower trapezoidal submatrices. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * TYPE (local input) pointer to a PBTYP_T structure * On entry, TYPE is a pointer to a structure of type PBTYP_T, * that contains type information (See pblas.h). * * DIRECAC (global input) pointer to CHAR * On entry, DIRECAC specifies the direction in which the rows * or columns of sub( A ) and sub( C ) should be looped over as * follows: * DIRECA = 'F' or 'f' forward or increasing, * DIRECA = 'B' or 'b' backward or decreasing. * * UPLO (global input) pointer to CHAR * On entry, UPLO specifies whether the local pieces of the * array C containing the upper or lower triangular part of the * triangular submatrix sub( C ) is to be referenced as follows: * * UPLO = 'U' or 'u' Only the local pieces corresponding to * the upper triangular part of the * triangular submatrix sub( C ) is to be * referenced, * * UPLO = 'L' or 'l' Only the local pieces corresponding to * the lower triangular part of the * triangular submatrix sub( C ) is to be * referenced. * * TRANS (global input) pointer to CHAR * On entry, TRANS specifies the form of op( sub( A ) ) to be * used in the matrix addition as follows: * * TRANS = 'N' or 'n' op( sub( A ) ) = sub( A ), * * TRANS = 'T' or 't' op( sub( A ) ) = sub( A )', * * TRANS = 'C' or 'c' op( sub( A ) ) = conjg( sub( A )' ). * * M (global input) INTEGER * On entry, M specifies the number of rows of the submatrices * sub( A ) and sub( C ). M must be at least zero. * * N (global input) INTEGER * On entry, N specifies the number of columns of the submatri- * ces sub( A ) and sub( C ). N must be at least zero. * * ALPHA (global input) pointer to CHAR * On entry, ALPHA specifies the scalar alpha. When ALPHA is * supplied as zero then the local entries of the array A * corresponding to the entries of the submatrix sub( A ) need * not be set on input. * * A (local input) pointer to CHAR * On entry, A is an array of dimension (LLD_A, Ka), where Ka is * at least Lc( 1, JA+N-1 ). Before entry, this array contains * the local entries of the matrix A. * * IA (global input) INTEGER * On entry, IA specifies A's global row index, which points to * the beginning of the submatrix sub( A ). * * JA (global input) INTEGER * On entry, JA specifies A's global column index, which points * to the beginning of the submatrix sub( A ). * * DESCA (global and local input) INTEGER array * On entry, DESCA is an integer array of dimension DLEN_. This * is the array descriptor for the matrix A. * * BETA (global input) pointer to CHAR * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then the local entries of the array C * corresponding to the entries of the submatrix sub( C ) need * not be set on input. * * C (local input/local output) pointer to CHAR * On entry, C is an array of dimension (LLD_C, Kc), where Kc is * at least Lc( 1, JC+N-1 ). Before entry, this array contains * the local entries of the matrix C. * On exit, the entries of this array corresponding to the local * entries of the submatrix sub( C ) are overwritten by the * local entries of the m by n updated submatrix. * * IC (global input) INTEGER * On entry, IC specifies C's global row index, which points to * the beginning of the submatrix sub( C ). * * JC (global input) INTEGER * On entry, JC specifies C's global column index, which points * to the beginning of the submatrix sub( C ). * * DESCC (global and local input) INTEGER array * On entry, DESCC is an integer array of dimension DLEN_. This * is the array descriptor for the matrix C. * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char Dir, * one, * zero; int Afr, conjg, k, kb, kbb, kend, kstart, kstep, ktmp; /* * .. Local Arrays .. */ int DBUFA[DLEN_]; char * Aptr = NULL; /* .. * .. Executable Statements .. * */ /* * sub( C ) := beta * sub( C ) */ PB_Cplascal( TYPE, UPLO, NOCONJG, M, N, BETA, C, IC, JC, DESCC ); one = TYPE->one; zero = TYPE->zero; kb = pilaenv_( &DESCC[CTXT_], C2F_CHAR( &TYPE->type ) ); if( Mupcase( DIRECAC[0] ) == CFORWARD ) { Dir = CFORWARD; kstart = 0; kend = ( ( MIN( M, N ) - 1 ) / kb + 1 ) * kb; kstep = kb; } else { Dir = CBACKWARD; kstart = ( ( MIN( M, N ) - 1 ) / kb ) * kb; kend = kstep = -kb; } if( Mupcase( TRANS[0] ) == CNOTRAN ) { if( Mupcase( UPLO [0] ) == CUPPER ) { if( M >= N ) { for( k = kstart; k != kend; k += kstep ) { kbb = N - k; kbb = MIN( kbb, kb ); ktmp = k + kbb; /* * Accumulate A( IA:IA+k+kbb-1, JA+k:JA+k+kbb-1 ) */ PB_CGatherV( TYPE, ALLOCATE, &Dir, ktmp, kbb, A, IA, JA+k, DESCA, COLUMN, &Aptr, DBUFA, &Afr ); /* * Scale A( IA:IA+k+kbb-1, JA+k:JA+k+kbb-1 ) by ALPHA */ PB_Cplascal( TYPE, ALL, NOCONJG, ktmp, kbb, ALPHA, Aptr, 0, 0, DBUFA ); /* * Zero lower triangle of A( IA:IA+k+kbb-1, JA+k:JA+k+kbb-1 ) */ if( kbb > 1 ) PB_Cplapad( TYPE, LOWER, NOCONJG, kbb-1, kbb-1, zero, zero, Aptr, k+1, 0, DBUFA ); /* * C( IC:IC+k+kbb-1, JC+k:JC+k+kbb-1 ) += A( IA:IA+k+kbb-1, JA+k:JA+k+kbb-1 ) */ PB_CScatterV( TYPE, &Dir, ktmp, kbb, Aptr, 0, 0, DBUFA, COLUMN, one, C, IC, JC+k, DESCC, COLUMN ); if( Afr ) free( Aptr ); } } else { for( k = kstart; k != kend; k += kstep ) { kbb = M - k; kbb = MIN( kbb, kb ); ktmp = N - k; /* * Accumulate A( IA+k:IA+k+kbb-1, JA+k:JA+N-1 ) */ PB_CGatherV( TYPE, ALLOCATE, &Dir, kbb, ktmp, A, IA+k, JA+k, DESCA, ROW, &Aptr, DBUFA, &Afr ); /* * Scale A( IA+k:IA+k+kbb-1, JA+k:JA+N-1 ) by ALPHA */ PB_Cplascal( TYPE, ALL, NOCONJG, kbb, ktmp, ALPHA, Aptr, 0, 0, DBUFA ); /* * Zero lower triangle of A( IA+k:IA+k+kbb-1, JA+k:JA+N-1 ) */ if( kbb > 1 ) PB_Cplapad( TYPE, LOWER, NOCONJG, kbb-1, kbb-1, zero, zero, Aptr, 1, 0, DBUFA ); /* * C( IC+k:IC+k+kbb-1, JC+k:JC+N-1 ) += A( IA+k:IA+k+kbb-1, JA+k:JA+N-1 ) */ PB_CScatterV( TYPE, &Dir, kbb, ktmp, Aptr, 0, 0, DBUFA, ROW, one, C, IC+k, JC+k, DESCC, ROW ); if( Afr ) free( Aptr ); } } } else { if( M >= N ) { for( k = kstart; k != kend; k += kstep ) { kbb = N - k; kbb = MIN( kbb, kb ); ktmp = M - k; /* * Accumulate A( IA+k:IA+M-1, JA+k:JA+k+kbb-1 ) */ PB_CGatherV( TYPE, ALLOCATE, &Dir, ktmp, kbb, A, IA+k, JA+k, DESCA, COLUMN, &Aptr, DBUFA, &Afr ); /* * Scale A( IA:IA+k+kbb-1, JA+k:JA+k+kbb-1 ) by ALPHA */ PB_Cplascal( TYPE, ALL, NOCONJG, ktmp, kbb, ALPHA, Aptr, 0, 0, DBUFA ); /* * Zero upper triangle of A( IA+k:IA+M-1, JA+k:JA+k+kbb-1 ) */ if( kbb > 1 ) PB_Cplapad( TYPE, UPPER, NOCONJG, kbb-1, kbb-1, zero, zero, Aptr, 0, 1, DBUFA ); /* * C( IC:IC+k+kbb-1, JC+k:JC+k+kbb-1 ) += A( IA:IA+k+kbb-1, JA+k:JA+k+kbb-1 ) */ PB_CScatterV( TYPE, &Dir, ktmp, kbb, Aptr, 0, 0, DBUFA, COLUMN, one, C, IC+k, JC+k, DESCC, COLUMN ); if( Afr ) free( Aptr ); } } else { for( k = kstart; k != kend; k += kstep ) { kbb = M - k; kbb = MIN( kbb, kb ); ktmp = k + kbb; /* * Accumulate A( IA+k:IA+k+kbb-1, JA:JA+k+kbb-1 ) */ PB_CGatherV( TYPE, ALLOCATE, &Dir, kbb, ktmp, A, IA+k, JA, DESCA, ROW, &Aptr, DBUFA, &Afr ); /* * Scale A( IA+k:IA+k+kbb-1, JA:JA+k+kbb-1 ) by ALPHA */ PB_Cplascal( TYPE, ALL, NOCONJG, kbb, ktmp, ALPHA, Aptr, 0, 0, DBUFA ); /* * Zero upper triangle of A( IA+k:IA+k+kbb-1, JA+k:JA:JA+k+kbb-1 ) */ if( kbb > 1 ) PB_Cplapad( TYPE, UPPER, NOCONJG, kbb-1, kbb-1, zero, zero, Aptr, 0, k+1, DBUFA ); /* * C( IC+k:IC+k+kbb-1, JC:JC+k+kbb-1 ) += A( IA+k:IA+k+kbb-1, JA:JA+k+kbb-1 ) */ PB_CScatterV( TYPE, &Dir, kbb, ktmp, Aptr, 0, 0, DBUFA, ROW, one, C, IC+k, JC, DESCC, ROW ); if( Afr ) free( Aptr ); } } } } else { conjg = ( Mupcase( TRANS[0] ) == CCOTRAN ); if( Mupcase( UPLO [0] ) == CUPPER ) { if( M >= N ) { for( k = kstart; k != kend; k += kstep ) { kbb = N - k; kbb = MIN( kbb, kb ); ktmp = k + kbb; /* * Accumulate A( IA+k:IA+k+kbb-1, JA:JA+k+kbb-1 ) */ PB_CGatherV( TYPE, ALLOCATE, &Dir, kbb, ktmp, A, IA+k, JA, DESCA, ROW, &Aptr, DBUFA, &Afr ); /* * Scale A( IA+k:IA+k+kbb-1, JA:JA+k+kbb-1 ) by ALPHA */ if( conjg ) PB_Cplacnjg( TYPE, kbb, ktmp, ALPHA, Aptr, 0, 0, DBUFA ); else PB_Cplascal( TYPE, ALL, NOCONJG, kbb, ktmp, ALPHA, Aptr, 0, 0, DBUFA ); /* * Zero upper triangle of A( IA+k:IA+k+kbb-1, JA+k:JA+k+kbb-1 ) */ if( kbb > 1 ) PB_Cplapad( TYPE, UPPER, NOCONJG, kbb-1, kbb-1, zero, zero, Aptr, 0, k+1, DBUFA ); /* * C( IC:IC+k+kbb-1, JC+k:JC+k+kbb-1 ) += A( IA+k:IA+k+kbb-1, JA:JA+k+kbb-1 )' */ PB_CScatterV( TYPE, &Dir, kbb, ktmp, Aptr, 0, 0, DBUFA, ROW, one, C, IC, JC+k, DESCC, COLUMN ); if( Afr ) free( Aptr ); } } else { for( k = kstart; k != kend; k += kstep ) { kbb = M - k; kbb = MIN( kbb, kb ); ktmp = N - k; /* * Accumulate A( IA+k:IA+N-1, JA+k:JA+k+kbb-1 ) */ PB_CGatherV( TYPE, ALLOCATE, &Dir, ktmp, kbb, A, IA+k, JA+k, DESCA, COLUMN, &Aptr, DBUFA, &Afr ); /* * Scale A( IA+k:IA+N-1, JA+k:JA+k+kbb-1 ) by ALPHA */ if( conjg ) PB_Cplacnjg( TYPE, ktmp, kbb, ALPHA, Aptr, 0, 0, DBUFA ); else PB_Cplascal( TYPE, ALL, NOCONJG, ktmp, kbb, ALPHA, Aptr, 0, 0, DBUFA ); /* * Zero upper triangle of A( IA+k:IA+N-1, JA+k:JA+k+kbb-1 ) */ if( kbb > 1 ) PB_Cplapad( TYPE, UPPER, NOCONJG, kbb-1, kbb-1, zero, zero, Aptr, 0, 1, DBUFA ); /* * C( IC+k:IC+k+kbb-1, JC+k:JC+N-1 ) += A( IA+k:IA+N-1, JA+k:JA+k+kbb-1 )' */ PB_CScatterV( TYPE, &Dir, ktmp, kbb, Aptr, 0, 0, DBUFA, COLUMN, one, C, IC+k, JC+k, DESCC, ROW ); if( Afr ) free( Aptr ); } } } else { if( M >= N ) { for( k = kstart; k != kend; k += kstep ) { kbb = N - k; kbb = MIN( kbb, kb ); ktmp = M - k; /* * Accumulate A( IA+k:IA+k+kbb-1, JA+k:JA+M-1 ) */ PB_CGatherV( TYPE, ALLOCATE, &Dir, kbb, ktmp, A, IA+k, JA+k, DESCA, ROW, &Aptr, DBUFA, &Afr ); /* * Scale A( IA+k:IA+k+kbb-1, JA+k:JA+M-1 ) by ALPHA */ if( conjg ) PB_Cplacnjg( TYPE, kbb, ktmp, ALPHA, Aptr, 0, 0, DBUFA ); else PB_Cplascal( TYPE, ALL, NOCONJG, kbb, ktmp, ALPHA, Aptr, 0, 0, DBUFA ); /* * Zero lower triangle of A( IA+k:IA+k+kbb-1, JA+k:JA+k+kbb-1 ) */ if( kbb > 1 ) PB_Cplapad( TYPE, LOWER, NOCONJG, kbb-1, kbb-1, zero, zero, Aptr, 1, 0, DBUFA ); /* * C( IC:IC+k+kbb-1, JC+k:JC+k+kbb-1 ) += A( IA+k:IA+k+kbb-1, JA+k:JA+M-1 )' */ PB_CScatterV( TYPE, &Dir, kbb, ktmp, Aptr, 0, 0, DBUFA, ROW, one, C, IC+k, JC+k, DESCC, COLUMN ); if( Afr ) free( Aptr ); } } else { for( k = kstart; k != kend; k += kstep ) { kbb = M - k; kbb = MIN( kbb, kb ); ktmp = k + kbb; /* * Accumulate A( IA:IA+k+kbb-1, JA+k:JA+k+kbb-1 ) */ PB_CGatherV( TYPE, ALLOCATE, &Dir, ktmp, kbb, A, IA, JA+k, DESCA, COLUMN, &Aptr, DBUFA, &Afr ); /* * Scale A( IA:IA+k+kbb-1, JA+k:JA+k+kbb-1 ) by ALPHA */ if( conjg ) PB_Cplacnjg( TYPE, ktmp, kbb, ALPHA, Aptr, 0, 0, DBUFA ); else PB_Cplascal( TYPE, ALL, NOCONJG, ktmp, kbb, ALPHA, Aptr, 0, 0, DBUFA ); /* * Zero lower triangle of A( IA+k:IA+k+kbb-1, JA+k:JA:JA+k+kbb-1 ) */ if( kbb > 1 ) PB_Cplapad( TYPE, LOWER, NOCONJG, kbb-1, kbb-1, zero, zero, Aptr, k+1, 0, DBUFA ); /* * C( IC+k:IC+k+kbb-1, JC:JC+k+kbb-1 ) += A( IA:IA+k+kbb-1, JA+k:JA+k+kbb-1 )' */ PB_CScatterV( TYPE, &Dir, ktmp, kbb, Aptr, 0, 0, DBUFA, COLUMN, one, C, IC+k, JC, DESCC, ROW ); if( Afr ) free( Aptr ); } } } } /* * End of PB_Cptradd */ }