/* --------------------------------------------------------------------- * * -- PBLAS auxiliary routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "../pblas.h" #include "../PBpblas.h" #include "../PBtools.h" #include "../PBblacs.h" #include "../PBblas.h" #ifdef __STDC__ void PB_Cplaprnt( PBTYP_T * TYPE, int M, int N, char * A, int IA, int JA, int * DESCA, int IRPRNT, int ICPRNT, char * CMATNM ) #else void PB_Cplaprnt( TYPE, M, N, A, IA, JA, DESCA, IRPRNT, ICPRNT, CMATNM ) /* * .. Scalar Arguments .. */ int IA, ICPRNT, IRPRNT, JA, M, N; PBTYP_T * TYPE; /* * .. Array Arguments .. */ int * DESCA; char * A, * CMATNM; #endif { /* * Purpose * ======= * * PB_Cplaprnt prints to the standard output the submatrix sub( A ) de- * noting A(IA:IA+M-1,JA:JA+N-1). The local pieces of sub( A ) are sent * and printed by the process of coordinates (IRPRNT, ICPRNT). * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * TYPE (local input) pointer to a PBTYP_T structure * On entry, TYPE is a pointer to a structure of type PBTYP_T, * that contains type information (See pblas.h). * * M (global input) INTEGER * On entry, M specifies the number of rows of the submatrix * sub( A ). M must be at least zero. * * N (global input) INTEGER * On entry, N specifies the number of columns of the submatrix * sub( A ). N must be at least zero. * * A (local input) pointer to CHAR * On entry, A is an array of dimension (LLD_A, Ka), where Ka is * at least Lc( 1, JA+N-1 ). Before entry, this array contains * the local entries of the matrix A. * * IA (global input) INTEGER * On entry, IA specifies A's global row index, which points to * the beginning of the submatrix sub( A ). * * JA (global input) INTEGER * On entry, JA specifies A's global column index, which points * to the beginning of the submatrix sub( A ). * * DESCA (global and local input) INTEGER array * On entry, DESCA is an integer array of dimension DLEN_. This * is the array descriptor for the matrix A. * * IRPRNT (global input) INTEGER * On entry, IRPRNT specifies the row index of the printing pro- * cess. * * ICPRNT (global input) INTEGER * On entry, ICPRNT specifies the column index of the printing * process. * * CMATNM (global input) pointer to CHAR * On entry, CMATNM is the name of the matrix to be printed. * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ int mycol, myrow, npcol, nprow, pcol, prow; /* .. * .. Executable Statements .. * */ /* * Retrieve process grid information */ Cblacs_gridinfo( DESCA[CTXT_], &nprow, &npcol, &myrow, &mycol ); /* * When sub( A ) is replicated, each copy is printed for debugging purposes. */ if( DESCA[ RSRC_ ] >= 0 ) { /* * sub( A ) is distributed onto the process rows of the grid */ if( DESCA[ CSRC_ ] >= 0 ) { /* * sub( A ) is distributed onto the process columns of the grid */ PB_Cplaprn2( TYPE, M, N, A, IA, JA, DESCA, IRPRNT, ICPRNT, CMATNM, DESCA[ RSRC_ ], DESCA[ CSRC_ ] ); } else { /* * sub( A ) is replicated in every process column of the grid */ for( pcol = 0; pcol < npcol; pcol++ ) { if( ( myrow == IRPRNT ) && ( mycol == ICPRNT ) ) (void) fprintf( stdout, "Colum-replicated array -- copy in process column: %d\n", pcol ); PB_Cplaprn2( TYPE, M, N, A, IA, JA, DESCA, IRPRNT, ICPRNT, CMATNM, DESCA[ RSRC_ ], pcol ); } } } else { /* * sub( A ) is replicated in every process row of the grid */ if( DESCA[ CSRC_ ] >= 0 ) { /* * sub( A ) is distributed onto the process columns of the grid */ for( prow = 0; prow < nprow; prow++ ) { if( ( myrow == IRPRNT ) && ( mycol == ICPRNT ) ) (void) fprintf( stdout, "Row-replicated array -- copy in process row: %d\n", prow ); PB_Cplaprn2( TYPE, M, N, A, IA, JA, DESCA, IRPRNT, ICPRNT, CMATNM, prow, DESCA[ CSRC_ ] ); } } else { /* * sub( A ) is replicated in every process column of the grid */ for( prow = 0; prow < nprow; prow++ ) { for( pcol = 0; pcol < npcol; pcol++ ) { if( ( myrow == IRPRNT ) && ( mycol == ICPRNT ) ) (void) fprintf( stdout, "Replicated array -- copy in process (%d,%d)\n", prow, pcol ); PB_Cplaprn2( TYPE, M, N, A, IA, JA, DESCA, IRPRNT, ICPRNT, CMATNM, prow, pcol ); } } } } /* * End of PB_Cplaprnt */ } #ifdef __STDC__ void PB_Cplaprn2( PBTYP_T * TYPE, int M, int N, char * A, int IA, int JA, int * DESCA, int IRPRNT, int ICPRNT, char * CMATNM, int PROW, int PCOL ) #else void PB_Cplaprn2( TYPE, M, N, A, IA, JA, DESCA, IRPRNT, ICPRNT, CMATNM, PROW, PCOL ) /* * .. Scalar Arguments .. */ int IA, ICPRNT, IRPRNT, JA, M, N, PCOL, PROW; PBTYP_T * TYPE; /* * .. Array Arguments .. */ int * DESCA; char * A, * CMATNM; #endif { /* * .. Local Scalars .. */ char type; int Acol, Aii, AisColRep, AisRowRep, Ajj, Ald, Arow, ctxt, h, i, ib, icurcol, icurrow, ii, in, j, jb, jj, jn, ldw, mycol, myrow, npcol, nprow, size, usiz; /* * .. Local Arrays .. */ char * buf = NULL; /* .. * .. Executable Statements .. * */ /* * Retrieve process grid information */ Cblacs_gridinfo( ( ctxt = DESCA[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); /* * Retrieve sub( A )'s local information: Aii, Ajj, Arow, Acol ... */ Ald = DESCA[LLD_]; PB_Cinfog2l( IA, JA, DESCA, nprow, npcol, myrow, mycol, &Aii, &Ajj, &Arow, &Acol ); /* * Save the local first index of each row and column sub( A ) */ ii = Aii; jj = Ajj; /* * When sub( A ) is row-replicated, print the copy in process row PROW. * Otherwise, print the distributed matrix rows starting in process row Arow. */ if( Arow < 0 ) { AisRowRep = 1; icurrow = Arow = PROW; } else { AisRowRep = 0; icurrow = Arow; } /* * When sub( A ) is column-replicated, print the copy in process column PCOL. * Otherwise, print the distributed matrix columns starting in process column * Acol. */ if( Acol < 0 ) { AisColRep = 1; icurcol = Acol = PCOL; } else { AisColRep = 0; icurcol = Acol; } type = TYPE->type; usiz = TYPE->usiz; size = TYPE->size; /* * Allocate buffer in printing process */ ldw = MAX( DESCA[ IMB_ ], DESCA[ MB_ ] ); if( ( myrow == IRPRNT ) && ( mycol == ICPRNT ) ) buf = PB_Cmalloc( ldw * size ); /* * Handle the first block of column separately */ jb = PB_Cfirstnb( N, JA, DESCA[INB_], DESCA[NB_] ); jn = JA + jb - 1; for( h = 0; h < jb; h++ ) { ib = PB_Cfirstnb( M, IA, DESCA[IMB_], DESCA[MB_] ); in = IA + ib - 1; if( ( icurrow == IRPRNT ) && ( icurcol == ICPRNT ) ) { if( ( myrow == IRPRNT ) && ( mycol == ICPRNT ) ) { PB_Cprnt( type, size, usiz, ib, Mptr( A, ii, jj+h, Ald, size ), IA+1, JA+h+1, CMATNM ); } } else { if( ( myrow == icurrow ) && ( mycol == icurcol ) ) { TYPE->Cgesd2d( ctxt, ib, 1, Mptr( A, ii, jj+h, Ald, size ), Ald, IRPRNT, ICPRNT ); } else if( ( myrow == IRPRNT ) && ( mycol == ICPRNT ) ) { TYPE->Cgerv2d( ctxt, ib, 1, buf, ldw, icurrow, icurcol ); PB_Cprnt( type, size, usiz, ib, buf, IA+1, JA+h+1, CMATNM ); } } /* * Go to next block of rows */ if( myrow == icurrow ) ii += ib; if( !( AisRowRep ) ) icurrow = MModAdd1( icurrow, nprow ); Cblacs_barrier( ctxt, ALL ); /* * Loop over remaining block of rows */ for( i = in+1; i <= IA+M-1; i += DESCA[MB_] ) { ib = MIN( DESCA[MB_], IA+M-i ); if( ( icurrow == IRPRNT ) && ( icurcol == ICPRNT ) ) { if( ( myrow == IRPRNT ) && ( mycol == ICPRNT ) ) { PB_Cprnt( type, size, usiz, ib, Mptr( A, ii, jj+h, Ald, size ), i+1, JA+h+1, CMATNM ); } } else { if( ( myrow == icurrow ) && ( mycol == icurcol ) ) { TYPE->Cgesd2d( ctxt, ib, 1, Mptr( A, ii, jj+h, Ald, size ), Ald, IRPRNT, ICPRNT ); } else if( ( myrow == IRPRNT ) && ( mycol == ICPRNT ) ) { TYPE->Cgerv2d( ctxt, ib, 1, buf, ldw, icurrow, icurcol ); PB_Cprnt( type, size, usiz, ib, buf, i+1, JA+h+1, CMATNM); } } /* * Go to next block of rows */ if( myrow == icurrow ) ii += ib; if( !( AisRowRep ) ) icurrow = MModAdd1( icurrow, nprow ); Cblacs_barrier( ctxt, ALL ); } /* * Restart at the first row to be printed */ ii = Aii; icurrow = Arow; } /* * Go to next block of columns */ if( mycol == icurcol ) jj += jb; if( !( AisColRep ) ) icurcol = MModAdd1( icurcol, npcol ); Cblacs_barrier( ctxt, ALL ); /* * Loop over remaining column blocks */ for( j = jn+1; j <= JA+N-1; j += DESCA[NB_] ) { jb = MIN( DESCA[NB_], JA+N-j ); for( h = 0; h < jb; h++ ) { ib = PB_Cfirstnb( M, IA, DESCA[IMB_], DESCA[MB_] ); in = IA + ib - 1; if( ( icurrow == IRPRNT ) && ( icurcol == ICPRNT ) ) { if( ( myrow == IRPRNT ) && ( mycol == ICPRNT ) ) { PB_Cprnt( type, size, usiz, ib, Mptr( A, ii, jj+h, Ald, size ), IA+1, j+h+1, CMATNM ); } } else { if( ( myrow == icurrow ) && ( mycol == icurcol ) ) { TYPE->Cgesd2d( ctxt, ib, 1, Mptr( A, ii, jj+h, Ald, size ), Ald, IRPRNT, ICPRNT ); } else if( ( myrow == IRPRNT ) && ( mycol == ICPRNT ) ) { TYPE->Cgerv2d( ctxt, ib, 1, buf, ldw, icurrow, icurcol ); PB_Cprnt( type, size, usiz, ib, buf, IA+1, j+h+1, CMATNM ); } } /* * Go to next block of rows */ if( myrow == icurrow ) ii += ib; if( !( AisRowRep ) ) icurrow = MModAdd1( icurrow, nprow ); Cblacs_barrier( ctxt, ALL ); /* * Loop over remaining block of rows */ for( i = in+1; i <= IA+M-1; i += DESCA[MB_] ) { ib = MIN( DESCA[MB_], IA+M-i ); if( ( icurrow == IRPRNT ) && ( icurcol == ICPRNT ) ) { if( ( myrow == IRPRNT ) && ( mycol == ICPRNT ) ) { PB_Cprnt( type, size, usiz, ib, Mptr( A, ii, jj+h, Ald, size ), i+1, j+h+1, CMATNM ); } } else { if( ( myrow == icurrow ) && ( mycol == icurcol ) ) { TYPE->Cgesd2d( ctxt, ib, 1, Mptr( A, ii, jj+h, Ald, size ), Ald, IRPRNT, ICPRNT ); } else if( ( myrow == IRPRNT ) && ( mycol == ICPRNT ) ) { TYPE->Cgerv2d( ctxt, ib, 1, buf, ldw, icurrow, icurcol ); PB_Cprnt( type, size, usiz, ib, buf, i+1, j+h+1, CMATNM ); } } /* * Go to next block of rows */ if( myrow == icurrow ) ii += ib; if( !( AisRowRep ) ) icurrow = MModAdd1( icurrow, nprow ); Cblacs_barrier( ctxt, ALL ); } /* * Restart at the first row to be printed */ ii = Aii; icurrow = Arow; } /* * Go to next block of columns */ if( mycol == icurcol ) jj += jb; if( !( AisColRep ) ) icurcol = MModAdd1( icurcol, npcol ); Cblacs_barrier( ctxt, ALL ); } if( ( myrow == IRPRNT ) && ( mycol == ICPRNT ) && ( buf ) ) free( buf ); /* * End of PB_Cplaprn2 */ } #ifdef __STDC__ void PB_Cprnt( char TYPE, int SIZE, int USIZ, int N, char * A, int IA, int JA, char * CMATNM ) #else void PB_Cprnt( TYPE, SIZE, USIZ, N, A, IA, JA, CMATNM ) /* * .. Scalar Arguments .. */ int IA, JA, N, SIZE, TYPE, USIZ; /* * .. Array Arguments .. */ char * A, * CMATNM; #endif { /* * .. Local Scalars .. */ int k; /* .. * .. Executable Statements .. * */ if( TYPE == INT ) for( k = 0; k < N; k++ ) (void) fprintf( stdout, "%s(%6d,%6d)=%8d\n", CMATNM, IA+k, JA, *((int *)(&A[k*SIZE])) ); else if( TYPE == SREAL ) for( k = 0; k < N; k++ ) (void) fprintf( stdout, "%s(%6d,%6d)=%16.8f\n", CMATNM, IA+k, JA, *((float *)(&A[k*SIZE])) ); else if( TYPE == DREAL ) for( k = 0; k < N; k++ ) (void) fprintf( stdout, "%s(%6d,%6d)=%30.18f\n", CMATNM, IA+k, JA, *((double *)(&A[k*SIZE])) ); else if( TYPE == SCPLX ) for( k = 0; k < N; k++ ) (void) fprintf( stdout, "%s(%6d,%6d)=%16.8f+i*(%16.8f)\n", CMATNM, IA+k, JA, *((float *)(&A[k*SIZE])), *((float *)(&A[k*SIZE+USIZ])) ); else if( TYPE == DCPLX ) for( k = 0; k < N; k++ ) (void) fprintf( stdout, "%s(%6d,%6d)=%30.18f+i*(%30.18f)\n", CMATNM, IA+k, JA, *((double *)(&A[k*SIZE])), *((double *)(&A[k*SIZE+USIZ])) ); /* * End of PB_Cprnt */ }