/* --------------------------------------------------------------------- * * -- PBLAS auxiliary routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "../pblas.h" #include "../PBpblas.h" #include "../PBtools.h" #include "../PBblacs.h" #include "../PBblas.h" #ifdef __STDC__ void PB_CpaxpbyNN( PBTYP_T * TYPE, char * CONJUG, int M, int N, char * ALPHA, char * A, int IA, int JA, int * DESCA, char * AROC, char * BETA, char * B, int IB, int JB, int * DESCB, char * BROC ) #else void PB_CpaxpbyNN( TYPE, CONJUG, M, N, ALPHA, A, IA, JA, DESCA, AROC, BETA, B, IB, JB, DESCB, BROC ) /* * .. Scalar Arguments .. */ char * AROC, * BROC, * CONJUG; int IA, IB, JA, JB, M, N; char * ALPHA, * BETA; PBTYP_T * TYPE; /* * .. Array Arguments .. */ int * DESCA, * DESCB; char * A, * B; #endif { /* * Purpose * ======= * * PB_CpaxpbyNN adds one submatrix to another, * * sub( B ) := beta * sub( B ) + alpha * sub( A ), or, * * sub( B ) := beta * sub( B ) + alpha * conjg( sub( A ) ), * * where both submatrices are not distributed; sub( A ) always denotes * A(IA:IA+M-1,JA:JA+N-1). When AROC is 'R' or 'r' sub( A ) resides in * a process row, otherwise sub( A ) resides in a process column. When * sub( A ) resides in a process row and BROC is 'R' or 'r' or * sub( A ) resides in a process column and BROC is 'C' or 'c', then * sub( B ) denotes B(IB:IB+M-1,JB:JB+N-1), and B(IB:IB+N-1,JB:JB+M-1) * otherwise. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * TYPE (local input) pointer to a PBTYP_T structure * On entry, TYPE is a pointer to a structure of type PBTYP_T, * that contains type information (See pblas.h). * * CONJUG (global input) pointer to CHAR * On entry, CONJUG specifies whether conjg( sub( A ) ) or * sub( A ) should be added to sub( B ) as follows: * CONJUG = 'N' or 'n': * sub( B ) := beta*sub( B ) + alpha*sub( A ), * otherwise * sub( B ) := beta*sub( B ) + alpha*conjg( sub( A ) ). * * M (global input) INTEGER * On entry, M specifies the number of rows of the submatrix * sub( A ). M must be at least zero. * * N (global input) INTEGER * On entry, N specifies the number of columns of the submatrix * sub( A ). N must be at least zero. * * ALPHA (global input) pointer to CHAR * On entry, ALPHA specifies the scalar alpha. When ALPHA is * supplied as zero then the local entries of the array A cor- * responding to the entries of the submatrix sub( A ) need not * be set on input. * * A (local input) pointer to CHAR * On entry, A is an array of dimension (LLD_A, Ka), where LLD_A * is at least MAX( 1, Lr( 1, IA+M-1 ) ), and, Ka is at least * Lc( 1, JA+N-1 ). Before entry, this array contains the local * entries of the matrix A. * * IA (global input) INTEGER * On entry, IA specifies A's global row index, which points to * the beginning of the submatrix sub( A ). * * JA (global input) INTEGER * On entry, JA specifies A's global column index, which points * to the beginning of the submatrix sub( A ). * * DESCA (global and local input) INTEGER array * On entry, DESCA is an integer array of dimension DLEN_. This * is the array descriptor for the matrix A. * * AROC (global input) pointer to CHAR * On entry, AROC specifies the orientation of the subvector * sub( A ). When AROC is 'R' or 'r', sub( A ) is a row vector, * and a column vector otherwise. * * BETA (global input) pointer to CHAR * On entry, BETA specifies the scalar beta. When BETA is sup- * plied as zero then the local entries of the array B corres- * ponding to the entries of the submatrix sub( B ) need not be * set on input. * * B (local input/local output) pointer to CHAR * On entry, B is an array of dimension (LLD_B, Kb), where LLD_B * is at least MAX( 1, Lr( 1, IB+M-1 ) ) when sub( A ) and * sub( B ) are both distributed along a process column or a * process row. In that case, Kb is at least Lc( 1, JB+N-1 ). * Otherwise, LLD_B is at least MAX( 1, Lr( 1, IB+N-1 ) ) and * Kb is at least Lc( 1, JB+M-1 ). Before entry, this array * contains the local entries of the matrix B. On exit, sub( B ) * is overwritten with the updated submatrix. * * IB (global input) INTEGER * On entry, IB specifies B's global row index, which points to * the beginning of the submatrix sub( B ). * * JB (global input) INTEGER * On entry, JB specifies B's global column index, which points * to the beginning of the submatrix sub( B ). * * DESCB (global and local input) INTEGER array * On entry, DESCB is an integer array of dimension DLEN_. This * is the array descriptor for the matrix B. * * BROC (global input) pointer to CHAR * On entry, BROC specifies the orientation of the subvector * sub( B ). When BROC is 'R' or 'r', sub( B ) is a row vector, * and a column vector otherwise. * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char scope, * top; int Acol, Aii, AisR, AisRow, Ajj, Ald, AmyprocD, AmyprocR, AnprocsD, AnprocsR, AprocR, Arow, Bcol, Bii, BisR, BisRow, Bjj, Bld, BmyprocD, BmyprocR, BnprocsD, BnprocsR, BprocR, Brow, RRorCC, csrc, ctxt, iroca, mycol, myrow, npcol, nprow, p, rsrc, size; MMADD_T add; /* * .. Local Arrays .. */ char * buf = NULL; /* .. * .. Executable Statements .. * */ /* * Retrieve process grid information */ Cblacs_gridinfo( ( ctxt = DESCA[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); /* * Retrieve sub( A )'s local information: Aii, Ajj, Arow, Acol ... */ PB_Cinfog2l( IA, JA, DESCA, nprow, npcol, myrow, mycol, &Aii, &Ajj, &Arow, &Acol ); if( ( AisRow = ( Mupcase( AROC[0] ) == CROW ) ) != 0 ) { Ald = DESCA[LLD_]; AmyprocD = mycol; AnprocsD = npcol; AprocR = Arow; AmyprocR = myrow; AnprocsR = nprow; AisR = ( ( Arow == -1 ) || ( AnprocsR == 1 ) ); } else { Ald = DESCA[LLD_]; AmyprocD = myrow; AnprocsD = nprow; AprocR = Acol; AmyprocR = mycol; AnprocsR = npcol; AisR = ( ( Acol == -1 ) || ( AnprocsR == 1 ) ); } /* * Retrieve sub( B )'s local information: Bii, Bjj, Brow, Bcol ... */ PB_Cinfog2l( IB, JB, DESCB, nprow, npcol, myrow, mycol, &Bii, &Bjj, &Brow, &Bcol ); if( ( BisRow = ( Mupcase( BROC[0] ) == CROW ) ) != 0 ) { Bld = DESCB[LLD_]; BmyprocD = mycol; BnprocsD = npcol; BprocR = Brow; BmyprocR = myrow; BnprocsR = nprow; BisR = ( ( Brow == -1 ) || ( BnprocsR == 1 ) ); } else { Bld = DESCB[LLD_]; BmyprocD = myrow; BnprocsD = nprow; BprocR = Bcol; BmyprocR = mycol; BnprocsR = npcol; BisR = ( ( Bcol == -1 ) || ( BnprocsR == 1 ) ); } /* * Are sub( A ) and sub( B ) both row or column vectors ? */ RRorCC = ( ( AisRow && BisRow ) || ( !( AisRow ) && !( BisRow ) ) ); /* * Neither sub( A ) nor sub( B ) are distributed */ if( !AisR ) { /* * sub( A ) is not replicated */ if( !( BisR ) ) { /* * sub( B ) is not replicated */ if( ( AmyprocR != AprocR ) && ( BmyprocR != BprocR ) ) /* * If I am not in AprocR or BprocR, then return immediately */ return; size = TYPE->size; if( RRorCC ) { /* * sub( A ) and sub( B ) are both row or column vectors */ if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmcadd; else add = TYPE->Fmmadd; if( AprocR == BprocR ) { add( &M, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); } else { /* * sub( A ) and sub( B ) are in a different process row or column */ if( AmyprocR == AprocR ) { /* * Send sub( A ) to where sub( B ) resides. */ if( AisRow ) TYPE->Cgesd2d( ctxt, M, N, Mptr( A, Aii, Ajj, Ald, size ), Ald, BprocR, AmyprocD ); else TYPE->Cgesd2d( ctxt, M, N, Mptr( A, Aii, Ajj, Ald, size ), Ald, AmyprocD, BprocR ); } /* * receive sub( A ) and add it to sub( B ) */ if( BmyprocR == BprocR ) { buf = PB_Cmalloc( M * N * size ); if( BisRow ) TYPE->Cgerv2d( ctxt, M, N, buf, M, AprocR, BmyprocD ); else TYPE->Cgerv2d( ctxt, M, N, buf, M, BmyprocD, AprocR ); add( &M, &N, ALPHA, buf, &M, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); if( buf ) free( buf ); } } } else { /* * sub( A ) and sub( B ) are not both row or column vectors */ if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmtcadd; else add = TYPE->Fmmtadd; iroca = 0; for( p = 0; p < BnprocsD; p++ ) { if( ( AprocR == p ) && ( BprocR == iroca ) ) { if( ( AmyprocR == p ) && ( AmyprocD == iroca ) ) { add( &M, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); } } else { if( ( AmyprocR == AprocR ) && ( AmyprocD == iroca ) ) { if( AisRow ) TYPE->Cgesd2d( ctxt, M, N, Mptr( A, Aii, Ajj, Ald, size ), Ald, p, BprocR ); else TYPE->Cgesd2d( ctxt, M, N, Mptr( A, Aii, Ajj, Ald, size ), Ald, BprocR, p ); } if( ( BmyprocR == BprocR ) && ( BmyprocD == p ) ) { buf = PB_Cmalloc( M * N * size ); if( AisRow ) TYPE->Cgerv2d( ctxt, M, N, buf, M, AprocR, iroca ); else TYPE->Cgerv2d( ctxt, M, N, buf, M, iroca, AprocR ); add( &M, &N, ALPHA, buf, &M, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); if( buf ) free( buf ); } } iroca = MModAdd1( iroca, AnprocsD ); } } } else { /* * sub( B ) is replicated */ size = TYPE->size; if( AmyprocR == AprocR ) { if( RRorCC ) { if( Mupcase( CONJUG[0] ) != CNOCONJG ) TYPE->Fmmcadd( &M, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); else TYPE->Fmmadd( &M, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); } else { if( Mupcase( CONJUG[0] ) != CNOCONJG ) TYPE->Fmmtcadd( &M, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); else TYPE->Fmmtadd( &M, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); } if( AisRow ) { scope = CCOLUMN; } else { scope = CROW; } top = PB_Ctop( &ctxt, BCAST, &scope, TOP_GET ); if( RRorCC ) TYPE->Cgebs2d( ctxt, &scope, top, M, N, Mptr( B, Bii, Bjj, Bld, size ), Bld ); else TYPE->Cgebs2d( ctxt, &scope, top, N, M, Mptr( B, Bii, Bjj, Bld, size ), Bld ); } else { if( AisRow ) { scope = CCOLUMN; rsrc = AprocR; csrc = AmyprocD; } else { scope = CROW; rsrc = AmyprocD; csrc = AprocR; } top = PB_Ctop( &ctxt, BCAST, &scope, TOP_GET ); if( RRorCC ) TYPE->Cgebr2d( ctxt, &scope, top, M, N, Mptr( B, Bii, Bjj, Bld, size ), Bld, rsrc, csrc ); else TYPE->Cgebr2d( ctxt, &scope, top, N, M, Mptr( B, Bii, Bjj, Bld, size ), Bld, rsrc, csrc ); } } } else { /* * sub( A ) is replicated */ if( BisR || ( BmyprocR == BprocR ) ) { /* * If I own a piece of sub( B ), then add sub( A ) to it */ size = TYPE->size; if( RRorCC ) { if( Mupcase( CONJUG[0] ) != CNOCONJG ) TYPE->Fmmcadd( &M, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); else TYPE->Fmmadd( &M, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); } else { if( Mupcase( CONJUG[0] ) != CNOCONJG ) TYPE->Fmmtcadd( &M, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); else TYPE->Fmmtadd( &M, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); } } } /* * End of PB_CpaxpbyNN */ }