/* --------------------------------------------------------------------- * * -- PBLAS auxiliary routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "../pblas.h" #include "../PBpblas.h" #include "../PBtools.h" #include "../PBblacs.h" #include "../PBblas.h" #ifdef __STDC__ void PB_Cpaxpby( PBTYP_T * TYPE, char * CONJUG, int M, int N, char * ALPHA, char * A, int IA, int JA, int * DESCA, char * AROC, char * BETA, char * B, int IB, int JB, int * DESCB, char * BROC ) #else void PB_Cpaxpby( TYPE, CONJUG, M, N, ALPHA, A, IA, JA, DESCA, AROC, BETA, B, IB, JB, DESCB, BROC ) /* * .. Scalar Arguments .. */ char * AROC, * BROC, * CONJUG; int IA, IB, JA, JB, M, N; char * ALPHA, * BETA; PBTYP_T * TYPE; /* * .. Array Arguments .. */ int * DESCA, * DESCB; char * A, * B; #endif { /* * Purpose * ======= * * PB_Cpaxpby adds one submatrix to another, * * sub( B ) := beta * sub( B ) + alpha * sub( A ), or, * * sub( B ) := beta * sub( B ) + alpha * conjg( sub( A ) ), * * where both submatrices are distributed along one dimension; sub( A ) * always denotes A(IA:IA+M-1,JA:JA+N-1). When AROC is 'R' or 'r' * sub( A ) is distributed along a process row, otherwise sub( A ) * is distributed along a process column. When sub( A ) is distributed * along a process row and BROC is 'R' or 'r' or sub( A ) is distributed * along a process column and BROC is 'C' or 'c', then sub( B ) denotes * B(IB:IB+M-1,JB:JB+N-1), and B(IB:IB+N-1,JB:JB+M-1) otherwise. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * TYPE (local input) pointer to a PBTYP_T structure * On entry, TYPE is a pointer to a structure of type PBTYP_T, * that contains type information (See pblas.h). * * CONJUG (global input) pointer to CHAR * On entry, CONJUG specifies whether conjg( sub( A ) ) or * sub( A ) should be added to sub( B ) as follows: * CONJUG = 'N' or 'n': * sub( B ) := beta*sub( B ) + alpha*sub( A ), * otherwise * sub( B ) := beta*sub( B ) + alpha*conjg( sub( A ) ). * * M (global input) INTEGER * On entry, M specifies the number of rows of the submatrix * sub( A ). M must be at least zero. * * N (global input) INTEGER * On entry, N specifies the number of columns of the submatrix * sub( A ). N must be at least zero. * * ALPHA (global input) pointer to CHAR * On entry, ALPHA specifies the scalar alpha. When ALPHA is * supplied as zero then the local entries of the array A cor- * responding to the entries of the submatrix sub( A ) need not * be set on input. * * A (local input) pointer to CHAR * On entry, A is an array of dimension (LLD_A, Ka), where LLD_A * is at least MAX( 1, Lr( 1, IA+M-1 ) ), and, Ka is at least * Lc( 1, JA+N-1 ). Before entry, this array contains the local * entries of the matrix A. * * IA (global input) INTEGER * On entry, IA specifies A's global row index, which points to * the beginning of the submatrix sub( A ). * * JA (global input) INTEGER * On entry, JA specifies A's global column index, which points * to the beginning of the submatrix sub( A ). * * DESCA (global and local input) INTEGER array * On entry, DESCA is an integer array of dimension DLEN_. This * is the array descriptor for the matrix A. * * AROC (global input) pointer to CHAR * On entry, AROC specifies the orientation of the subvector * sub( A ). When AROC is 'R' or 'r', sub( A ) is a row vector, * and a column vector otherwise. * * BETA (global input) pointer to CHAR * On entry, BETA specifies the scalar beta. When BETA is sup- * plied as zero then the local entries of the array B corres- * ponding to the entries of the submatrix sub( B ) need not be * set on input. * * B (local input/local output) pointer to CHAR * On entry, B is an array of dimension (LLD_B, Kb), where LLD_B * is at least MAX( 1, Lr( 1, IB+M-1 ) ) when sub( A ) and * sub( B ) are both distributed along a process column or a * process row. In that case, Kb is at least Lc( 1, JB+N-1 ). * Otherwise, LLD_B is at least MAX( 1, Lr( 1, IB+N-1 ) ) and * Kb is at least Lc( 1, JB+M-1 ). Before entry, this array * contains the local entries of the matrix B. On exit, sub( B ) * is overwritten with the updated submatrix. * * IB (global input) INTEGER * On entry, IB specifies B's global row index, which points to * the beginning of the submatrix sub( B ). * * JB (global input) INTEGER * On entry, JB specifies B's global column index, which points * to the beginning of the submatrix sub( B ). * * DESCB (global and local input) INTEGER array * On entry, DESCB is an integer array of dimension DLEN_. This * is the array descriptor for the matrix B. * * BROC (global input) pointer to CHAR * On entry, BROC specifies the orientation of the subvector * sub( B ). When BROC is 'R' or 'r', sub( B ) is a row vector, * and a column vector otherwise. * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char ascope, bscope, * buf = NULL, * one, * top, tran, * zero; int Acol, Aii, AinbD, Ainb1D, AisD, AisR, AisRow, AiD, Ajj, Ald, AmyprocD, AmyprocR, AnbD, AnD, AnR, AnpD, AnprocsD, AnprocsR, AprocD, AprocR, Aroc, Arow, Bcol, Bii, BinbD, Binb1D, BisD, BisR, BisRow, BiD, Bjj, Bld, BmyprocD, BmyprocR, BnbD, BnD, BnR, BnpD, BnprocsD, BnprocsR, BprocD, BprocR, Broc, Brow, BsrcD, OneBlock, OneDgrid, RRorCC, Square, cdst, csrc, ctxt, dst, gcdPQ, k, l, lcmPQ, lcmb, ma, mb, mycol, myrow, na, nb, npcol, npq, nprow, p, q, rdst, rsrc, size, src; PB_VM_T VM; MMADD_T add; /* .. * .. Executable Statements .. * */ /* * Quick return if possible */ if( ( M <= 0 ) || ( N <= 0 ) ) return; /* * Retrieve process grid information */ Cblacs_gridinfo( ( ctxt = DESCA[ CTXT_ ] ), &nprow, &npcol, &myrow, &mycol ); /* * Determine if sub( A ) is distributed or not */ if( ( AisRow = ( Mupcase( AROC[0] ) == CROW ) ) != 0 ) AisD = ( ( DESCA[CSRC_] >= 0 ) && ( ( AnprocsD = npcol ) > 1 ) ); else AisD = ( ( DESCA[RSRC_] >= 0 ) && ( ( AnprocsD = nprow ) > 1 ) ); /* * Determine if sub( B ) is distributed or not */ if( ( BisRow = ( Mupcase( BROC[0] ) == CROW ) ) != 0 ) BisD = ( ( DESCB[CSRC_] >= 0 ) && ( ( BnprocsD = npcol ) > 1 ) ); else BisD = ( ( DESCB[RSRC_] >= 0 ) && ( ( BnprocsD = nprow ) > 1 ) ); /* * AisD && BisD <=> both operands are indeed distributed */ if( AisD && BisD ) { /* * Retrieve sub( A )'s local information: Aii, Ajj, Arow, Acol ... */ PB_Cinfog2l( IA, JA, DESCA, nprow, npcol, myrow, mycol, &Aii, &Ajj, &Arow, &Acol ); if( AisRow ) { AinbD = DESCA[INB_]; AnbD = DESCA[NB_]; Ald = DESCA[LLD_]; AiD = JA; AnD = N; AnR = M; AprocD = Acol; AmyprocD = mycol; AprocR = Arow; AmyprocR = myrow; AnprocsR = nprow; AisR = ( ( DESCA[ RSRC_ ] == -1 ) || ( AnprocsR == 1 ) ); } else { AinbD = DESCA[IMB_]; AnbD = DESCA[MB_]; Ald = DESCA[LLD_]; AiD = IA; AnD = M; AnR = N; AprocD = Arow; AmyprocD = myrow; AprocR = Acol; AmyprocR = mycol; AnprocsR = npcol; AisR = ( ( DESCA[ CSRC_ ] == -1 ) || ( AnprocsR == 1 ) ); } Ainb1D = PB_Cfirstnb( AnD, AiD, AinbD, AnbD ); /* * Retrieve sub( B )'s local information: Bii, Bjj, Brow, Bcol ... */ PB_Cinfog2l( IB, JB, DESCB, nprow, npcol, myrow, mycol, &Bii, &Bjj, &Brow, &Bcol ); if( BisRow ) { BinbD = DESCB[ INB_ ]; BnbD = DESCB[ NB_ ]; BsrcD = DESCB[ CSRC_ ]; Bld = DESCB[ LLD_ ]; BiD = JB; if( AisRow ) { BnD = N; BnR = M; } else { BnD = M; BnR = N; } BprocD = Bcol; BmyprocD = mycol; BprocR = Brow; BmyprocR = myrow; BnprocsR = nprow; BisR = ( ( DESCB[ RSRC_ ] == -1 ) || ( BnprocsR == 1 ) ); } else { BinbD = DESCB[ IMB_ ]; BnbD = DESCB[ MB_ ]; BsrcD = DESCB[ RSRC_ ]; Bld = DESCB[ LLD_ ]; BiD = IB; if( AisRow ) { BnD = N; BnR = M; } else { BnD = M; BnR = N; } BprocD = Brow; BmyprocD = myrow; BprocR = Bcol; BmyprocR = mycol; BnprocsR = npcol; BisR = ( ( DESCB[ CSRC_ ] == -1 ) || ( BnprocsR == 1 ) ); } Binb1D = PB_Cfirstnb( BnD, BiD, BinbD, BnbD ); /* * Are sub( A ) and sub( B ) both row or column vectors ? */ RRorCC = ( ( AisRow && BisRow ) || ( !( AisRow ) && !( BisRow ) ) ); /* * Do sub( A ) and sub( B ) span more than one process ? */ OneDgrid = ( ( AnprocsD == 1 ) && ( BnprocsD == 1 ) ); OneBlock = ( ( Ainb1D >= AnD ) && ( Binb1D >= BnD ) ); /* * Are sub( A ) and sub( B ) distributed in the same manner ? */ Square = ( ( Ainb1D == Binb1D ) && ( AnbD == BnbD ) && ( AnprocsD == BnprocsD ) ); if( !( AisR ) ) { /* * sub( A ) is distributed but not replicated */ if( BisR ) { /* * If sub( A ) is not replicated, but sub( B ) is, a process row or column * BprocR need to be selected. It will contain the non-replicated vector to * add sub( A ) to. */ if( RRorCC ) { /* * sub( A ) and sub( B ) are both row or column vectors */ if( ( OneDgrid || OneBlock || Square ) && ( AprocD == BprocD ) ) { /* * sub( A ) and sub( B ) start in the same process row or column AprocD=BprocD. * Enforce a purely local operation by choosing BprocR to be equal to AprocR. */ BprocR = AprocR; } else { /* * Otherwise, communication has to occur, so choose the next process row or * column for BprocR to maximize the number of links, i.e reduce contention. */ BprocR = MModAdd1( AprocR, AnprocsR ); } } else { /* * sub( A ) and sub( B ) are distributed in orthogonal directions, what is * chosen for YprocR does not really matter. Select the process origin. */ BprocR = AprocD; } } else { /* * Neither sub( A ) nor sub( B ) are replicated. If I am not in process row or * column AprocR and not in process row or column BprocR, then quick return. */ if( ( AmyprocR != AprocR ) && ( BmyprocR != BprocR ) ) return; } } else { /* * sub( A ) is distributed and replicated (so no quick return possible) */ if( BisR ) { /* * sub( B ) is distributed and replicated as well */ if( RRorCC ) { /* * sub( A ) and sub( B ) are both row or column vectors */ if( ( OneDgrid || OneBlock || Square ) && ( AprocD == BprocD ) ) { /* * sub( A ) and sub( B ) start in the same process row or column AprocD=BprocD. * Enforce a purely local operation by choosing AprocR and BprocR to be equal * to zero. */ AprocR = BprocR = 0; } else { /* * Otherwise, communication has to occur, so select BprocR to be zero and the * next process row or column for AprocR in order to maximize the number of * used links, i.e reduce contention. */ BprocR = 0; AprocR = MModAdd1( BprocR, BnprocsR ); } } else { /* * sub( A ) and sub( B ) are distributed in orthogonal directions, select the * origin processes. */ AprocR = BprocD; BprocR = AprocD; } } else { /* * sub( B ) is distributed, but not replicated */ if( RRorCC ) { /* * sub( A ) and sub( B ) are both row or column vectors */ if( ( OneDgrid || OneBlock || Square ) && ( AprocD == BprocD ) ) { /* * sub( A ) and sub( B ) start in the same process row or column AprocD=BprocD. * Enforce a purely local operation by choosing AprocR to be equal to BprocR. */ AprocR = BprocR; if( ( AmyprocR != AprocR ) && ( BmyprocR != BprocR ) ) return; } else { /* * Otherwise, communication has to occur, so choose the next process row or * column for AprocR to maximize the number of links, i.e reduce contention. */ AprocR = MModAdd1( BprocR, BnprocsR ); } } else { /* * sub( A ) and sub( B ) are distributed in orthogonal directions, what is * chosen for AprocR does not really matter. Select the origin process. */ AprocR = BprocD; if( ( OneDgrid || OneBlock || Square ) && ( AmyprocR != AprocR ) && ( BmyprocR != BprocR ) ) return; } } } /* * Even if sub( A ) and/or sub( B ) are replicated, only two process row or * column are active, namely AprocR and BprocR. If any of those operands is * replicated, broadcast will occur (unless there is an easy way out). */ size = TYPE->size; /* * A purely local operation occurs iff the operands start in the same process * and, if either the grid is mono-dimensional or there is a single local block * to be added or if both operands are aligned. */ if( ( ( RRorCC && ( AprocD == BprocD ) && ( AisR || BisR || ( AprocR == BprocR ) ) ) || ( !( RRorCC ) && ( BisR || ( AprocD == BprocR ) ) && ( AisR || ( AprocR == BprocD ) ) ) ) && ( OneDgrid || OneBlock || ( RRorCC && Square ) ) ) { if( ( !AisR && ( AmyprocR == AprocR ) ) || ( AisR && ( BisR || BmyprocR == BprocR ) ) ) { AnpD = PB_Cnumroc( AnD, 0, Ainb1D, AnbD, AmyprocD, AprocD, AnprocsD ); BnpD = PB_Cnumroc( BnD, 0, Binb1D, BnbD, BmyprocD, BprocD, BnprocsD ); if( ( AnpD > 0 ) && ( BnpD > 0 ) ) { /* * Select the local add routine accordingly to RRorCC */ if( RRorCC ) { if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmcadd; else add = TYPE->Fmmadd; } else { if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmtcadd; else add = TYPE->Fmmtadd; } /* * Local addition */ if( AisRow ) add( &AnR, &AnpD, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); else add( &AnpD, &AnR, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); } } if( RRorCC && AisR && BisR ) return; } else if( ( RRorCC && OneDgrid ) || OneBlock || Square ) { /* * Otherwise, it may be possible to add the distributed vectors in a single * message exchange iff the grid is mono-dimensional and the operands are * distributed in the same direction, or there is just one block to be exchanged * or if both operands are similarly distributed in their respective direction. */ if( RRorCC ) { if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmcadd; else add = TYPE->Fmmadd; } else { if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmtcadd; else add = TYPE->Fmmtadd; } if( ( AisR && BisR ) || ( AmyprocR == AprocR ) ) { AnpD = PB_Cnumroc( AnD, 0, Ainb1D, AnbD, AmyprocD, AprocD, AnprocsD ); if( AnpD > 0 ) { dst = BprocD + MModSub( AmyprocD, AprocD, AnprocsD ); dst = MPosMod( dst, BnprocsD ); if( AisRow ) { ma = AnR; na = AnpD; } else { ma = AnpD; na = AnR; } if( !( AisR && BisR ) ) { if( BisRow ) { rdst = BprocR; cdst = dst; } else { rdst = dst; cdst = BprocR; } } else { if( BisRow ) { if( !AisRow ) { rdst = AmyprocR; } else { rdst = MModAdd1( BmyprocR, BnprocsR ); } cdst = dst; } else { rdst = dst; if( AisRow ) { cdst = AmyprocR; } else { cdst = MModAdd1( BmyprocR, BnprocsR ); } } } if( ( myrow == rdst ) && ( mycol == cdst ) ) { add( &ma, &na, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); } else { TYPE->Cgesd2d( ctxt, ma, na, Mptr( A, Aii, Ajj, Ald, size ), Ald, rdst, cdst ); } } } if( ( AisR && BisR ) || ( BmyprocR == BprocR ) ) { BnpD = PB_Cnumroc( BnD, 0, Binb1D, BnbD, BmyprocD, BprocD, BnprocsD ); if( BnpD > 0 ) { src = AprocD + MModSub( BmyprocD, BprocD, BnprocsD ); src = MPosMod( src, AnprocsD ); if( AisRow ) { ma = BnR; na = BnpD; } else { ma = BnpD; na = BnR; } if( !( AisR && BisR ) ) { if( AisRow ) { rsrc = AprocR; csrc = src; } else { rsrc = src; csrc = AprocR; } } else { if( AisRow ) { if( !BisRow ) { rsrc = BmyprocR; } else { rsrc = MModSub1( AmyprocR, AnprocsR ); } csrc = src; } else { rsrc = src; if( BisRow ) { csrc = BmyprocR; } else { csrc = MModSub1( AmyprocR, AnprocsR ); } } } if( ( myrow != rsrc ) || ( mycol != csrc ) ) { buf = PB_Cmalloc( BnpD * BnR * size ); TYPE->Cgerv2d( ctxt, ma, na, buf, ma, rsrc, csrc ); add( &ma, &na, ALPHA, buf, &ma, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld ); if( buf ) free( buf ); } } } if( AisR && BisR ) return; } else { /* * General case */ if( RRorCC ) { if( Mupcase( CONJUG[0] ) != CNOCONJG ) tran = CCONJG; else tran = CNOTRAN; } else { if( Mupcase( CONJUG[0] ) != CNOCONJG ) tran = CCOTRAN; else tran = CTRAN; } if( AisRow ) { ascope = CCOLUMN; ma = AnR; } else { ascope = CROW; na = AnR; } bscope = ( BisRow ? CCOLUMN : CROW ); lcmb = PB_Clcm( AnprocsD * AnbD, BnprocsD * BnbD ); one = TYPE->one; zero = TYPE->zero; gcdPQ = PB_Cgcd( AnprocsD, BnprocsD ); lcmPQ = ( AnprocsD / gcdPQ ) * BnprocsD; for( k = 0; k < gcdPQ; k++ ) { p = 0; q = k; for( l = 0; l < lcmPQ; l++ ) { Aroc = MModAdd( AprocD, p, AnprocsD ); Broc = MModAdd( BprocD, q, BnprocsD ); if( ( AmyprocD == Aroc ) || ( BmyprocD == Broc ) ) { AnpD = PB_Cnumroc( AnD, 0, Ainb1D, AnbD, Aroc, AprocD, AnprocsD ); BnpD = PB_Cnumroc( BnD, 0, Binb1D, BnbD, Broc, BprocD, BnprocsD ); PB_CVMinit( &VM, 0, AnpD, BnpD, Ainb1D, Binb1D, AnbD, BnbD, p, q, AnprocsD, BnprocsD, lcmb ); if( npq = PB_CVMnpq( &VM ) ) { if( ( RRorCC && ( Aroc == Broc ) && ( AisR || ( AprocR == BprocR ) ) ) || ( !( RRorCC ) && ( Aroc == BprocR ) && ( AisR || ( AprocR == Broc ) ) ) ) { if( ( BmyprocD == Broc ) && ( BmyprocR == BprocR ) ) { PB_CVMloc( TYPE, &VM, ROW, &ascope, PACKING, &tran, npq, AnR, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), Bld ); } } else { if( ( AmyprocR == AprocR ) && ( AmyprocD == Aroc ) ) { if( AisRow ) { na = npq; } else { ma = npq; } buf = PB_Cmalloc( ma * na * size ); PB_CVMpack( TYPE, &VM, ROW, &ascope, PACKING, NOTRAN, npq, AnR, one, Mptr( A, Aii, Ajj, Ald, size ), Ald, zero, buf, ma ); if( BisRow ) { rdst = BprocR; cdst = Broc; } else { rdst = Broc; cdst = BprocR; } TYPE->Cgesd2d( ctxt, ma, na, buf, ma, rdst, cdst ); if( buf ) free ( buf ); } if( ( BmyprocR == BprocR ) && ( BmyprocD == Broc ) ) { if( AisRow ) { na = npq; rsrc = AprocR; csrc = Aroc; } else { ma = npq; rsrc = Aroc; csrc = AprocR; } buf = PB_Cmalloc( ma * na * size ); TYPE->Cgerv2d( ctxt, ma, na, buf, ma, rsrc, csrc ); PB_CVMpack( TYPE, &VM, COLUMN, &bscope, UNPACKING, &tran, npq, AnR, BETA, Mptr( B, Bii, Bjj, Bld, size ), Bld, ALPHA, buf, ma ); if( buf ) free ( buf ); } } } } p = MModAdd1( p, AnprocsD ); q = MModAdd1( q, BnprocsD ); } if( AisR ) AprocR = MModAdd1( AprocR, AnprocsR ); } } if( BisR ) { /* * Replicate sub( B ) */ BnpD = PB_Cnumroc( BnD, BiD, BinbD, BnbD, BmyprocD, BsrcD, BnprocsD ); if( BnpD > 0 ) { if( BisRow ) { bscope = CCOLUMN; mb = BnR; nb = BnpD; rsrc = BprocR; csrc = BmyprocD; } else { bscope = CROW; mb = BnpD; nb = BnR; rsrc = BmyprocD; csrc = BprocR; } top = PB_Ctop( &ctxt, BCAST, &bscope, TOP_GET ); if( BmyprocR == BprocR ) { TYPE->Cgebs2d( ctxt, &bscope, top, mb, nb, Mptr( B, Bii, Bjj, Bld, size ), Bld ); } else { TYPE->Cgebr2d( ctxt, &bscope, top, mb, nb, Mptr( B, Bii, Bjj, Bld, size ), Bld, rsrc, csrc ); } } } } else if( !( AisD ) && BisD ) { /* * sub( A ) is not distributed and sub( B ) is distributed. */ PB_CpaxpbyND( TYPE, CONJUG, M, N, ALPHA, A, IA, JA, DESCA, AROC, BETA, B, IB, JB, DESCB, BROC ); } else if( AisD && !( BisD ) ) { /* * sub( A ) is distributed and sub( B ) is not distributed. */ PB_CpaxpbyDN( TYPE, CONJUG, M, N, ALPHA, A, IA, JA, DESCA, AROC, BETA, B, IB, JB, DESCB, BROC ); } else { /* * Neither sub( A ) nor sub( B ) are distributed. */ PB_CpaxpbyNN( TYPE, CONJUG, M, N, ALPHA, A, IA, JA, DESCA, AROC, BETA, B, IB, JB, DESCB, BROC ); } /* * End of PB_Cpaxpby */ }