/* --------------------------------------------------------------------- * * -- PBLAS auxiliary routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "../pblas.h" #include "../PBpblas.h" #include "../PBtools.h" #include "../PBblacs.h" #include "../PBblas.h" #ifdef __STDC__ void PB_CInV2( PBTYP_T * TYPE, char * CONJUG, char * ROWCOL, int M, int N, int * DESCA, int K, char * X, int IX, int JX, int * DESCX, char * XROC, char * XAPTR, int IJXA, int * DXA ) #else void PB_CInV2( TYPE, CONJUG, ROWCOL, M, N, DESCA, K, X, IX, JX, DESCX, XROC, XAPTR, IJXA, DXA ) /* * .. Scalar Arguments .. */ char * CONJUG, * ROWCOL, * XROC; int IJXA, IX, JX, K, M, N; PBTYP_T * TYPE; /* * .. Array Arguments .. */ int * DESCA, * DESCX, * DXA; char * X, * XAPTR; #endif { /* * Purpose * ======= * * PB_CInV2 adds data to an array that contains a one-dimensional input * only subvector which is replicated over the rows or columns of a sub- * matrix described by DESCA. A subvector is specified on input to this * routine that is added to the replicated buffer. This routine is spe- * cifically designed for LCM hybrid variants. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * TYPE (local input) pointer to a PBTYP_T structure * On entry, TYPE is a pointer to a structure of type PBTYP_T, * that contains type information (See pblas.h). * * CONJUG (global input) pointer to CHAR * On entry, CONJUG specifies if this routine should conjugate * the subvector as follows: * = 'N' or 'n': The initial subvector is copied, * = 'Z' or 'z': The conjugate subvector is copied. * * ROWCOL (global input) pointer to CHAR * On entry, ROWCOL specifies if the existing buffer pointed to * XAPTR is a row or column subvector replicated over the under- * lying submatrix as follows: * = 'R' or 'r': XAPTR is a row subvector, * = 'C' or 'c': XAPTR is a column subvector. * * M (global input) INTEGER * On entry, M specifies the number of rows of the underlying * submatrix described by DESCA. M must be at least zero. * * N (global input) INTEGER * On entry, N specifies the number of columns of the underlying * submatrix described by DESCA. N must be at least zero. * * DESCA (global and local input) INTEGER array * On entry, DESCA is an integer array of dimension DLEN_. This * is the array descriptor for the matrix A. * * K (global input) INTEGER * On entry, K specifies the length of the non-distributed di- * mension of the subvector sub( X ). K must be at least zero. * * X (local input) pointer to CHAR * On entry, X is an array of dimension (LLD_X, Kx), where LLD_X * is at least MAX( 1, Lr( K, IX ) ) when XROC is 'R' or 'r' * and MAX( 1, Lr( 1, IX+Lx-1 ) ) otherwise, and, Kx is at least * Lc( 1, JX+Lx-1 ) when INCX = M_X and Lc( K, JX ) otherwise. * Lx is N when ROWCOL = 'R' or 'r' and M otherwise. Before en- * try, this array contains the local entries of the matrix X. * * IX (global input) INTEGER * On entry, IX specifies X's global row index, which points to * the beginning of the submatrix sub( X ). * * JX (global input) INTEGER * On entry, JX specifies X's global column index, which points * to the beginning of the submatrix sub( X ). * * DESCX (global and local input) INTEGER array * On entry, DESCX is an integer array of dimension DLEN_. This * is the array descriptor for the matrix X. * * XROC (global input) pointer to CHAR * On entry, XROC specifies the orientation of the subvector * sub( X ). When XROC is 'R' or 'r', sub( X ) is a row vector, * and a column vector otherwise. * * XAPTR (local input/local output) pointer to CHAR * On entry, XAPTR is an array containing some initial data. On * exit, the subvector sub( X ) is copied into this array which * is replicated over the rows or columns of the underlying ma- * trix as specified by ROWCOL and DESCA. * * IJXA (global input) INTEGER * On entry, IJXA specifies XA global row or column index depen- * ding on ROWCOL in the array pointed to by XAPTR, where the * subvector sub( X ) should copied. * * DXA (global and local input) INTEGER array * On entry, DXA is a descriptor array of dimension DLEN_ des- * cribing the data layout of the data pointed to by XAPTR. * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char * Xptr = NULL, * top; int AColSpan, ARowSpan, Acol, Aimb, Ainb, AisD, Amb, Amp, Anb, Anq, Arow, XAld, Xcol, Xii, Ximb1, Xinb1, XisD, XisR, XisRow, Xjj, Xld=1, Xmb, Xnb, Xrow, ctxt, mycol, myrow, npcol, nprow, size; /* .. * .. Executable Statements .. * */ /* * Quick return if possible */ if( ( M <= 0 ) || ( N <= 0 ) || ( K <= 0 ) ) return; /* * Retrieve process grid information */ Cblacs_gridinfo( ( ctxt = DESCX[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); /* * Retrieve sub( X )'s local information: Xii, Xjj, Xrow, Ycol */ Minfog2l( IX, JX, DESCX, nprow, npcol, myrow, mycol, Xii, Xjj, Xrow, Xcol ); /* * Is sub( X ) distributed or not, replicated or not ? */ if( ( XisRow = ( Mupcase( XROC[0] ) == CROW ) ) != 0 ) { XisD = ( ( Xcol >= 0 ) && ( npcol > 1 ) ); XisR = ( ( Xrow == -1 ) || ( nprow == 1 ) ); } else { XisD = ( ( Xrow >= 0 ) && ( nprow > 1 ) ); XisR = ( ( Xcol == -1 ) || ( npcol == 1 ) ); } Arow = DESCA[ RSRC_ ]; Acol = DESCA[ CSRC_ ]; if( Mupcase( ROWCOL[0] ) == CROW ) { /* * Want a row vector. It is possible to reuse sub( X ) iff sub( X ) is already * a row vector and the data does not need to be conjugated. */ if( XisRow && ( Mupcase( CONJUG[0] ) == CNOCONJG ) ) { AisD = ( ( Acol >= 0 ) && ( npcol > 1 ) ); Ainb = DESCA[INB_]; Anb = DESCA[NB_]; Xnb = DESCX[NB_]; Mfirstnb( Xinb1, N, JX, DESCX[INB_], Xnb ); /* * sub( X ) is aligned with A (reuse condition) iff both operands are not * distributed, or both of them are distributed and start in the same process * column and either N is smaller than the first blocksize of sub( X ) and A, * or their column blocking factors match. */ if( ( !AisD && !XisD ) || ( ( AisD && XisD ) && ( ( Acol == Xcol ) && ( ( ( Ainb >= N ) && ( Xinb1 >= N ) ) || ( ( Ainb == Xinb1 ) && ( Anb == Xnb ) ) ) ) ) ) { /* * sub( X ) is aligned with A. Does A spans multiples process rows ? It does * if Arow < 0. */ ARowSpan = ( Arow < 0 ) || Mspan( M, 0, DESCA[IMB_], DESCA[MB_], Arow, nprow ); Mnumroc( Anq, N, 0, Ainb, Anb, mycol, Acol, npcol ); if( XisR || ( !ARowSpan && ( Arow == Xrow ) ) ) { /* * If sub( X ) is replicated, or, A spans only one process row and either * sub( X ) is replicated or resides in the same process row than A, then * sub( X ) is already at the correct place. */ if( ( Anq > 0 ) && ( ARowSpan || ( myrow == Arow ) ) ) { size = TYPE->size; Xld = DESCX[ LLD_ ]; XAld = DXA[LLD_]; TYPE->Fmmadd( &K, &Anq, TYPE->one, Mptr( X, Xii, Xjj, Xld, size ), &Xld, TYPE->zero, Mptr( XAPTR, IJXA, 0, XAld, size ), &XAld ); } } else if( ARowSpan ) { /* * Otherwise, we know that sub( X ) cannot be replicated, let suppose in * addition that A spans all process rows. sub( X ) need simply to be broadcast * over A. */ if( myrow == Xrow ) { if( Anq > 0 ) { top = PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET ); size = TYPE->size; Xld = DESCX[LLD_]; XAld = DXA[LLD_]; Xptr = Mptr( XAPTR, IJXA, 0, XAld, size ); TYPE->Fmmadd( &K, &Anq, TYPE->one, Mptr( X, Xii, Xjj, Xld, size ), &Xld, TYPE->zero, Xptr, &XAld ); TYPE->Cgebs2d( ctxt, COLUMN, top, K, Anq, Xptr, XAld ); } } else { if( Anq > 0 ) { top = PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET ); XAld = DXA[LLD_]; TYPE->Cgebr2d( ctxt, COLUMN, top, K, Anq, Mptr( XAPTR, IJXA, 0, XAld, TYPE->size ), XAld, Xrow, mycol ); } } } else { /* * Finally, sub( X ) is not replicated and A spans only one process row. There * is no need to broadcast, a send/recv is sufficient. */ if( myrow == Xrow ) { if( Anq > 0 ) { Xld = DESCX[LLD_]; TYPE->Cgesd2d( ctxt, K, Anq, Mptr( X, Xii, Xjj, Xld, TYPE->size ), Xld, Arow, mycol ); } } else if( myrow == Arow ) { if( Anq > 0 ) { XAld = DXA[LLD_]; TYPE->Cgerv2d( ctxt, K, Anq, Mptr( XAPTR, IJXA, 0, XAld, TYPE->size ), XAld, Xrow, mycol ); } } } return; } } /* * sub( X ) cannot be reused, too bad ... redistribute */ if( XisRow ) { PB_Cpaxpby( TYPE, CONJUG, K, N, TYPE->one, X, IX, JX, DESCX, XROC, TYPE->zero, XAPTR, IJXA, 0, DXA, ROW ); } else { PB_Cpaxpby( TYPE, CONJUG, N, K, TYPE->one, X, IX, JX, DESCX, XROC, TYPE->zero, XAPTR, IJXA, 0, DXA, ROW ); } } else { /* * Want a column vector. It is possible to reuse sub( X ) iff sub( X ) is * already a column vector and the data does not need to be conjugated */ if( !( XisRow ) && ( Mupcase( CONJUG[0] ) == CNOCONJG ) ) { AisD = ( ( Arow >= 0 ) && ( nprow > 1 ) ); Aimb = DESCA[IMB_]; Amb = DESCA[MB_]; Xmb = DESCX[MB_]; Mfirstnb( Ximb1, M, IX, DESCX[IMB_], Xmb ); /* * sub( X ) is aligned with A (reuse condition) iff both operands are not * distributed, or both of them are distributed and start in the same process * row and either M is smaller than the first blocksize of sub( X ) and A, or * their row blocking factors match. */ if( ( !AisD && !XisD ) || ( ( AisD && XisD ) && ( ( Arow == Xrow ) && ( ( ( Aimb >= M ) && ( Ximb1 >= M ) ) || ( ( Aimb == Ximb1 ) && ( Amb == Xmb ) ) ) ) ) ) { /* * sub( X ) is aligned with A. Does A spans multiples process columns ? It * does if Acol < 0. */ AColSpan = ( Acol < 0 ) || Mspan( N, 0, DESCA[INB_], DESCA[NB_], Acol, npcol ); Mnumroc( Amp, M, 0, Aimb, Amb, myrow, Arow, nprow ); if( XisR || ( !AColSpan && ( Acol == Xcol ) ) ) { /* * If sub( X ) is replicated, or, A spans only one process column and either * sub( X ) is replicated or resides in the same process columns than A, then * sub( X ) is already at the correct place. */ if( ( Amp > 0 ) && ( AColSpan || ( mycol == Acol ) ) ) { size = TYPE->size; Xld = DESCX[ LLD_ ]; XAld = DXA[LLD_]; TYPE->Fmmadd( &Amp, &K, TYPE->one, Mptr( X, Xii, Xjj, Xld, size ), &Xld, TYPE->zero, Mptr( XAPTR, 0, IJXA, XAld, size ), &XAld ); } } else if( AColSpan ) { /* * Otherwise, we know that sub( X ) is not be replicated, let suppose in * addition that A spans all process columns. sub( X ) need simply to be * broadcast over A. */ if( mycol == Xcol ) { if( Amp > 0 ) { top = PB_Ctop( &ctxt, BCAST, ROW, TOP_GET ); size = TYPE->size; Xld = DESCX[LLD_]; XAld = DXA[LLD_]; Xptr = Mptr( XAPTR, 0, IJXA, XAld, size ); TYPE->Fmmadd( &Amp, &K, TYPE->one, Mptr( X, Xii, Xjj, Xld, size ), &Xld, TYPE->zero, Xptr, &XAld ); TYPE->Cgebs2d( ctxt, ROW, top, Amp, K, Xptr, XAld ); } } else { if( Amp > 0 ) { top = PB_Ctop( &ctxt, BCAST, ROW, TOP_GET ); XAld = DXA[LLD_]; TYPE->Cgebr2d( ctxt, ROW, top, Amp, K, Mptr( XAPTR, 0, IJXA, XAld, TYPE->size ), XAld, myrow, Xcol ); } } } else { /* * Finally, sub( X ) is not replicated and A spans only one process column. * There is no need to broadcast, a send/recv is sufficient. */ if( mycol == Xcol ) { if( Amp > 0 ) { Xld = DESCX[LLD_]; TYPE->Cgesd2d( ctxt, Amp, K, Mptr( X, Xii, Xjj, Xld, TYPE->size ), Xld, myrow, Acol ); } } else if( mycol == Acol ) { if( Amp > 0 ) { XAld = DXA[LLD_]; TYPE->Cgerv2d( ctxt, Amp, K, Mptr( XAPTR, 0, IJXA, XAld, TYPE->size ), XAld, myrow, Xcol ); } } } return; } } /* * sub( X ) cannot be reused, too bad ... redistribute */ if( XisRow ) { PB_Cpaxpby( TYPE, CONJUG, K, M, TYPE->one, X, IX, JX, DESCX, XROC, TYPE->zero, XAPTR, 0, IJXA, DXA, COLUMN ); } else { PB_Cpaxpby( TYPE, CONJUG, M, K, TYPE->one, X, IX, JX, DESCX, XROC, TYPE->zero, XAPTR, 0, IJXA, DXA, COLUMN ); } } /* * End of PB_CInV2 */ }