ScaLAPACK 2.1  2.1
ScaLAPACK: Scalable Linear Algebra PACKage
dlatm1.f
Go to the documentation of this file.
1  SUBROUTINE dlatm1( MODE, COND, IRSIGN, IDIST, ISEED, D, N, INFO )
2 *
3 * -- LAPACK auxiliary test routine (version 3.1) --
4 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
5 * November 2006
6 *
7 * .. Scalar Arguments ..
8  INTEGER IDIST, INFO, IRSIGN, MODE, N
9  DOUBLE PRECISION COND
10 * ..
11 * .. Array Arguments ..
12  INTEGER ISEED( 4 )
13  DOUBLE PRECISION D( * )
14 * ..
15 *
16 * Purpose
17 * =======
18 *
19 * DLATM1 computes the entries of D(1..N) as specified by
20 * MODE, COND and IRSIGN. IDIST and ISEED determine the generation
21 * of random numbers. DLATM1 is called by SLATMR to generate
22 * random test matrices for LAPACK programs.
23 *
24 * Arguments
25 * =========
26 *
27 * MODE - INTEGER
28 * On entry describes how D is to be computed:
29 * MODE = 0 means do not change D.
30 * MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
31 * MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
32 * MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
33 * MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
34 * MODE = 5 sets D to random numbers in the range
35 * ( 1/COND , 1 ) such that their logarithms
36 * are uniformly distributed.
37 * MODE = 6 set D to random numbers from same distribution
38 * as the rest of the matrix.
39 * MODE < 0 has the same meaning as ABS(MODE), except that
40 * the order of the elements of D is reversed.
41 * Thus if MODE is positive, D has entries ranging from
42 * 1 to 1/COND, if negative, from 1/COND to 1,
43 * Not modified.
44 *
45 * COND - DOUBLE PRECISION
46 * On entry, used as described under MODE above.
47 * If used, it must be >= 1. Not modified.
48 *
49 * IRSIGN - INTEGER
50 * On entry, if MODE neither -6, 0 nor 6, determines sign of
51 * entries of D
52 * 0 => leave entries of D unchanged
53 * 1 => multiply each entry of D by 1 or -1 with probability .5
54 *
55 * IDIST - CHARACTER*1
56 * On entry, IDIST specifies the type of distribution to be
57 * used to generate a random matrix .
58 * 1 => UNIFORM( 0, 1 )
59 * 2 => UNIFORM( -1, 1 )
60 * 3 => NORMAL( 0, 1 )
61 * Not modified.
62 *
63 * ISEED - INTEGER array, dimension ( 4 )
64 * On entry ISEED specifies the seed of the random number
65 * generator. The random number generator uses a
66 * linear congruential sequence limited to small
67 * integers, and so should produce machine independent
68 * random numbers. The values of ISEED are changed on
69 * exit, and can be used in the next call to DLATM1
70 * to continue the same random number sequence.
71 * Changed on exit.
72 *
73 * D - DOUBLE PRECISION array, dimension ( MIN( M , N ) )
74 * Array to be computed according to MODE, COND and IRSIGN.
75 * May be changed on exit if MODE is nonzero.
76 *
77 * N - INTEGER
78 * Number of entries of D. Not modified.
79 *
80 * INFO - INTEGER
81 * 0 => normal termination
82 * -1 => if MODE not in range -6 to 6
83 * -2 => if MODE neither -6, 0 nor 6, and
84 * IRSIGN neither 0 nor 1
85 * -3 => if MODE neither -6, 0 nor 6 and COND less than 1
86 * -4 => if MODE equals 6 or -6 and IDIST not in range 1 to 3
87 * -7 => if N negative
88 *
89 * =====================================================================
90 *
91 * .. Parameters ..
92  DOUBLE PRECISION ONE
93  parameter( one = 1.0d0 )
94  DOUBLE PRECISION HALF
95  parameter( half = 0.5d0 )
96 * ..
97 * .. Local Scalars ..
98  INTEGER I
99  DOUBLE PRECISION ALPHA, TEMP
100 * ..
101 * .. External Functions ..
102  DOUBLE PRECISION DLARAN
103  EXTERNAL dlaran
104 * ..
105 * .. External Subroutines ..
106  EXTERNAL dlarnv, xerbla
107 * ..
108 * .. Intrinsic Functions ..
109  INTRINSIC abs, dble, exp, log
110 * ..
111 * .. Executable Statements ..
112 *
113 * Decode and Test the input parameters. Initialize flags & seed.
114 *
115  info = 0
116 *
117 * Quick return if possible
118 *
119  IF( n.EQ.0 )
120  $ RETURN
121 *
122 * Set INFO if an error
123 *
124  IF( mode.LT.-6 .OR. mode.GT.6 ) THEN
125  info = -1
126  ELSE IF( ( mode.NE.-6 .AND. mode.NE.0 .AND. mode.NE.6 ) .AND.
127  $ ( irsign.NE.0 .AND. irsign.NE.1 ) ) THEN
128  info = -2
129  ELSE IF( ( mode.NE.-6 .AND. mode.NE.0 .AND. mode.NE.6 ) .AND.
130  $ cond.LT.one ) THEN
131  info = -3
132  ELSE IF( ( mode.EQ.6 .OR. mode.EQ.-6 ) .AND.
133  $ ( idist.LT.1 .OR. idist.GT.3 ) ) THEN
134  info = -4
135  ELSE IF( n.LT.0 ) THEN
136  info = -7
137  END IF
138 *
139  IF( info.NE.0 ) THEN
140  CALL xerbla( 'DLATM1', -info )
141  RETURN
142  END IF
143 *
144 * Compute D according to COND and MODE
145 *
146  IF( mode.NE.0 ) THEN
147  GO TO ( 10, 30, 50, 70, 90, 110 )abs( mode )
148 *
149 * One large D value:
150 *
151  10 CONTINUE
152  DO 20 i = 1, n
153  d( i ) = one / cond
154  20 CONTINUE
155  d( 1 ) = one
156  GO TO 120
157 *
158 * One small D value:
159 *
160  30 CONTINUE
161  DO 40 i = 1, n
162  d( i ) = one
163  40 CONTINUE
164  d( n ) = one / cond
165  GO TO 120
166 *
167 * Exponentially distributed D values:
168 *
169  50 CONTINUE
170  d( 1 ) = one
171  IF( n.GT.1 ) THEN
172  alpha = cond**( -one / dble( n-1 ) )
173  DO 60 i = 2, n
174  d( i ) = alpha**( i-1 )
175  60 CONTINUE
176  END IF
177  GO TO 120
178 *
179 * Arithmetically distributed D values:
180 *
181  70 CONTINUE
182  d( 1 ) = one
183  IF( n.GT.1 ) THEN
184  temp = one / cond
185  alpha = ( one-temp ) / dble( n-1 )
186  DO 80 i = 2, n
187  d( i ) = dble( n-i )*alpha + temp
188  80 CONTINUE
189  END IF
190  GO TO 120
191 *
192 * Randomly distributed D values on ( 1/COND , 1):
193 *
194  90 CONTINUE
195  alpha = log( one / cond )
196  DO 100 i = 1, n
197  d( i ) = exp( alpha*dlaran( iseed ) )
198  100 CONTINUE
199  GO TO 120
200 *
201 * Randomly distributed D values from IDIST
202 *
203  110 CONTINUE
204  CALL dlarnv( idist, iseed, n, d )
205 *
206  120 CONTINUE
207 *
208 * If MODE neither -6 nor 0 nor 6, and IRSIGN = 1, assign
209 * random signs to D
210 *
211  IF( ( mode.NE.-6 .AND. mode.NE.0 .AND. mode.NE.6 ) .AND.
212  $ irsign.EQ.1 ) THEN
213  DO 130 i = 1, n
214  temp = dlaran( iseed )
215  IF( temp.GT.half )
216  $ d( i ) = -d( i )
217  130 CONTINUE
218  END IF
219 *
220 * Reverse if MODE < 0
221 *
222  IF( mode.LT.0 ) THEN
223  DO 140 i = 1, n / 2
224  temp = d( i )
225  d( i ) = d( n+1-i )
226  d( n+1-i ) = temp
227  140 CONTINUE
228  END IF
229 *
230  END IF
231 *
232  RETURN
233 *
234 * End of DLATM1
235 *
236  END
dlatm1
subroutine dlatm1(MODE, COND, IRSIGN, IDIST, ISEED, D, N, INFO)
Definition: dlatm1.f:2