subroutine qaws(f,a,b,alfa,beta,integr,epsabs,epsrel,result, * abserr,neval,ier,limit,lenw,last,iwork,work) c***begin prologue qaws c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a1 c***keywords automatic integrator, special-purpose, c algebraico-logarithmic end-point singularities, c clenshaw-curtis, globally adaptive c***author piessens,robert,appl. math. & progr. div. -k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the routine calculates an approximation result to a given c definite integral i = integral of f*w over (a,b), c (where w shows a singular behaviour at the end points c see parameter integr). c hopefully satisfying following claim for accuracy c abs(i-result).le.max(epsabs,epsrel*abs(i)). c***description c c integration of functions having algebraico-logarithmic c end point singularities c standard fortran subroutine c real version c c parameters c on entry c f - real c function subprogram defining the integrand c function f(x). the actual name for f needs to be c declared e x t e r n a l in the driver program. c c a - real c lower limit of integration c c b - real c upper limit of integration, b.gt.a c if b.le.a, the routine will end with ier = 6. c c alfa - real c parameter in the integrand function, alfa.gt.(-1) c if alfa.le.(-1), the routine will end with c ier = 6. c c beta - real c parameter in the integrand function, beta.gt.(-1) c if beta.le.(-1), the routine will end with c ier = 6. c c integr - integer c indicates which weight function is to be used c = 1 (x-a)**alfa*(b-x)**beta c = 2 (x-a)**alfa*(b-x)**beta*log(x-a) c = 3 (x-a)**alfa*(b-x)**beta*log(b-x) c = 4 (x-a)**alfa*(b-x)**beta*log(x-a)*log(b-x) c if integr.lt.1 or integr.gt.4, the routine c will end with ier = 6. c c epsabs - real c absolute accuracy requested c epsrel - real c relative accuracy requested c if epsabs.le.0 c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), c the routine will end with ier = 6. c c on return c result - real c approximation to the integral c c abserr - real c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c neval - integer c number of integrand evaluations c c ier - integer c ier = 0 normal and reliable termination of the c routine. it is assumed that the requested c accuracy has been achieved. c ier.gt.0 abnormal termination of the routine c the estimates for the integral and error c are less reliable. it is assumed that the c requested accuracy has not been achieved. c error messages c ier = 1 maximum number of subdivisions allowed c has been achieved. one can allow more c subdivisions by increasing the value of c limit (and taking the according dimension c adjustments into account). however, if c this yields no improvement it is advised c to analyze the integrand, in order to c determine the integration difficulties c which prevent the requested tolerance from c being achieved. in case of a jump c discontinuity or a local singularity c of algebraico-logarithmic type at one or c more interior points of the integration c range, one should proceed by splitting up c the interval at these points and calling c the integrator on the subranges. c = 2 the occurrence of roundoff error is c detected, which prevents the requested c tolerance from being achieved. c = 3 extremely bad integrand behaviour occurs c at some points of the integration c interval. c = 6 the input is invalid, because c b.le.a or alfa.le.(-1) or beta.le.(-1) or c or integr.lt.1 or integr.gt.4 or c (epsabs.le.0 and c epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) c or limit.lt.2 or lenw.lt.limit*4. c result, abserr, neval, last are set to c zero. except when lenw or limit is invalid c iwork(1), work(limit*2+1) and c work(limit*3+1) are set to zero, work(1) c is set to a and work(limit+1) to b. c c dimensioning parameters c limit - integer c dimensioning parameter for iwork c limit determines the maximum number of c subintervals in the partition of the given c integration interval (a,b), limit.ge.2. c if limit.lt.2, the routine will end with ier = 6. c c lenw - integer c dimensioning parameter for work c lenw must be at least limit*4. c if lenw.lt.limit*4, the routine will end c with ier = 6. c c last - integer c on return, last equals the number of c subintervals produced in the subdivision process, c which determines the significant number of c elements actually in the work arrays. c c work arrays c iwork - integer c vector of dimension limit, the first k c elements of which contain pointers c to the error estimates over the subintervals, c such that work(limit*3+iwork(1)), ..., c work(limit*3+iwork(k)) form a decreasing c sequence with k = last if last.le.(limit/2+2), c and k = limit+1-last otherwise c c work - real c vector of dimension lenw c on return c work(1), ..., work(last) contain the left c end points of the subintervals in the c partition of (a,b), c work(limit+1), ..., work(limit+last) contain c the right end points, c work(limit*2+1), ..., work(limit*2+last) c contain the integral approximations over c the subintervals, c work(limit*3+1), ..., work(limit*3+last) c contain the error estimates. c c***references (none) c***routines called qawse,xerror c***end prologue qaws c real a,abserr,alfa,b,beta,epsabs,epsrel,f,result,work integer ier,integr,iwork,lenw,limit,lvl,l1,l2,l3,neval c dimension iwork(limit),work(lenw) c external f c c check validity of limit and lenw. c c***first executable statement qaws ier = 6 neval = 0 last = 0 result = 0.0e+00 abserr = 0.0e+00 if(limit.lt.2.or.lenw.lt.limit*4) go to 10 c c prepare call for qawse. c l1 = limit+1 l2 = limit+l1 l3 = limit+l2 c call qawse(f,a,b,alfa,beta,integr,epsabs,epsrel,limit,result, * abserr,neval,ier,work(1),work(l1),work(l2),work(l3),iwork,last) c c call error handler if necessary. c lvl = 0 10 if(ier.eq.6) lvl = 1 if(ier.ne.0) call xerror(26habnormal return from qaws, * 26,ier,lvl) return end