
Software CCOP

Connection Coefficients for Orthogonal

Polynomials

Version 1.0

Wolfram Mathematicar 8

TUTORIAL

July 2012

Contents

Introduction 3

1 Description of CCOP 5

2 Theoretical framework 8

3 Symbolic computation of connection coefficients 11
3.1 How to implement recurrence relations in Mathematicar 12
3.2 Implementation of the general recurrence relation for the connection co-

efficients . 12
3.3 Implementation of recurrence coefficients and orthogonal polynomials . . 14
3.4 Getting and verifying results for connection coefficients computed recur-

sively . 16
3.5 Getting and verifying results for connection coefficients computed by di-

rect closed formulas . 17
3.6 Automatic demonstration of closed formulas for the connection coefficients 18
3.7 Main commands’ description . 20

4 Test examples 24
4.1 Charlier polynomials . 24
4.2 Canonical and Laguerre polynomials . 26
4.3 Commands’ description of test examples 27

5 Symbolic computation of connection coefficients in the symmetric case 31
5.1 Automatic demonstration of closed formulas for the connection coefficients 31
5.2 Main command’s description . 34
5.3 Test example . 35
5.4 Commands for the generalized Hermite polynomials 38

2

Introduction

The software CCOP - Connection Coefficients for Orthogonal Polynomials, written in
Mathematicar, concerns the connection coefficients for orthogonal polynomials and
canonical sequences. It allows the recursive computation of the first connection coef-
ficients up to a certain order and can be a useful tool to derive and demonstrate closed
formulas for the connection coefficients.

The software CCOP is related to the article [10] and is available in the library Nu-
meralgo of Netlib (http://www.netlib.org/numeralgo/) as na34 package. It fur-
nish the implementation that produced the results given in [10] and also in [8, 9]. The
aim of this tutorial is to present, explain and exemplify in details that implementation.

In Chapter 1 a brief description of the content of the software CCOP, of its structure
and of the commands is given.

In Chapter 2, we recall the basic definitions and mathematical results needed to
understand the subject, namely the notions of connection coefficients, orthogonal poly-
nomials and symmetry and, also, the recurrence relation of order two satisfied by any
orthogonal sequence, the resultant general recurrence relation fulfilled by the connec-
tion coefficients and the corresponding relations in the symmetrical case. This chapter
reports also definitions and results already given in the paper [10].

Afterwards, we present an extensive chapter dedicated to the symbolic computation
of the connection coefficients. As this work is based on the implementation of recurrence
relations, the first section is devoted to this topic taking as basic example the computa-
tion of the Fibonacci numbers. In the following section, we give explicitly the commands
that implement the general recurrence relation that allows the recursive computation of
the first connection coefficients up to a certain fixed order: we call them the commands
CC. Moreover, we discuss several important details in this implementation that is con-
ceived in order to work for any example. We note that each case is determined by the
recurrence coefficients (the coefficients of the recurrence relation of order 2) and the pa-
rameters of the two orthogonal polynomials sequences corresponding to the connection
coefficients that we want to compute. The names of the commands that translate these
elements are arguments of CC and must be implemented in a certain manner. Therefore,
in the Section 3.3, we propose the implementation of the recurrence coefficients and the
command MOP that computes the corresponding monic orthogonal polynomials using
the above cited recurrence relation of order two. In the Section 3.4, we show how to call
the commands CC in order to get the first connection coefficients up to a fixed order.

3

Also, we established a command named verificationRCC based on the mathematical
definition of the connection coefficients, in order to verify the results produced by CC.
From these results, we try to infer a model to the direct closed formulas for the connec-
tion coefficients. If we succeed, it is always possible to implement those formulas in a
command and compare the results produced by them with those computed recursively.
This comparison is implemented in a command named verificationDCC presented in the
Section 3.5. These last verifications are very useful in order to find possible mistakes in
the model and then correct it. In the following section, we treat the main task of proving
that the formulas are true through a symbolic implementation furnish by the command
demonstrationDCC. At last, we present a list of the main commands and we give, for
each one, the name, a brief description, the arguments, the Mathematicar’s commands
and other commands employed in the implementation and the results produced.

Chapter 4 is devoted to the presentation of test examples. In the first section, we
follow all the steps of the methodology, giving the implementation and the results, for
the Charlier polynomials [3]. This section corresponds to the case study of [10]. Next, we
express the canonical polynomials in terms of the Laguerre ones. Our goal is to explain
how the commands work with an example involving the canonical sequence. We present
all the steps giving the corresponding results. We finish the chapter with a descriptive
list of the commands developed.

Chapter 5 concerns the symmetric case that needs a specific treatment, because,
often, there are different formulas for the connection coefficients corresponding to odd
or even indexes. The same is also true for the recurrence coefficients as is the case of
the example of the Section 5.1 of [10]. The commands CC, verificationRCC and verifi-
cationDCC work perfectly in the symmetric case, but the implementation of the direct
closed formulas must be more complete and the command demonstrationDCC must be
replaced by another one named demonstrationSymDCC. This command is discussed in
the Section 5.1 and we furnish its description in the next section. Afterwards, we present
as test example the generalize Hermite polynomials [3] and we finish this chapter with
the description of the corresponding commands.

We insist on the fact that all the developed commands are designed to accept any
example. The characteristic elements of each case, that is, the names of the commands
corresponding to the recurrence coefficients and the parameters, they are transferred as
arguments of CC, verificationRCC and MOP. The name of the command that translates
the closed formulas is transferred as argument of verificationDCC, demonstrationDCC
and demonstrationSymDCC.

For the sake of clearness, we have preferred to exemplify the commands with sim-
ple test examples. Moreover, this methodology work perfectly in the cases of Bessel,
Laguerre and generalized Hermite with the canonical sequence presented in [8]; can be
used to treat partially other examples as the Gegenbauer and the Jacobi families with
the canonical sequence given in [9], and allows to explore new cases as the semi-classical
ones treated in [9] and [10].

4

Chapter 1

Description of CCOP

In this chapter, we present a brief description of the content of the software CCOP
describing its structure and commands.

: Software Name: CCOP - Connection Coefficients for Orthogonal Polynomials

: Software Version: 1.0

: Authors:

Pascal Maroni
Laboratoire Jacques-Louis Lions - CNRS,
Université Pierre et Marie Curie
Boite courrier 187, 75252 Paris cedex 05, France
Email: maroni@ann.jussieu.fr

Zélia da Rocha∗

Departamento de Matemática - CMUP
Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre n.687, 4169 - 007 Porto, Portugal
Email: mrdioh@fc.up.pt
∗Corresponding author.

: Language: Mathematicar 8.0.4.0.

: Available at: http://www.netlib.org/numeralgo/ as na34 package.

: Reference: P. Maroni, Z. da Rocha, Connection coefficients for orthogonal poly-
nomials: symbolic computations, verifications and demonstrations in the Mathematicar

language, Numerical Algorithms, 63-3 (2013) 507-520.

: Summary:
This software is constituted by the notebook CCOP.nb, written in the Mathematicar

language, and is concerned with connection coefficients for orthogonal polynomials and

5

the canonical sequence. It contains the results of the main reference [10] and is composed
by the following five section cells:

• References

• Main Commands

• Test Examples

• Symmetric semi-classical polynomials of class 1

• Non-symmetric semi-classical polynomials of class 1

The Main Commands section contains the following four subsections:

• Main Commands for Standard Cases

• Main Commands for Symmetric Cases

• Main Commands for Special Cases

• Canonical Case

The Main Commands for Standard Cases subsection contains the following
commands:

- CC for computing recursively the connection coefficients,

- MOP for computing recursively the orthogonal polynomials,

- verificationRCC for verifying the first connection coefficients computed by the com-
mand CC up to a fixed order,

- verificationDCC for comparing the first connection coefficients computed by the
command CC with those computed by direct closed formulas up to a fixed order,

- demonstrationDCC for demonstrating the direct closed formulas for the connection
coefficients.

The Main Commands for Symmetric Cases subsection contains the command
demonstrationSymDCC in order to accomplish the demonstrations when the two se-
quences of polynomials are symmetric.

The Main Commands for Special Cases subsection contains the command
demonstrationEvenOddDCC in order to accomplish the demonstrations when there are
four different formulas for even and odd indexes of the connection coefficients.

The Canonical Case subsection contains the commands for the canonical recur-
rence coefficients and the canonical polynomials.

The Test Examples section contains the following three subsections:

6

• Charlier

The goal is to exemplify how work the software with a simple example. The
Charlier case is also presented in detail in the Section 4 of [10].

• Laguerre and Canonical

The goal is to exemplify how work the software with an example involving the
canonical sequence.

• Generalized Hermite

The goal is to exemplify how work the software with a symmetric example.

Note that for symmetric and other special cases, we use the demonstrationSymDCC
and demonstrationEvenOddDCC commands, instead of demonstrationDCC, in or-
der to accomplish the demonstrations and we must implement other versions of
the recurrence coefficients’ commands.

The remainder two last sections cells are concerned with more complex cases of
orthogonal polynomials. The Symmetric semi-classical polynomials of class 1
section contains the results of the Sub-section 5.1 of [10] and the Non-symmetric
semi-classical polynomials of class 1 section contains the results of the Sub-section
5.2 of [10]. These last formulas are new.

: How to install the software:

1. Open the notebook CCOP.nb

2. The user must begin by executing the cells of the Main Commands section.
After this, it is possible to execute the examples by any order. In each example,
the user must follows the order of the entries.

3. To execute a cell, just click in and press simultaneously Shift and Enter.

: Note: This software has been developed in a MacBook Pro with Mac OS X
Version 10.6.8

: Acknowledgements: Research funded by the European Regional Develop-
ment Fund through the programme COMPETE and by the Portuguese Government
through the FCT Fundação para a Ciência e a Tecnologia under the project PEst-
C/MAT/UI0144/2011.

7

Chapter 2

Theoretical framework

In this chapter, we recall the basic definitions and mathematic results needed to under-
stand the subject, namely the notions of connection coefficients, orthogonal polynomials
and symmetry and, also, the recurrence relation of order two satisfied by any orthogonal
sequence, the resultant general recurrence relation fulfilled by the connection coefficients
and the corresponding relations in the symmetrical case. This chapter is similar to the
Section 2 of [10].

Let P be the vector space of polynomials with coefficients in C and let P ′ be its dual.
We denote by 〈u, p〉 the effect of u ∈ P ′ on p ∈ P. In particular, 〈u, xn〉 := (u)n , n > 0
represent the moments of u.

Let {Pn}n>0 be a monic polynomial sequence with degPn = n, n ≥ 0, that is,
Pn(x) = xn + A form u is said regular [6, 7] if and only if there exists a MPS
{Pn}n>0, such that:

〈u, PnPm〉 = 0 , n 6= m , n,m ≥ 0 , (2.1)〈
u, P 2

n

〉
6= 0 , n ≥ 0 . (2.2)

In this case, {Pn}n>0 is said regularly orthogonal with respect to u and is called a
monic orthogonal polynomial sequence. The orthogonality conditions are given by (2.1)
and (2.2) corresponds to the regularity conditions.

The sequence {Pn}n>0 is regularly orthogonal with respect to u if and only if [6, 7]
there exist two sequences of coefficients {βn}n>0 and {γn+1}n>0, with γn+1 6= 0, n > 0,
such that, {Pn}n>0 satisfies the following initial conditions and recurrence relation of
order 2:

P0(x) = 1, P1(x) = x− β0, (2.3)

Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), n > 2. (2.4)

8

Furthermore, the recurrence coefficients {βn}n>0 and {γn+1}n>0 satisfy:

βn =

〈
u, xP 2

n(x)
〉

〈u, P 2
n(x)〉

, n > 0,

γn+1 =

〈
u, P 2

n+1(x)
〉

〈u, P 2
n(x)〉

, n > 0. (2.5)

We remark that, from (2.3) and (2.5), the regularity conditions (2.2) are equivalent
to the conditions γn+1 6= 0, n > 0.

As usual, we suppose that

βn = 0, γn+1 = 0, Pn(x) = 0, n < 0. (2.6)

We recall that the recurrence coefficients of the canonical sequence {Xn}n>0, Xn(x) =
xn, are

βn = 0, γn+1 = 0, n > 0; (2.7)

it is a non regular sequence.

Given two monic polynomial sequences {Pn}n>0 and {P̃n}n>0 the coefficients that
satisfy the equality

Pn(x) =

n∑
m=0

λn,mP̃m(x), n > 0, (2.8)

are called the connection coefficients: λn,m := λPP̃
n,m := λn,m(P ← P̃).

It is obvious that these coefficients exist and are unique, because the polynomials are
linearly independent.

Let us suppose that the two monic polynomial sequences {Pn}n>0 and {P̃n}n>0 are or-
thogonal and are given by their recurrence coefficients {βn}n>0, {γn+1}n>0 and {β̃n}n>0,
{γ̃n+1}n>0, respectively, let us consider the problem of computing and determining closed
formulas for the connection coefficients.

As demonstrate in [8, 9], the connection coefficients fulfill the following boundary
and initial conditions and general recurrence relation

λn,m = 0, n < 0 or m < 0 or m > n, (2.9)

λn,n = 1, n > 0, (2.10)

λ1,0 = β̃0 − β0, (2.11)

λn,m =
(
β̃m − βn−1

)
λn−1,m − γn−1λn−2,m + γ̃m+1λn−1,m+1 + λn−1,m−1(2.12)

, 0 6 m 6 n− 1 , n > 2.

We recall that a monic polynomial sequence, {Pn}n>0, is symmetric if and only if
Pn(−x) = (−1)nPn(x), n > 0; if it is orthogonal the symmetry is equivalent to βn =
0, n > 0 [3].

9

If {Pn}n>0 and {P̃n}n>0 are two symmetric orthogonal polynomial sequences, then
the corresponding connection coefficients fulfill [8, 9], for 0 6 m 6 n− 1 , n > 1,

λ2n−1,2m = 0 , λ2n,2m+1 = 0 , (2.13)

λ2n,2m = −γ2n−1λ2n−2,2m + γ̃2m+1λ2n−1,2m+1 + λ2n−1,2m−1 , (2.14)

λ2n+1,2m+1 = −γ2nλ2n−1,2m+1 + γ̃2m+2λ2n,2m+2 + λ2n,2m . (2.15)

In the case of other polynomial normalizations, that is, Bn(x) = knPn(x), kn 6= 0 and
B̃n(x) = k̃nP̃n(x), k̃n 6= 0, n ≥ 0, the corresponding connection coefficients to consider
are

λBB̃
n,m := knλ

PP̃
n,mk̃

−1
m , λBX

n,m := knλ
PX
n,m , λXB

n,m := λXP
n,mk

−1
m , 0 ≤ m ≤ n, n ≥ 0 .

10

Chapter 3

Symbolic computation of
connection coefficients

This chapter is dedicated to the symbolic computation of the connection coefficients.
As this work is based on the implementation of recurrence relations, the first section is
devoted to this topic taking as basic example the computation of the Fibonacci numbers.
In the following section, we give explicitly the commands that implement the general
recurrence relation that allows the recursive computation of the first connection coeffi-
cients up to a certain fixed order: we call them the commands CC. Moreover, we discuss
several important details in this implementation that is conceived in order to work for
any example. We note that each case is determined by the recurrence coefficients (the
coefficients of the recurrence relation of order 2) and the parameters of the two orthog-
onal polynomials sequences corresponding to the connection coefficients that we want
to compute. The names of the commands that translate these elements are arguments
of CC and must be implemented in a certain manner. Therefore, in the Section 3.3,
we propose the implementation of the recurrence coefficients and the command MOP
that computes the corresponding monic orthogonal polynomials using the above cited
recurrence relation of order two. In the Section 3.4, we show how to call the commands
CC in order to get the first connection coefficients up to a fixed order. Also, we es-
tablished a command named verificationRCC based on the mathematical definition of
the connection coefficients, in order to verify the results produced by CC. From these
results, we try to infer a model to the direct closed formulas for the connection coeffi-
cients. If we succeed, it is always possible to implement those formulas in a command
and compare the results produced by it with those computed recursively. This com-
parison is implemented in a command named verificationDCC presented in the Section
3.5. This kind of verifications are very useful in order to find possible mistakes in the
model and then correct it. In the following section, we treat the main task of proving
that the formulas are true through a symbolic implementation furnish by the command
demonstrationDCC. At last, we present a list of the main commands and we give, for
each one, the name, a brief description, the arguments, the Mathematicar’s commands
and other commands employed in the implementation and the results produced.

11

3.1 How to implement recurrence relations in Mathematicar

In this work, the computation of the connection coefficients essentially involves the
implementation of recurrence relations. In the Mathematicar language [11, 12], this can
be done easily using two different types of function definitions, as follows.

1. f [x] := rhs, define a standard function.

In this case, the value of the function is computed every time we ask for it.

2. f [x] := f [x] = rhs, define a function which remembers values that it finds.

In this case, Mathematicar never recomputes a function value, because the first
time a function value is computed it is automatically stored in memory.

Let us consider the typical example of Fibonacci numbers, given by the following
initial conditions and recurrence relation

f(0) = f(1) = 1 , f(n) = f(n− 1) + f(n− 2) , n ≥ 2. (3.1)

The point is that if we calculate say f(10) by just applying the recursion relation
over and over again, we end up having to recalculate quantities like f(5) many times.
In a case like this, it is therefore better just to remember all the values of the Fibonacci
numbers already computed [11, 12]. This can be implemented, using a function definition
of type 2, as follows.

f [0] = f [1] = 1;

f [n /; And[n ∈ Integer, n ≥ 2]] := f [n] = f [n− 1] + f [n− 2];

There is a trade-off involved in remembering values. It is faster to find a particular
value, but it takes more memory space to store all of them. We should usually define
functions to remember values only if the total number of different values that will be
produced is comparatively small, or the expense of recomputing them is very great
[11, 12]. Of course that we can manage other types of implementation, but the preceding
ones are the most straightforward to use.

3.2 Implementation of the general recurrence relation for
the connection coefficients

It is clear that, the recursive computation of the connection coefficients is more difficult
than the computation of the Fibonacci numbers, because the λn,m have two indexes,
the relation (2.12) is more complicated than (3.1) and involves the computation of the
recurrence coefficients βn, γn+1, β̃n and γ̃n+1, with the corresponding parameters. In
spite of this, all the considerations cited in the preceding section remain valid for the
λn,m. In this work, we have used always functions that remember values. In practice,
the maximal values of n in λn,m or in Pn are around 20 or 30, so there is not a large

12

amount of elements to store in memory. On the other hand, recompute the connection
coefficients several times could be quite expensive, if there are several parameters to
consider, so the standard function definitions are not indicated to this problem. We do
not have needed to do a more careful and complicated implementation, because we have
obtained all the results without any problems of time or space memory.

Let us explain exactly how the implementation is done.
The boundary and initial conditions and the general recurrence relation (2.9)-(2.12)

for the connection coefficients are easily implemented as follows.

CC[rc Symbol, rct Symbol][p][pt]

[n /; And[IntegerQ[n], n < 0],m /; IntegerQ[m]] := (3.2)

CC[rc, rct][p][pt][n,m] = 0;

CC[rc Symbol, rct Symbol][p][pt]

[n /; IntegerQ[n],m /; And[IntegerQ[m],m < 0]] := (3.3)

CC[rc, rct][p][pt][n,m] = 0;

CC[rc Symbol, rct Symbol][p][pt]

[n /; And[IntegerQ[n], n ≥ 0], n /; And[IntegerQ[n], n ≥ 0]] := (3.4)

CC[rc, rct][p][pt][n, n] = 1;

CC[rc Symbol, rct Symbol][p][pt][1, 0] := CC[rc, rct][p][pt][1, 0] =

Factor[FullSimplify[rct[pt][0][[1]]− rc[p][0][[1]]]]; (3.5)

CC[rc Symbol, rct Symbol][p][pt][n /; IntegerQ[n],m /; IntegerQ[m]] :=

CC[rc, rct][p][pt][n,m] = (3.6)

If[And[n ≥ 0, n ≤ m− 1],Return[0],

Return[Factor[FullSimplify[

(rct[pt][m][[1]]− rc[p][n− 1][[1]]) ∗ CC[rc, rct][p][pt][n− 1,m]−
rc[p][n− 1][[2]] ∗ CC[rc, rct][p][pt][n− 2,m] +

rct[pt][m+ 1][[2]] ∗ CC[rc, rct][p][pt][n− 1,m+ 1] +

CC[rc, rct][p][pt][n− 1,m− 1]]]

]; (∗ end of Return ∗)
]; (∗ end of If ∗)

The arguments rc and rct correspond to the names of the recurrence coefficient’s
commands and must be symbols; the next arguments p and pt are the names of the
parameters of the sequences P and P̃ , in such a way that, rc[p][n] and rct[pt][n] are
lists corresponding to {βn, γn} and {β̃n, γ̃n}, respectively. To access to the first or the

13

second element of a list, one joins to its name [[1]] or [[2]]. The commands corresponding
to rc and rct must be given before calling the commands CC. Note that the triple
underscore next p and pt is a pattern object that can stand for any sequence of zero or
more expressions [11, 12], which means that it matches for polynomial sequences without
parameters as is the case of the canonical one. The commands corresponding to rc and
rct must be implemented as follows

rc[p][n] := rc[p][n] = Module[{...}, ... ; Return[{..., ...}]];

rct[pt][n] := rct[pt][n] = Module[{...}, ... ; Return[{..., ...}]];

In spite of the fact that the computation of recurrence coefficients is not recursive, we
have used functions that remember values, because each recurrence coefficient is needed
many times.

After the above explanations, we think that it is easy to accept that the definitions
(3.2)-(3.3), (3.4), (3.5) and (3.6) of the commands CC correspond to the mathematical
identities (2.9), (2.10), (2.11) and (2.12), respectively. Note that we put boundary
and initial conditions ahead of the general recurrence relation. This principle has been
followed by Mathematicar in order to avoid special rules be shadowed by more general
ones [11, 12].

Remark that, the commands CC only accept integer values for the arguments n and
m. This is done by the restrictions following the patterns arguments. The aim is to
avoid acceptation of absurd values for n and m. In fact, if we could give, for example,
n = 5.5 or n symbolic in a calling statement, the recurrence relation would never match
the initial conditions and would enter in an infinite recursion process.

We have added to the body of (3.5) and (3.6) the very useful Mathematicar’s com-
mands Factor followed by FullSimplify in order to get the results written in the simplest
factorized form [11, 12]. In examples for which the recurrence coefficients are rational
functions Factor should be replaced by Together. We note that Factor[expr] writes expr
as a product of minimal factors and Together[expr] puts terms in a sum over a common
denominator and cancels factors in the result [11, 12].

3.3 Implementation of recurrence coefficients and orthog-
onal polynomials

Let us consider two polynomial sequences identified, for example, by the names Ex1P
and Ex2P; the first one with two parameters p1 and p2 and the second one with one
parameter p, for instance. We would like to compute the connection coefficients λn,m :=
λn,m(Ex1P ← Ex2P). The commands CC suppose that the corresponding recurrence
coefficients are implemented in commands, named Ex1C and Ex2C, for example, as

14

follows.

Ex1C[p1 , p2][n] := Ex1C[p1, p2][n] =

Module[{...}, ... ; Return[{..., ...}]];

Ex2C[p][n] := Ex2C[p][n] = Module[{...}, ... ; Return[{..., ...}]];

In that manner, these definitions return a list of two elements {..., ...}, thus
Ex1C[p1, p2][n][[1]] and Ex1C[p1, p2][n][[2]] correspond to βn and γn; and Ex2C[p][n][[1]]
and Ex2C[p][n][[2]] correspond to β̃n and γ̃n, respectively.

Note that there is no restriction on the argument n, because nearly always, we
are able to give a closed formula for the recurrence coefficients valid for all nonnegative
integer n, so n can be a symbol argument or a numeric expression in the calling statement
(Ex1C[p1, p2][5] or Ex1C[p1, p2][n], for example). Furthermore, the symbolic expressions
of the recurrence coefficients are necessary in order to accomplish the demonstrations of
the closed formulas for the connections coefficients.

The monic orthogonal polynomials are recursively computed using the identities
(2.3)-(2.4) and are implemented in the following command.

MOP[rc Symbol][p][n /; And[IntegerQ[n], n < 0], x] := (3.7)

MOP[rc][p][n, x] = 0;

MOP[rc Symbol][p][0, x] := MOP[rc][p][0, x] = 1; (3.8)

MOP[rc Symbol][p][1, x] := MOP[rc][p][1, x] = (3.9)

FullSimplify[x− rc[0][[1]]];

MOP[rc Symbol][p][n /; And[IntegerQ[n], n ≥ 2], x] := (3.10)

MOP[rc][p][n, x] =

Collect[FullSimplify[(x− rc[p][n− 1][[1]]) ∗MOP[rc][p][n− 1, x]−
rc[p][n− 1][[2]] ∗MOP[rc][p][n− 2, x]],

x, Factor];

To the sake of implementation, it is necessary to consider the shift n← n−2 in (2.4)
in order to have the index n isolated on the left hand side of the relation.

As set before, the arguments rc and p correspond to the name of the recurrence
coefficients’ command and the name of the parameters of the sequence P . As usual n is
the degree and x is the variable in Pn(x).

It is easy to see that the commands MOP (3.7), (3.8)-(3.9) and (3.10) correspond
to the mathematical identities (2.6), (2.3) and (2.4), respectively. Remark that, in the

15

implementation of MOP, we have used functions that remember values and, in the calling
statements of MOP, n must be a fixed integer and x should be a symbol or a numeric
expression.

In order to get the polynomials simplified and written in the canonical base with
factorized coefficients, we have used the FullSimplify and Collect Mathematicar’s com-
mands. We inform that Collect[expr, x, command] groups together powers of x in expr
and applies the command to the corresponding coefficients. In rational cases, Factor
should be replaced by Together [11, 12].

The commands that define the polynomials of the specified examples with which we
are treating can be easily implemented in one line calling the definition MOP as follows.

Ex1P[p1 , p2][n , x] := Ex1P[p1, p2][n, x] = MOP[Ex1C][p1, p2][n, x];

Ex2P[p][n , x] := Ex2P[p][n, x] = MOP[Ex2C][p][n, x];

To get the polynomials of degree 5 for example, we furnish

Ex1P[p1, p2][5, x] Ex2P[p][5, x]

If we want to consider special values to the parameters, for example, p1 = 0, p2 = 1
and p = −1, we call

Ex1P[0, 1][5, x] Ex2P[−1][5, x]

To evaluate the preceding in x = 0, for example, we give

Ex1P[0, 1][5, 0] Ex2P[−1][5, 0]

3.4 Getting and verifying results for connection coefficients
computed recursively

Supposing the structure of commands previously establish, the statement to get the con-
nection coefficients up to the order 10, for example, that is, to get λn,m := λn,m(Ex1←
Ex2), for n = 0, ..., 10, m = 0, ..., n, is

Table[CC[Ex1C,Ex2C][p1, p2][p̃][n,m], {n, 0, 10}, {m, 0, n}]

where Table[expr, {i, imin, imax}, {j, jmin, jmax}] generates a double list of the val-
ues of expr when i runs from imin to imax and j runs from jmin to jmax. The list
associated with i is outermost [11, 12].

We should make some verifications in order to test our implementation. A crucial
one is based on the definition of connection coefficients given by the identity (2.8), which
can be reproduced with our commands and verified up to the a fixed value of n = nmax.
This is the task of the following command.

16

verificationRCC[rc Symbol, rct Symbol][p][pt]

[nmax /; And[IntegerQ[nmax], nmax ≥ 0] :=

Module[{x, answer = Table[True, {n, 0, nmax}]},
Table[FullSimplify[MOP[rc][p][n, x]−

n∑
m=0

CC[rc, rct][p][pt][n,m] ∗MOP[rct][pt][m,x]] === 0

, {n, 0, nmax}] === answer

]; (∗ end of Module ∗)

We inform that, in Mathematicar, in order to inquire if two entities a and b are
identical, we can give a === b and have True or False as answer. Often, it is more
efficient to ask if their difference is 0 entering a− b === 0 or FullSimplify[a− b] === 0.
In the case of verificationRCC, a and b correspond to the left and right sides of the
definition (2.8) expressed in terms of commands. We point out that, if Mathematicar

is not able to decide about the veracity of the requested identity typed with ===, it
always yields False [11, 12]. This is a crucial point in the automatic demonstrations of
the models of the connection coefficients.

In the case of our examples, the calling statement to get this verification up to 20,
for instance, is

verificationRCC[Ex1C,Ex2C][p1, p2][p̃][20]

and we should have True as answer.

In order to get the connection coefficients corresponding to two different polynomial
sequences concerning the same family Ex1P, but with different parameters [p1, p2] and
[p̃1, p̃2], we call

Table[CC[Ex1C,Ex1C][p1, p2][p̃1, p̃2][n,m], {n, 0, 10}, {m, 0, n}]

The corresponding verification up to 20 is

verificationRCC[Ex1C,Ex1C][p1, p2][p̃1, p̃2][20]

and we should have True as answer.

3.5 Getting and verifying results for connection coefficients
computed by direct closed formulas

In [8, 9, 10], it is shown that, in several important cases, we are able to infer from the
table of the first results produced by the definitions CC, what are the mathematical
direct closed formulas of the connection coefficients, for all n and m. Then, we can

17

translate this model in a command and compare the connection coefficients given by it
with those produced by the recursive computations of CC, for the first values of n up to
a fixed order nmax. This comparison is implemented in the following command.

verificationDCC[dcc Symbol][rc Symbol, rct Symbol][p][pt]

[nmax /; And[nmax ∈ Integer, nmax ≥ 0]] :=

Module[{answer = Table[True, {n, 0, nmax}, {m, 0, n}]},
Table[FullSimplify[dcc[p][pt][n,m]− CC[rc, rct][p][pt][n,m]] === 0

, {n, 0, nmax}, {m, 0, n}] === answer];

The argument dcc must be a symbol and is the name of the command that imple-
ments the direct closed formulas valid for integers n and m, it returns λn,m and must be
implemented as follows

dcc[p][pt][n ,m] := dcc[p][pt][n,m] = Module[{...}, ...; Return[...]];

In the case of the examples Ex1 and Ex2, we establish a command of the following
type for the closed formulas.

Ex1Ex2DCC[p1 , p2][pt][n ,m] := Ex1Ex2DCC[p1, p2][pt][n,m] =

Module[{...}, ...; Return[...]];

Note that the parameters of the two sequences must figure separately as arguments.
Remark, also, that there are no restriction on n and m, because they can be fixed integers
or symbols.

The comparison up to 20 is executed as follows

verificationDCC[Ex1Ex2DCC][Ex1C,Ex2C][p1, p2][p̃][20]

and we should have True as answer. Of course, this does not constitute a proof of
the direct formula.

3.6 Automatic demonstration of closed formulas for the
connection coefficients

The mathematical demonstration corresponds to show that the direct closed formulas
for the connection coefficients λn,m, that should be given for all integers n and m such
that 0 ≤ m ≤ n − 1, n ≥ 1, satisfy the initial condition (2.11) and are solutions of the
recurrence relation (2.12). In principle, this proof can be done totally in Mathematicar

using the next command, if the formulas for the recurrence coefficients {βn}, {γn+1}
and {β̃n}, {γ̃n+1} are available for all nonnegative integers and are implemented for n

18

symbolic, and the command FullSimplify is able to accomplish the necessary simplifi-
cations. For the sake of implementation, we consider separately the recurrence relation
for m = 0 and n = 1, m = 0 and n = 2, and m = 0 and n > 3; and for m = n − 1 and
n > 2, because for all these values the boundary conditions (2.9) and (2.10) appear in
the relation (2.12) and the commands that implement the direct formulas can not satisfy
them.

demonstrationDCC[dcc Symbol][rc Symbol, rct Symbol][p][pt]

[n Symbol,m Symbol] :=

And[

(∗ m = 0 , n = 1 ∗)
FullSimplify[dcc[p][pt][1, 0]− (rct[pt][0][[1]]− rc[p][0][[1]])] === 0 ,

(∗ m = 0 , n = 2 ∗)
FullSimplify[

dcc[p][pt][2, 0]− (rct[pt][0][[1]]− rc[p][1][[1]]) ∗
dcc[p][pt][1, 0] + rc[p][1][[2]]− rct[pt][1][[2]]] === 0 ,

(∗ m = 0 , n ≥ 3 ∗)
FullSimplify[

dcc[p][pt][n, 0]− (rct[pt][0][[1]]− rc[p][n− 1][[1]]) ∗
dcc[p][pt][n− 1, 0] + rc[p][n− 1][[2]] ∗ dCC[p][pt][n− 2, 0]−
rct[pt][1][[2]] ∗ dcc[p][pt][n− 1, 1],

Assumptions→ And[Element[n, Integers], n ≥ 3]] === 0 ,

(∗ m = n− 1 , n ≥ 2 ∗)
FullSimplify[

dcc[p][pt][n, n− 1]− (rct[pt][n− 1][[1]]− rc[p][n− 1][[1]])−
dcc[p][pt][n− 1, n− 2],

Assumptions→ And[Element[n, Integers], n ≥ 2]] === 0 ,

(∗ 0 < m < n− 1 , n ≥ 3 ∗)
FullSimplify[dcc[p][pt][n,m]−(

(rct[pt][m][[1]]− rc[p][n− 1][[1]]) ∗ dcc[p][pt][n− 1][m]−
rc[p][n− 1][[2]] ∗ dcc[p][pt][n− 2,m] +

rct[pt][m+ 1][[2]] ∗ dcc[p][pt][n− 1,m+ 1] + dcc[p][pt][n− 1,m− 1]
)
,

Assumptions→
And[Element[n, Integers],Element[m, Integers], n > 3,m > 0,m < n− 1]

] === 0;

]; (∗ end of And ∗)

The argument dcc is the name of the command corresponding to the direct closed

19

formulas valid for n and m symbolic, it returns λn,m and must be implemented as follows

dcc[p][pt][n ,m] := dcc[p][pt][n,m] = Module[{...}, ...; Return[...]];

The arguments rc and rct are the names of the commands corresponding to the
recurrence coefficients, now, valid for n symbolic, they return {βn, γn} and {β̃n, γ̃n},
respectively.

It is easy to realize that demonstrationDCC is a translation of the identities (2.11)
and (2.12) in terms of commands. Remark that the Assumptions option of FullSim-
plify informs that the symbols n and m represent integers corresponding to the specified
values. Depending on the examples, FullSimplify can achieve the demonstrations with-
out any Assumptions. The user should test several variants of demonstrationDCC and
compare their results before come to a conclusion.

When demonstrationDCC produces True, this means that the direct closed formulas
translated by the command dcc are correct and Mathematicar achieve the demonstra-
tion; when demonstrationDCC produces False, this can mean that those formulas are
wrong, or that they are true but Mathematicar can not accomplish the simplifications
and can not decides about the veracity of the identities presented in demonstrationDCC.

In the case of the examples Ex1 and Ex2, supposing that the direct closed formulas
are implemented in a command as follows

Ex1Ex2DCC[p1 , p2][pt][n ,m] := Module[{...}, ...; Return[...]] ;

the automatic demonstration corresponds to get True as answer to the following
entry

demonstrationDCC[Ex1Ex2CC][Ex1C,Ex2C][p1, p2][p̃][n,m]

3.7 Main commands’ description

In this section, we furnish a list with a description of the main commands implemented for
the standard case, they are: CC, MOP, verificationRCC, verificationDCC and demon-
strationDCC. For each command, we give the following information: name, brief de-
scription, arguments, Mathematicar’s commands and other commands employed in the
implementation and the results produced.

• Arguments rc, rct, p and pt of the commands listed in the sequel.

- rc and rct are the names of the commands that define the recurrence coefficients
of the two polynomials sequences P and P̃ ; they must be symbols.

- rc and rct must be implemented as follows

rc[p][n] := rc[p][n] = Module[{...}, ... ; Return[{..., ...}]];

rct[pt [n] := rct[pt][n] = Module[{...}, ... ; Return[{..., ...}]];

20

and they must return {βn, γn} and {β̃n, γ̃n}, respectively.

- p and pt are the sequences of parameters of P and P̃ .

• CC[rc, rct][p][pt][n,m]

Description:

CC[rc, rct][p][pt][n,m] computes recursively the connection coefficient, λn,m :=
λn,m(P ← P̃), defined in (2.8), using the boundary and initial conditions (2.9)-
(2.11) and the recurrence relation (2.12).

Arguments:

- rc, rct, p and pt described before.

- n and m must be integers.

Mathematicar’s commands used:

- Factor or Together, FullSimplify.

Result:

- λn,m.

• MOP[rc][p][n, x]

Description:

MOP[rc][p][n, x] computes recursively the monic orthogonal polynomial, Pn(x),
of degree n in the variable x, using the initial conditions (2) and the recurrence
relation (3).

Arguments:

- rc and p described before.

- n must be an integer.

- x should be a symbol or a numeric expression.

Mathematicar’s commands used:

- Collect, Factor or Together, Simplify or FullSimplify.

Result:

- Pn(x).

• Argument nmax of the commands listed in the sequel.

- nmax must be a non negative integer.

• verificationRCC[rc, rct][p][pt][nmax]

Description:

verificationRCC[rc, rct][p][pt][nmax] makes a verification of the first connection
coefficients, λn,m := λn,m(P ← P̃), computed recursively by the command CC up

21

to an index n = nmax. verificationRCC is based on the definition (2.8) of the
connection coefficients.

Arguments:

- rc, rct, p, pt and nmax described before.

Mathematicar’s commands used:

- FullSimplify.

Other commands used:

- CC and MOP.

Result:

- Returns True if the the verification is correct, returns False otherwise.

• Argument dcc of the commands listed in the sequel.

- dcc is the name of the command that implements the direct closed formulas; it
must be a symbol.

- dcc must be defined as follows

dcc[p][pt][n ,m] := dcc[p][pt][n,m] = Module[{...}, ...; Return[...]];

and must returns λn,m.

• verificationDCC[dcc][rc, rct][p][pt][nmax]

Description:

verificationDCC[dcc][rc, rct][p][pt][nmax] makes a comparison between the values
of the connection coefficients, λn,m := λn,m(P ← P̃), computed by the command
CC and the ones computed by the command dcc that implements the direct closed
formulas, this, up to the index n = nmax.

Arguments:

- dcc, rc, rct, p, pt and nmax described before.

Mathematicar’s commands used:

- FullSimplify.

Other commands used:

- CC.

Result:

- Returns True if the verification is correct, returns False otherwise.

• demonstrationDCC[dcc][rc, rct][p][pt][n,m]

Description:

22

demonstrationDCC[dcc][rc, rct][p][pt][n,m] tries to demonstrate the direct closed
formulas for the connection coefficients λn,m := λn,m(P ← P̃), for every n and m.

Arguments:

- dcc, rc, rct, p, pt described before.

- n and m must be symbols and represent integers such that 0 ≤ m ≤ n−1, n ≥ 1.

Mathematicar’s commands used:

- FullSimplify with or without Assumptions.

Result:

- Returns True, if the direct closed formulas translated by the command dcc are
true and Mathematicar achieves the demonstration, returns False otherwise.

23

Chapter 4

Test examples

This chapter is dedicated to the presentation of some test examples. In the first section,
we follow all the steps of the methodology, giving the implementation and the results, for
the Charlier polynomials [3]. This section corresponds to the Section 4 of [10]. Next, we
express the canonical polynomials in terms of the Laguerre ones. Our goal is to explain
how the commands work with an example involving the canonical sequence. We present
all the steps giving the corresponding results. We finish the chapter with a descriptive
list of the commands developed.

4.1 Charlier polynomials

Let us see how the commands we have developed work and what results they produce in
the simple case of the classical discrete monic Charlier polynomials {Pn(α, .)}n≥0 with
parameter α [3]. The Charlier recurrence coefficients

βn(α) = n+ α , n ≥ 0 ; γn(α) = nα , n ≥ 1 , α 6= 0, (4.1)

are implement in the following command.

CharlierC[α][n] := CharlierC[α][n] =

If[And[NumericQ[n], n < 0], Return[{0, 0}], Return[{n+ α, α ∗ n}]];

The monic Charlier polynomials are defined by the command MOP as follows

CharlierP[α][n , x] := CharlierP[α][n, x] = MOP[CharlierC][α][n, x];

The connection coefficients λn,m := λn,m(P (α;−) ← P (α̃;−)) are computed recur-
sively up to n = 6, for example, by the next calling statement of the command CC.

In[] := Table[CC[CharlierC,CharlierC][α][α̃][n,m], {n, 0, 6}, {m, 0, n}]//

TableForm

Out[]//TableForm =

24

1
−α+ α̃ 1
(α− α̃)2 −2(α− α̃) 1
−(α− α̃)3 3(α− α̃)2 −3(α− α̃) 1
(α− α̃)4 −4(α− α̃)3 6(α− α̃)2 −4(α− α̃) 1
−(α− α̃)5 5(α− α̃)4 −10(α− α̃)3 10(α− α̃)2 −5(α− α̃) 1
(α− α̃)6 −6(α− α̃)5 15(α− α̃)4 −20(α− α̃)3 15(α− α̃)2 −6(α− α̃) 1

Now, we can verify these results and the next ones up to nmax = 20, for example,
calling

In[] := Timing[verificationRCC[CharlierC,CharlierC][α, α̃][20]]

and we get the answer

Out[] = {75.0289,True}

Note that Timing[expr] evaluates expr, and returns a list of the time in seconds used
together with the result obtained [11, 12].

The observation of the above results getting by the commands CC allows us to infer
the following direct closed formula for the connection coefficients

λn,m = (−1)n−m
(
n

m

)
(α− α̃)n−m, 0 ≤ m ≤ n− 1, n ≥ 1, (4.2)

which can be implement in a command as follows

CharlierDCC[α][αt][n ,m] :=

(−1)ˆ(n−m) ∗ Binomial[n,m] ∗ (α− αt)ˆ(n−m);

In order to compare the results given by this command with those produced by CC
up to nmax = 20, for example, we do

In[] := Timing[verificationDCC[CharlierDCC][CharlierC,CharlierC][α][α̃][20]]

Out[] = {0.009881,True}

The automatic demonstration of the formula (4.2) is achieved in Mathematicar doing

In[] := Timing[

demonstrationDCC[CharlierDCC][CharlierC,CharlierC][α][α̃][n,m]]

Out[] = {0.36858,True}

We remember that the formula (4.2) is well known and can be found in several
references; see, among others, [5].

25

4.2 Canonical and Laguerre polynomials

Let us express the canonical sequence in terms of the classical monic Laguerre polyno-
mials. For that purpose, we need to recall the Laguerre recurrence coefficients [3],

βn(α) = 2n+ α+ 1 , γn+1(α) = (n+ 1)(n+ α+ 1), α 6= −n, n ≥ 0, (4.3)

which can be implemented in the following command.

LaguerreC[α][n] := LaguerreC[α][n] =

If[And[NumericQ[n], n < 0], Return[{0, 0}], Return[{2 ∗ n+ α+ 1, n ∗ (n+ α)}]];

The recurrence coefficients of the canonical sequence given in (2.7) and the canonical
polynomials are easily implemented as follows

CanonicalC[][n] := CanonicalC[][n] = {0, 0};

CanonicalP[][n , x] := CanonicalP[][n, x] = MOP[CanonicalC][][n, x];

The connection coefficients λn,m := λn,m(X ← P (α̃;−)) are computed recursively
up to n = 4, for example, by the next calling statement of the command CC.

In[] := Table[CC[CanonicalC,LaguerreC][][α̃][n,m], {n, 0, 4}, {m, 0, n}]//
TableForm

Out[]//TableForm =
1
(1 + α̃) 1
(1 + α̃)(2 + α̃) 2(2 + α̃) 1
(1 + α̃)(2 + α̃)(3 + α̃) 3(2 + α̃)(3 + α̃) 3(3 + α̃) 1
(1 + α̃)(2 + α̃)(3 + α̃)(4 + α̃) 4(2 + α̃)(3 + α̃)(4 + α̃) 6(3 + α̃)(4 + α̃) 4(4 + α̃) 1

Now, we can verify these results and the next ones up to nmax = 20, for example,
calling

In[] := Timing[verificationRCC[CanonicalC,LaguerreC][][α̃][20]]

and we get the answer

Out[] = {106.082,True}

The observation of the above table allows us to infer the following direct closed
formula for the connection coefficients

λn,m =

(
n

m

) n−m−1∏
k=0

(α̃+ n− k), 0 ≤ m ≤ n− 1, n ≥ 1, (4.4)

26

which can be implement in a command as follows

CanonicalLaguerreDCC[][αt][n ,m] := Binomial[n,m] ∗
n−m−1∏
k=0

(αt+m− k);

In order to compare the results given by this command with those produced by CC up
to nmax = 20, for example, we do

In[] := Timing[

verificationDCC[CanonicalLaguerreDCC[CanonicalC,LaguerreC][][α̃][20]]]

Out[] = {0.017948,True}

The automatic demonstration of the formula (4.4) is achieved in Mathematicar doing

In[] := Timing[

demonstrationDCC[CanonicalLaguerreDCC[CanonicalC,LaguerreC][][α̃][n,m]]]

Out[] = {0.372348,True}

We remember that the formula (4.4) is well known and can be found in several
references; see, among others, [1, 2, 8]. About the table of recursive results, when α̃ = 0,
see [4].

4.3 Commands’ description of test examples

In this section, we give a descriptive list, in the same terms as before, of the commands
implemented in the section of test examples.

Commands for the Charlier polynomials:

CharlierC, CharlierP and CharlierDCC

• Argument α of the commands listed in the sequel.

- α is a parameter (α 6= 0).

- If α = 0, then Charlier polynomials are not regular, γn = 0, n ≥ 1.

- α should be a symbol or a numeric expression.

• CharlierC[α][n]

Description:

CharlierC[α][n] is the n-th recurrence coefficients, {βn, γn}, of the monic Charlier
polynomials (4.1).

Arguments:

27

- n should be a symbol or an integer.

Result:

- {βn, γn}, if n > 0.

- {βn, 0}, if n=0.

- {0, 0}, if n < 0.

• CharlierP[α][n, x]

Description:

CharlierP[α][n, x] is the monic Charlier polynomial of parameter α of degree n in
the variable x: Pn(x).

Arguments:

- n must be an integer.

- x should be a symbol or a numeric expression.

Commands used:

- CharlierC, MOP.

Result:

- Pn(x)

• CharlierDCC[α][α̃][n,m]

Description:

CharlierDCC[α][α̃][n,m] computes the connection coefficient λn,m := λn,m(P (α,−)
← P̃ (α̃,−)), where P notes the monic Charlier polynomials, using the direct closed
formula (4.2).

Arguments:

- α and α̃ are the parameters of P and P̃ .

- n and m should be symbols or integers.

Result:

- λn,m.

Commands for the canonical polynomials:

CanonicalC and CanonicalP

• CanonicalC[][n]

Description:

CanonicalC[][n] is the n-th recurrence coefficients, {βn, γn}, of the canonical poly-
nomials (2.7).

28

Arguments:

- n should be a symbol or an integer.

Result:

- {0, 0}.

• CanonicalP[][n, x]

Description:

CanonicalP[][n, x] is the canonical polynomial, Xn(x), of degree n in the variable
x.

Arguments:

- n must be an integer.

- x should be a symbol or a numeric expression.

Commands used:

- CanonicalC, MOP.

Result:

- xn, if n ≥ 0.

- 0, if n < 0.

Commands for the Laguerre polynomials:

LaguerreC, LaguerreP and CanonicalLaguerreDCC

• Argument α of the commands listed in the sequel.

- α is a parameter (α 6= −n, n > 0).

- If α = −n, n > 0 , then Laguerre polynomials are not regular, γn = 0, n ≥ 1.

- α should be a symbol or a numeric expression.

• LaguerreC[α][n]

Description:

LaguerreC[α][n] is the n-th recurrence coefficients, {βn, γn}, of the monic Laguerre
polynomials (4.3).

Arguments:

- n should be a symbol or an integer.

Result:

- {βn, γn}, if n > 0.

- {βn, 0}, if n = 0.

- {0, 0}, if n < 0.

29

• LaguerreP[α][n, x]

Description:

LaguerreP[α][n, x] is the monic Laguerre polynomial of parameter α of degree n in
the variable x: Pn(x).

Arguments:

- n must be an integer.

- x should be a symbol or a numeric expression.

Commands used:

- LaguerreC, MOP.

Result:

- Pn(x)

• CanonicalLaguerreDCC[][α̃][n,m]

Description:

CanonicalLaguerreDCC[][α̃][n,m] computes the connection coefficient λn,m :=
λn,m(X ← P (α̃,−)), where X notes the canonical polynomials and P notes the
monic Laguerre polynomials, using the direct closed formula (4.4).

Arguments:

- α̃ is the parameter of P̃ .

- n and m should be symbols or integers.

Result:

- λn,m

30

Chapter 5

Symbolic computation of
connection coefficients in the
symmetric case

This chapter concerns the symmetric case that needs a specific treatment, because, often,
there are different formulas for the connection coefficients corresponding to odd or even
indexes. The same is also true for the recurrence coefficients as is the case of the example
of the Section 5.1 of [10]. The commands CC, verificationRCC and verificationDCC work
perfectly in the symmetric case, but the implementation of the direct closed formulas
must be more complete and the command demonstrationDCC must be replaced by
another one named demonstrationSymDCC. This command is discussed in the Section
5.1 and we furnish its description in the next section. Afterwards, we present as test
example the generalize Hermite polynomials [3] and we finish this chapter with the
description of the corresponding commands.

5.1 Automatic demonstration of closed formulas for the
connection coefficients

It is quite clear that the general commands CC, verificationRCC and verificationDCC
work perfectly in the case the two polynomials sequences are symmetric. Nevertheless,
we could develop more efficient commands due to the simplifications introduced by the
equalities (2.13), creating a command named SymCC for implementing the recurrence
relations (2.14)-(2.15) and the commands verificationSymRCC and verificationSymDCC
for accomplishing the corresponding verifications. We did not do that because the gain
in execution time is negligible.

On the other hand, in the symmetric case, the command demonstrationDCC can
not work, because, often, the direct closed formulas for the connection coefficients are
given separately for even and odd integer indexes, that is, there are different formulas
for λ2n,2m and λ2n+1,2m+1. Therefore, the commands that implement these formulas

31

must be defined for the arguments [2 ∗ n , 2 ∗m] and [2 ∗ n + 1, 2 ∗m + 1]. In calling
statements, the arguments corresponding to the indexes 2n+2, 2m−2 and 2n−1, 2m−1,
for example, should be given as [2∗ (n+1), 2∗ (m−1)] and [2∗ (n−1)+1, 2∗ (m−1)+1]
in order to match with the definitions.

We next present the command demonstrationSymDCC which allows to demonstrate
that the direct closed formulas for λ2n,2m and λ2n+1,2m+1 satisfy the recurrence relations
(2.14) and (2.15). For the sake of implementation, we consider separately the recurrence
relation (2.14) for m = 0 and n = 1, and m = 0 and n > 2, and m = n − 1 and n > 2;
also, we consider separately the recurrence relation (2.15) for m = 0 and n = 1, and
m = n − 1 and n ≥ 2, because for all these values the boundary conditions (2.9) and
(2.10) appear in those relations and the commands that implements the direct formulas
can not satisfy them.

demonstrationSymDCC[symdcc Symbol][rc Symbol, rct Symbol][p][pt]

[n Symbol,m Symbol] :=

And[

(∗ m = 0 , n = 1 − n even , m even ∗)
FullSimplify[symdcc[p][pt][2, 0] + rc[p][1][[2]]− rct[pt][1][[2]]] === 0 ,

(∗ m = 0 , n > 2 − n even , m even ∗)
FullSimplify[

symdcc[p][pt][2 ∗ n, 0] +

rc[p][1 + 2 ∗ (n− 1)][[2]] ∗ symdcc[p][pt][2 ∗ (n− 1), 0]−
rct[pt][1][[2]] ∗ symdcc[p][pt][1 + 2 ∗ (n− 1), 1] ,

Assumptions→ And[Element[n, Integers], n ≥ 2]] === 0 ,

(∗ m = n− 1 , n ≥ 2 − n even , m even ∗)
FullSimplify[

symdcc[p][pt][2 ∗ n, 2 ∗ (n− 1)] + rc[p][1 + 2 ∗ (n− 1)][[2]]−
rct[pt][1 + 2 ∗ (n− 1)][[2]]−
symdcc[p][pt][1 + 2 ∗ (n− 1), 1 + 2 ∗ (n− 2)] ,

Assumptions→ And[Element[n, Integers], n ≥ 2]] === 0 ,

(∗ 0 < m < n− 1 , n ≥ 3 − n even , m even ∗)
FullSimplify[

symdcc[p][pt][2 ∗ n, 2 ∗m]−(
− rc[p][2 ∗ (n− 1) + 1][[2]] ∗ symdcc[p][pt][2 ∗ (n− 1), 2 ∗m] +

rct[pt][2 ∗m+ 1][[2]] ∗ symdcc[p][pt][2 ∗ (n− 1) + 1, 2 ∗m+ 1] +

symdcc[p][pt][2 ∗ (n− 1) + 1, 2 ∗ (m− 1) + 1]
)
,

Assumptions→ And[Element[n, Integers],Element[m, Integers],

n > 3,m > 0,m < n− 1]] === 0 ,

32

(∗ m = 0 , n = 1 − n odd , m odd ∗)
FullSimplify[symdcc[p][pt][3, 1] + rc[p][2][[2]]−

rct[pt][2][[2]]− symdcc[p][pt][2, 0]] === 0 ,

(∗ m = n− 1 , n > 2 − n odd , m odd ∗)
FullSimplify[

symdcc[p][pt][1 + 2 ∗ n, 1 + 2 ∗ (n− 1)] + rc[p][2 ∗ n][[2]]−
rct[pt][2 ∗ n][[2]]− symdcc[p][pt][2 ∗ n, 2 ∗ (n− 1)],

Assumptions→ And[Element[n, Integers], n > 2]] === 0 ,

(∗ 0 6 m < n− 1 , n > 2 − n odd , m odd ∗)
FullSimplify[

symdcc[p][pt][2 ∗ n+ 1, 2 ∗m+ 1]−(
− rc[p][2 ∗ n][[2]] ∗ symdcc[p][pt][2 ∗ (n− 1) + 1, 2 ∗m+ 1] +

rct[pt][2 ∗ (m+ 1)][[2]] ∗ symdcc[p][pt][2 ∗ n, 2 ∗ (m+ 1)] +

symdcc[p][pt][2 ∗ n, 2 ∗m]
)
,

Assumptions→ And[Element[n, Integers],Element[m, Integers],

n > 2,m > 0,m < n− 1]] === 0 ,

]; (∗ end of And ∗)

The argument symdcc is the name of the command corresponding to the direct closed
formulas valid for n and m symbolic, it must be implemented as follows

symdcc[p][pt][2 ∗ n , 2 ∗m] := ;

symdcc[p][pt][2 ∗ n + 1, 2 ∗m + 1] := ;

and must return λ2n,2m and λ2n+1,2m+1, respectively.

The arguments rc and rct are the names of the commands corresponding to the
recurrence coefficients valid for n symbolic, they must be implement as follows

rc[p][2 ∗ n] := ; rc[p][2 ∗ n + 1] := ;

rct[pt][2 ∗ n] := ; rct[pt][2 ∗ n + 1] := ;

and must return {0, γ2n} and {0, γ2n+1}, and {0, γ̃2n} and {0, γ̃2n+1}, respectively.

Is easy to see that demonstrationSymDCC is a translation of the recurrence rela-
tions (2.14) and (2.15) in terms of commands. Remark that the Assumptions option
of FullSimplify informs that the symbols n and m represent integers corresponding to
the specified values. Depending on the examples, FullSimplify can achieve the demon-
strations without any Assumptions. The user should test several variants of demonstra-
tionSymDCC and compare their results before come to a conclusion.

33

When demonstrationSymDCC produces True, it means that the direct closed for-
mulas translated by the command symdcc are correct and Mathematicar achieves the
demonstration; when demonstrationSymDCC furnishs False, it can mean that those
formulas are wrong, or that they are true, but Mathematicar cannot accomplish the
simplifications and can not decides about the veracity of the identities presented in
demonstrationSymDCC.

Let us consider two symmetric examples identified by the names SymEx1 and SymEx2.
We would like to compute the λn,m := λn,m(SymEx1P ← SymEx2P). Supposing that
SymEx1C and SymEx2C are the names of the recurrence coefficients’ commands and
are implemented as follows

SymEx1C[p1 , p2][2 ∗ n] := Module[{...}, ...; Return[{0, ...}]] ;

SymEx1C[p1 , p2][2 ∗ n + 1] := Module[{...}, ...; Return[{0, ...}]] ;

SymEx2C[pt][2 ∗ n] := Module[{...}, ...; Return[{0, ...}]] ;

SymEx2C[pt][2 ∗ n + 1] := Module[{...}, ...; Return[{0, ...}]] ;

and supposing that the direct closed formulas for λ2n,2m and λ2n+1,2m+1 are imple-
mented in the following manner

SymEx1SymEx2DCC[p1 , p2][pt][2 ∗ n , 2 ∗m] := Module[{...}, ...; Return[...]];

SymEx1SymEx2DCC[p1 , p2][pt][2 ∗ n + 1, 2 ∗m + 1] :=

Module[{...}, ...; Return[...]] ;

the automatic demonstration corresponds to get True as answer to the next entry

demonstrationSymDCC[SymEx1SymEx2DCC][SymEx1C, SymEx2C][p1, p2][p̃][n,m]

5.2 Main command’s description

As before, we give a description of the main command implemented in the symmetric
case: demonstrationSymDCC.

• demonstrationSymDCC[symdcc][rc, rct][p][pt][n,m]

Description:

demonstrationSymDCC[symdcc][rc, rct][p][pt][n,m] tries to demonstrate the direct
closed formulas for the connection coefficients λn,m := λn,m(P ← P̃), when P
and P̃ are symmetric polynomials sequences implementing the recurrence relations
(2.14) and (2.15).

34

Arguments:

- symdcc is the name of the command that implements the direct closed formulas,
it must be a symbol.

- symdcc must be defined as follows

symdcc[p][pt][2 ∗ n , 2 ∗m] := Module[{...}, ...; Return[....]] ;

symdcc[p][pt][2 ∗ n + 1, 2 ∗m + 1] := ;

Module[{...}, ...; Return[....]] ;

and must return λ2n,2m and λ2n+1,2m+1, respectively.

- rc and rct are the names of the commands that define the recurrence coefficients
of the two symmetric polynomials sequences P and P̃ ; they must be symbols.

- rc and rct must be defined as follows

rc[p][2 ∗ n] := Module[{...}, ...; Return[{0,}] ;

rc[p][2 ∗ n + 1] := Module[{...}, ...; Return[{0,}] ;

rct[pt][2 ∗ n] := Module[{...}, ...; Return[{0,}] ;

rct[pt][2 ∗ n + 1] := Module[{...}, ...; Return[{0,}] ;

and must return {0, γ2n} and {0, γ2n+1}, and {0, γ̃2n} and {0, γ̃2n+1}, respectively.

- p and pt are the sequences of parameters of P and P̃ .

- n and m are symbols and represent non negative integers such that 0 ≤ m ≤ n−1,
n ≥ 1.

Mathematicar’s commands used:

- FullSimplify with or without Assumptions.

Result:

- Returns True, if the direct closed formulas translated by the command symdcc
are true and Mathematicar achieves the demonstration, returns False otherwise.

5.3 Test example

Let us consider the semi-classical generalized monic Hermite sequence {Pn(µ;−)}n≥0
with parameter µ, which is symmetric. When µ = 0, we recover the classical Hermite
sequence. The recurrence coefficients [3]

βn = 0, n ≥ 0 ; γn := γn(µ) =
1

2

(
n+ µ(1 + (−1)n−1)

)
, µ 6= −n− 1

2
, n ≥ 1, (5.1)

are implemented in the following command.

35

GenHermiteC[µ][n] := GenHermiteC[µ][n] =

If[And[NumericQ[n], n ≤ 0], Return[0, 0], Return[0, (n+ µ ∗ (1 + (−1)(n−1)))/2]];

We remark that in this example, it is possible to write the recurrence coefficients
only in one formula, therefore the implementation is more simple.

We can compute recursively the connection coefficients λn,m := λn,m(P (µ;−) ←
P (µ̃;−)) up to n = 5, for example, by the next call of the command CC.

In[] := Table[CC[GenHermiteC,GenHermiteC][µ][µ̃][n,m], {n, 0, 5}, {m, 0, n}]//
TableForm

Out[]//TableForm =

1
0 1
−µ+ µ̃ 0 1
0 −µ+ µ̃ 0 1
(−µ+ µ̃)(1 + µ− µ̃) 0 −2(µ− µ̃) 0 1
0 (−µ+ µ̃)(1 + µ− µ̃) 0 −2(µ− µ̃) 0 1

We can verify these results and the next ones up to nmax = 20, for example, calling

In[] := Timing[verificationRCC[GenHermiteC,GenHermiteC][µ, µ̃][20]]

and we get the answer

Out[] = {27.7808,True}

From the above table and some more results, we can easily infer the direct closed
formulas for the connection coefficients valid for 0 ≤ m ≤ n− 1 and n ≥ 1; they are

λ2n,2m = (−1)n+m

(
n

m

) n−m−1∏
k=0

(µ− µ̃+ k) , (5.2)

λ2n+1,2m+1 = λ2n,2m ; (5.3)

which are implemented as follows.

36

GenHermiteDCC[µ][µt][n /; And[IntegerQ[n], n ≥ 0],

m /; And[IntegerQ[m],m ≥ 0]] :=

GenHermiteDCC[µ][µt][n,m] =

Module[{n1,m1},
If[Or[And[EvenQ[n],OddQ[m]],And[OddQ[n],EvenQ[m]]],Return[0]];

n1 = Quotient[n, 2]; m1 = Quotient[m, 2];

Return[

(−1)ˆ(n1−m1) ∗ Binomial[n1,m1] ∗ Product[µ− µt+ k, {k, 0, n1−m1− 1}]
]; (∗ end of Return ∗)
]; (∗ end of Module ∗)

We inform that EvenQ[exp] gives True, if exp is an even integer, and False otherwise;
OddQ works in a similar way; Quotient[n,m] returns the integer quotient of n and m
[11, 12]. We remark that these commands could not furnish the desired answer if n or
m are symbols. In principle, EvenQ[exp] and OddQ[exp] return always False, if exp is
a symbol and Quotient[n,m] gives no answer if n or m are symbols. Thus the above
implementation for GenHermiteDCC should work only for non-negative values of n and
m as is insured by the restrictions following the corresponding pattern arguments.

In order to compare the results produced by GenHermiteDCC with those obtained
from CC up to nmax = 20, for example, we do

In[] := Timing[verificationDCC[GenHermiteDCC]

[GenHermiteC,GenHermiteC][µ][µ̃][20]]

Out[] = {0.01712,True}

In order to demonstrate the formulas (5.2) and (5.3) for every n and m, through
the command demonstrationSymDCC, the above implementation of GenHermiteDCC
is not adequate and we should add the next definitions for GenHermiteDCC that will
be called in demonstrationSymDCC for n and m symbolic. We alert that a Symbol
restriction following the patterns of the arguments n and m must not figure in these
commands and that they do not allow computations for fixed values of n and m.

GenHermiteDCC[µ][µt][2 ∗ n , 2 ∗m] :=

(−1)ˆ(n−m) ∗ Binomial[n,m] ∗ Product[µ− µt+ i, {i, 0, n−m− 1}];

GenHermiteDCC[µ][µt][2 ∗ n + 1, 2 ∗m + 1] :=

GenHermiteDCC[µ][µt][2 ∗ n, 2 ∗m];

37

Therefore the automatic demonstration is achieved doing

In[] := Timing[demonstrationSymDCC[GenHermiteDCC]

[GenHermiteC,GenHermiteC][µ][µ̃][n,m]]

Out[] = {0.91238,True}

We remember that the formulas (5.2) and (5.3) are well known and they are available
in several references; see, among others, [8].

5.4 Commands for the generalized Hermite polynomials

In this section, we give a descriptive list, in the same terms as before, of the commands
implemented in order to test the symmetric case of generalized Hermite family, they are:
GenHermiteC, GenHermiteP and GenHermiteDCC.

• Argument µ of the commands listed in the sequel.

- µ is a parameter (µ 6= −n− 1
2 , n ≥ 0).

- If µ = −n − 1
2 , n ≥ 0, then generalized Hermite polynomials are not regular,

γ2n+1 = 0, n ≥ 1.

- µ should be a symbol or a numeric expression.

• GenHermiteC[µ][n]

Description:

GenHermiteC[µ][n] is the n-th recurrence coefficients, {0, γn}, of the monic gener-
alized Hermite polynomials (5.1).

- n should be a symbol or an integer.

Result:

- {0, γn}, if n > 0.

- {0, 0}, if n ≤ 0.

• GenHermiteP[µ][n, x]

Description:

GenHermiteP [µ][n, x] is the monic generalized Hermite polynomial of parameter
µ of degree n in the variable x: Pn(x).

Arguments:

- n must be an integer.

- x should be a symbol or a numeric expression.

Commands used:

38

- GenHermiteC, MOP.

Result:

- Pn(x)

• GenHermiteDCC[µ][µ̃][n,m]

Description:

GenHermiteDCC[µ][µ̃][n,m] computes the connection coefficient λn,m :=
λn,m(P (µ;−) ← P (µ̃;−)), for non-negative integers n and m, where P notes the
monic generalized Hermite polynomials, using the direct closed formulas (5.2) and
(5.3).

Arguments:

- µ and µ̃ are the parameters of P and P̃ = P (µ̃;−).

- n and m must be non-negative integers.

Result:

- λn,m.

• GenHermiteDCC[µ][µ̃][2n, 2m] and GenHermiteDCC[µ][µ̃][2n+ 1, 2m+ 1]

Description:

GenHermiteDCC[µ][µ̃][2n, 2m] and GenHermiteDCC[µ][µ̃][2n+1, 2m+1] translate
the definitions (5.2) and (5.3) of λ2n,2m and λ2n+1,2m+1, for n and m symbolic, in
order to be used in calling statements of the demonstrationSymCC command.

Arguments:

- µ and µ̃ are the parameters of P and P̃ = P (µ̃,−).

- n and m should be symbols.

Results:

- λ2n,2m, λ2n+1,2m+1.

39

Bibliography

[1] R. Askey, Orthogonal Polynomials and Special Functions. CBMS-NSF Regional
Conference Series, Appl. Math., 21, SIAM, Philadelphia, PA, 1975.

[2] G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press,
71, 1999.

[3] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach,
New York,1978.

[4] U. W. Hochstrasser, Handbook of Mathematical Functions with Formulas, Graphs
and Mathematical Tables, In M. Abramowitz, I. A. Stegun, eds., N.Y., 1970.

[5] S. Lewanowicz, Recurrence relations for the connection coefficients of orthogonal
polynomials of a discrete variable, J. Comput. Appl. Math., 76 (1996) 213-229.

[6] P. Maroni, Variations around classical orthogonal polynomials. Connected problems,
J. Comput. Appl. Math., 48, 133-155, 1993.

[7] P. Maroni, Fonctions eulériennes. Polynômes orthogonaux classiques. Techniques de
l’Ingénieur, traité Généralités (Sciences Fondamentales), 1994.

[8] P. Maroni, Z. da Rocha, Connection coefficients for orthogonal polynomials and the
canonical sequence, Preprints CMUP, Centro de Matemática da Universidade do
Porto, 29, 1-18, 2007. http://cmup.fc.up.pt/cmup/v2/frames/publications.

htm

[9] P. Maroni, Z. da Rocha, Connection coefficients between orthogonal polynomials
and the canonical sequence: an approach based on symbolic computation, Numeri-
cal Algorithms, 47-3 (2008) 291-314.

[10] P. Maroni, Z. da Rocha, Connection coefficients for orthogonal polynomials: sym-
bolic computations, verifications and demonstrations in the Mathematica language,
Numerical Algorithms, 63-3 (2013) 507-520.

[11] Stephen Wolfram, The Mathematica Book, 4th ed., Wolfram Media/Cambridge
University Press, 1999.

[12] Virtual Book - Wolfram Mathematicar 8.0.4.0.

40

