
19.3 Extended Error Message Processor

A. Purpose

The subroutines described here print error messages and
diagnostic messages. These routines are intended pri-
marily for use by other library routines.

B. Usage

B.1 Program Prototype, Setting or Getting a
Message Processor Parameter

INTEGER MACT(≥ k1), IDAT(≥ k2)

CHARACTER*(≥ k3) TEXT(≥ k4)

The values for the ki’s depend on the actions desired.
For the actions described prior to the section on ad-
vanced features k1 = 2 × (the number of actions) + 1,
k2 = 1, and k3 and k4 are 1 unless one of the actions is
MEHEAD, in which case k3 should be 4.

Assign values to MACT(). Prior to the section on ad-
vanced features, IDAT(), and TEXT() (with one excep-
tion) are not referenced.

CALL MESS(MACT, TEXT, IDAT)

B.2 Argument Definitions

MACT() [inout] Used to set or check parameters used
by the message processor. Starting at MACT(1), is a
list of integer pairs followed by a single MERET=51,
which terminates the list. If the first integer is >
0, it is an index specifying the parameter that one
wants to set and the following integer gives the value
to be assigned to the parameter. If the first integer
is negative, its absolute value specifies a parameter
as above, and the value of that parameter is returned
in the second integer. A single call can get and/or
set as many of these parameters as desired. Below
is a list of parameter names (which we recommend
be used for the clarity of the code), and their values,
that are used as the first integer in an entry. The
second integer of the entry is denoted by Kj, where j
is the value of the first integer.

MESUNI=10 (0 ≤ K10 ≤ 99) Set the scratch file
unit number to K10. If the scratch unit is re-
quired and K10 has not been defined, its default
value is 31 − k, where k is the smallest positive
integer for which unit 31 − k is available. If
K10 is set to 0, a scratch unit is assumed not to
be available, and tables with long lines will be
printed with each row on multiple lines.

MEHEAD=11 (0 ≤ K11 ≤ 1) Defines the print
that surrounds an error message. K11=0 gives
nothing, and 1 gives TEXT(1)(1:4) repeated
18 times. If this is not used, one gets 72 $’s. (To
get a blank line use 1 with TEXT(1) = ′ ′.)

MEDDIG=12 (-50 ≤ K12 ≤ 50) Set default dig-
its to print for floating point. If K12 > 0 then
K12 significant digits will be printed, if K12 < 0,
then −K12 digits will be printed after the dec-
imal point, and if K12 = 0, the default will be
used, which is the full machine precision. Set-
ting or getting this value will only work prop-
erly if the action is taken by calling SMESS or
DMESS as appropriate; see below. There are
separate internal values for K12 in SMESS and
DMESS.

MEMLIN=13 (39 ≤ K13 ≤ 500) Set line length for
diagnostic messages to K13. (Default is 128.)

MEELIN=14 (39 ≤ K14 ≤ 500) Set line length for
error messages to K14. (Default is 79.)

MEMUNI=15 (-99 ≤ K15 ≤ 99) Set unit num-
ber for diagnostic messages to K15. If K15 = 0
(default), a Fortran PRINT statement is used.

MEEUNI=16 (-99 ≤ K16 ≤ 99) Set unit number
for error messages to K16. If K16 = 0 (default),
a Fortran PRINT statement is used.

MESCRN=17 (0 ≤ K17 ≤ 100000000) Set num-
ber of lines to print to standard output before
pausing for “go” from user. Default is 0, which
never stops.

MEDIAG=18 (0 ≤ K18 ≤ 1000000000) Not cur-
rently in use by MATH77 routines. Described
more fully below.

MEMAXE=19 (0 ≤ K19 ≤ 1000000000) Set the
maximum error value. When retrieving this
value, it is the maximum value seen for 10000s+
1000p+i, where s, p, and i are the stop and print
levels, and the index on the last error message
processed, respectively.

MESTOP=20 (0 ≤ K20 ≤ 8) Set the stop level for
error messages. If an error message has a stop
index > min(K20, 8), the program is stopped
after processing the message. The default value
is K20=3.

MEPRNT=21 (0 ≤ K21 ≤ 8) Set the print level
for error messages. If an error message has a
print index > K21, or the message is going to
stop when finished, information in an error mes-
sage is processed, else all the actions including

c©1997 Calif. Inst. of Technology, 2010 Math à la Carte, Inc.

June 17, 2010 Extended Error Message Processor 19.3–1

printing are skipped. (MESTOP controls stop-
ping.) The default value is K21=3.

MERET=51 End of the list. (Only requires a sin-
gle integer.)

TEXT() [in] Only referenced if MEHEAD is one of the
actions. See the description above.

IDAT() [in] Not referenced by the application dis-
cussed here.

B.3 Getting and Setting the Default for Digits
to Print for Floating Point Numbers

As mentioned above, the setting or retrieving of the num-
ber of decimal digits, MEDDIG above, requires a call to
SMESS for single precision, and a call to DMESS for
double precision. Either of these calls can be used to set
any of the other parameters also. These calls require the
additional declaration of a floating point array FDAT(),
which must be single precision if SMESS is called and
must be double precision if DMESS is called.

CALL SMESS(MACT, TEXT, IDAT, FDAT)

CALL DMESS(MACT, TEXT, IDAT, FDAT)

As above, the only argument actually used for this ap-
plication is MACT().

B.4 Advanced Features

Most of the features listed below are used someplace in
one of the library routines. The options that use FDAT
require calling SMESS or DMESS, the other options can
call MESS, SMESS, or DMESS. All variables passed to
these routines are arrays which must have a declared di-
mension large enough to process the options being spec-
ified. Internal variables, all of which have a default value
of 1, are used to keep track of locations as follows:

NTEXT The next text to be output starts at
TEXT(NTEXT).

NIDAT The next output from IDAT starts at
IDAT(NIDAT).

NFDAT The next output from FDAT starts at
FDAT(NFDAT).

NMDAT The next output from MDAT starts at
MDAT(NMDAT), where MDAT is de-
fined by actions MEMDA1–MEMDA5
below, and NMDAT is set to one at
the end of every text output.

An action that uses data pointed to by one of the above
will cause the pointer to be incremented to one past the
last location used. An exception is NMDAT, which when
it reaches 5 is not incremented and the value pointed to
is incremented instead.

When an option requires more than a single additional
number to define it, a new letter followed by the index
associated with the option is used to denote each addi-
tional number. The additional values of MACT available
are:

MEDIAG=18 (0 ≤ K18 ≤ 1000000000) Set the diag-
nostic level desired. Once again, note that this is not
used in MATH77. The error message routines makes
no use of K18. MESS merely serves as a place to set it
and to answer inquiries on its value. It is intended to
be set by users of library software. Library packages
that make use of this number are expected to use it
as described below. If K18 = 0 (the default), no diag-
nostic print is being requested. Else m = mod(K18,
256) determines whether a package will do diagnos-
tic printing. Associated with a library package is a
number L that must be a power of 2 < 129, and that
should be mentioned in the documentation for the
package. If the bit logical or(m,L) = L then diagnos-
tic output for the routine with the associated value
of L is activated. The value of L should have been
selected by the following somewhat vague rules. Let
log2(L) = 2i+ j, where j is 0 or 1. Select i = level of
the library package, where the level is 0 if no other
library routine that is likely to be used with the pack-
age could reasonably be expected to want any embed-
ded diagnostics, and otherwise is min(4, I+1), where
I is the maximum level for any library routine that is
likely to be used with the package. Select j = 0 if the
user is relatively unlikely to want diagnostics, and j
= 1, if this is a routine for which considering its level
the user is relatively likely to want diagnostic output.
The next 8 bits, mod(K18/256, 256), may be used by
the library routine to select the actual output that is
to be given. These bits may be ignored, but if they
are used, the lowest order bits should correspond to
less voluminous output that is more likely to be re-
quested. Finally, K18 / (216) may be used to give
a count on how many times to print the diagnostics
that are given. This count may be interpreted by
library routines in slightly different ways, but when
used it should serve to turn off all output after a cer-
tain limit is reached. By convention, if this is 0 there
is no upper bound on the count.

METDIG=22 (−50 ≤ K22 ≤ 50) As for MEDDIG
(=12, above), except the value here is temporary,
lasting until the return, or next use of this action. If
0, the internal value for K12 is used instead.

MENTXT=23 (1 ≤ K23 ≤ 10000000) Set value of
NTEXT to K23.

MEIDAT=24 (1 ≤ K24 ≤ 1000000000) Set value of
NIDAT to K24.

19.3–2 Extended Error Message Processor June 17, 2010

MEFDAT=25 (1 ≤ K25 ≤ 1000000000) Set value of
NFDAT to K25.

MEMDAT=26 (1 ≤ K26 ≤ 5) Set value of NMDAT
to K26.

MEMDA1=27 (K27) set MDAT(1) to K27. See de-
scription of NMDAT above.

MEMDA2=28 (K28) set MDAT(2) to K28.

MEMDA3=29 (K29) set MDAT(3) to K29.

MEMDA4=30 (K30) set MDAT(4) to K30.

MEMDA5=31 (K31) set MDAT(5) to K31.

METABS=32 (1 ≤ K32 ≤ 100) set spacing for tabs to
K32. The default value is K32=6.

MEERRS=33 (K33) set the current error counter to
K33. (To retrieve this value set a location in MACT()
to −33, and the count will be returned in the follow-
ing location.) This count is set to 0 on the first call
made to MESS.

MECONT=50 Exit, but no print of current print
buffer. The error or diagnostic message is to be con-
tinued immediately.

MERET=51 All done with diagnostic or error mes-
sage. Complete processing and return; or for some
error messages stop.

MEEMES=52 (K52, L52, M52) Start an error mes-
sage with severity level K52, index for the error of
L52, and message text starting at TEXT(M52). If
M52 is 0, message text starts at TEXT(NTEXT),
and if M52 < 0, no message text is printed as part
of this action. This option assumes that TEXT(1)
starts with text giving the name of the subprogram
or package terminated with a ‘$B’. Library routines
should set K52 = 10 × s + p, where s is the stop
level desired, and p the print level, and should have
10 > p ≥ s ≥ 0. We offer the following guidelines as
a yardstick for setting the value of s.

= 9 User has ignored warning that program was go-
ing to be stopped.

= 8 Program has no way to continue.

= 7 User has given no indication of knowing that
functionality of results is reduced. (E.g. not
enough space for some result.)

= 6 Program could continue but with reduced func-
tionality.

= 5 Results far worse than user expected to want.

= 4 User has given no indication of knowing that
results do not meet requested or expected accu-
racy.

= 3 Warning is given that program will be stopped
without some kind of response from the calling
program.

= 2 Program is not delivering requested or expected
accuracy.

= 1 Some kind of problem that user could correct
with more care in coding or in problem formu-
lation.

= 0 Message is for information of uncritical nature.

Print levels might be counted down so that warnings
given several times are no longer given, or be counted
up so that a warning is only given after a certain
threshold is reached. Levels should be selected with
the understanding that the default is to print or stop
only for levels > 3.

METEXT=53 Print TEXT, starting at TEXT(NTEXT).
Print ends with the last character preceding the first
’$’. Special actions are determined by the character
following the ’$’. Except as noted, the ’$’ and the
single character that follows are not printed. In the
text below, “to continue”, means to continue print
of TEXT with the next character until the next “$”.
Except for the one case noted, NTEXT is set to point
to the second character after the “$”. Possibilities
for the character following the “$” are (letters must
be in upper case):

B Break text, but don’t start a new line.

E End of text and line.

R Break text, don’t change the value of NTEXT.
Thus next text Repeats the current.

N Start a New line, and continue.

I Print IDAT(NIDAT), set NIDAT = NIDAT + 1,
and continue.

J As for I above, except use the last integer format
defined by a “$(”, see below.

F Print FDAT(NFDAT), set NFDAT = NFDAT +
1, and continue.

G As for F above, except use the last floating format
defined by a “$(”, see below.

M Print MDAT(NMDAT), set NMDAT = NMDAT
+ 1, and continue.

H Marks terminator for column and row Headings;
see table, vector, and matrix output below. This
causes enough blanks to be generated to keep
column headings centered over their columns.
After the blanks are generated, text is contin-
ued until the next ’$’. This is not to be used
except inside column or row headings. The last
row or column should be terminated with a ’$E’
or if appropriate, a ’$#’ for a row or column la-
bel.

(Starts the definition of a format for integer or
floating point output. The format must re-
quire no more than 12 characters for floating
point and may not contain a “P” field (e.g.

June 17, 2010 Extended Error Message Processor 19.3–3

“(nnEww.ddEe)”, where each of the lower case
letters represents a single digit), and no more
than 7 characters for integer output. If the next
character following the “)” that ends the format
is not a “$” then “$J” or “$G” type output is
done; see above. In either case processing of
TEXT then continues.

T Tab. See METABS (=32 above).

Used in matrix row or column labels. This prints
the current row or column index, respectively,
ends the text for the current row or column,
and resets the text pointer to where it started.

$ a single ’$’ is printed; continue output of text.

− Starts a negative number for skipping, see next
below.

0-9 A sequence of digits (perhaps preceded by a ‘−’
sign defines an extra amount to skip the index
(ahead or back) for fetching the next thing from
FDAT or IDAT (whichever is referenced next).
We recommend this be used just prior to the $
item that requires the skip. (The default is to
start one past the last thing printed.)

C Only used by pmess which deletes it and the pre-
ceding ’$’. Used at the end of a line to indicate
Continued text.

blank A blank ending up in column 72 is replaced
by “$ ” by pmess, thus avoiding bugs in some
Fortran compilers. If the user inputs a “$ ”, not
followed by anything pmess starts a new data
statement with an incremented array name; if
followed by a “D” pmess will arrange for the
preceding text to be stored in an array (so that
not too many continuation lines are required)
and outputs a comment so the C conversion is
done correctly.

other Don’t use this — the ’$’ is ignored, but new
features may change the action.

ME????=54 Not used.

METABL=55 (K55, L55, M55, N55) Note this action
automatically returns when done, further locations in
MACT are not examined. This action prints a head-
ing and/or data that follows a heading. If K55 is 1,
then the heading text starting in TEXT(NTEXT) is
printed prior to printing the data. This text should
contain embedded “$H”’s to terminate columns of
the heading. If there is no heading on a column, use
“ $H”. Note the leading blank. If the heading is to
continue over k columns, begin the text with “$H”
repeated k − 1 times with no other embedded char-
acters. The very last column must be terminated
with “$E” rather than “$H”. After tabular data are
printed, K55 is incremented by 1, and compared with

L55. If K55 > L55, K55 is reset to 1, and if the data
that was to be printed required lines that were too
long, data saved in the scratch file is printed using
the headings for the columns that would not fit on
the first pass. Note that only one line of tabular data
can be printed on one call to this subroutine.
M55 gives the number of columns of data associated
with the heading which is the sum of the “rr” values.
N55 is a vector containing as many entries as needed
to get the sum of the “rr” values equal to M55. The
kth integer in N55 defines the printing action for the
kth column of the table. Let such an integer have a
value defined by rr+100×(t+10×(dd+100×ww)),
i.e. wwddtrr, where 0 ≤ rr, dd, ww < 100, and
0 ≤ t < 10.

rr The number of items to print.

t The type of output.

1 Print text starting at TEXT(NTEXT), rr =
01.

2 Print the value of K55, rr = 01.
3 Print integers starting at IDAT(NIDAT).
4 Print starting at FDAT(NFDAT), using an F

format.
5 Print starting at FDAT(NFDAT), using an E

format.
6 Print starting at FDAT(NFDAT), using an G

format.

dd Number of digits after the decimal point.

ww The total number of print positions used by the
column, including the space used to separate
this column from the preceding one. This must
be big enough so that the column headings will
fit without overlap.

MEIVEC=57 (K57) Print IDAT as a vector with K57
entries. The vector output starts on the current
line even if the current line contains text. This is
useful for labeling the vector. The vector starts at
IDAT(NIDAT). If K57 < 0, indexes printed in the la-
bels for the vector start at NIDAT, and entries from
NIDAT to −K57 are printed.

MEIMAT=58 (K58, L58, M58, I58, J58) Print IDAT
as a matrix with K58 declared rows, L58 actual rows,
and M58 columns. If K58 < 0, instead of using 1 for
the increment between rows, and K58 for the incre-
ment between columns, −K58 is used for the incre-
ment between rows, and 1 is used for the increment
between columns. If L58 < 0, the number of ac-
tual rows is mod(−L58, 100000), and the starting
row index is −L58 / 100000. Similarly for M58 < 0.
TEXT(I58) starts the text for printing row labels. If
I58 < 0, no row labels are printed. If I58 = 0, it is
as if it pointed to text containing “Row $E”. Any

19.3–4 Extended Error Message Processor June 17, 2010

“$” in a row or column label must be followed by
“H” or “E” which terminates the text for the label.
In the case of $H, text for the next label follows im-
mediately, in the case of $E the current row index
is printed in place of the $E and the next label uses
the same text. J58 is treated similarly to I58, except
for column labels, and with “Row $E” replaced with
“Col $E”. The matrix starts at IDAT(NIDAT), and
NIDAT points one past the end of the matrix when
finished.

MEJVEC=59 (K59) As for MEIVEC, except use the
format set from using $(.

MEJMAT=60 (K60, L60, M60, I60, J60) As for
MEIMAT, except use the format set from using $(.

MEFVEC=61 (K61) As for MEIVEC, except print
FDAT as a vector with K61 entries. The vector starts
at FDAT(NFDAT).

MEFMAT=62 (K62, L62, M62, I62, J62) As for ac-
tion MEIMAT, but print FDAT instead, and use NF-
DAT in place of NIDAT.

MEGVEC=63 (K63) As for MEFVEC, except use the
format set by using $(.

MEGMAT=64 (K64, L64, M64, I64, J64) As for
MEIMAT, except use the format set by using $(.

MEIVCI=65 (K65, L65) As for MEIVEC, except the
vector entries have a spacing of K65, and there are
L65 entries in the vector.

MEJVCI=66 (K66) As for MEIVCI, except use the
format set by using $(.

MEFVCI=67 (K67, L67) As for MEFVEC, except the
vector entries have a spacing of K67, and there are
L67 entries in the vector.

MEGVCI=68 (K68) As for MEFVCI, except use the
format set by using $(.

MEFSPV=69 (K59) K59 gives the number of entries
in the sparse vector, IDAT gives indexes of the en-
tries, and FDAT gives the corresponding values. One
may want to make use of MEMDA1, and MEMDA2
to save for example the column index and the number
of entries for output in a text message that precedes
the output of the vector. The user will need to write a
loop to output a sparse matrix, and output of sparse
integer vectors in not supported.

B.5 Constructing Message Data with pmess

For complicated messages, making up the Fortran DATA
statements, required can be quite difficult. Even for sim-
ple cases, we recommend using the stand alone program
pmess to construct both the DATA statements, and PA-
RAMETER statements that define variables that can be
used to reference messages. One can then change input

message text, run pmess, and replace the old output in
the code with the new output, without requiring other
changes in the code. pmess expects input from “stan-
dard input”, and writes output to the file tmess. Thus
for the example given in the section below, with an input
file of drsmess.err the program is executed as follows
(at least for DOS and Unix)

pmess <drsmess.err

and the file tmess can be inserted into a Fortran rou-
tine. In order to follow the declaration order imposed by
the Fortran standard, and to avoid splitting the output
generated by pmess, we recommend inserting the output
from pmess after all other specification statements in the
code, but before other data statements (if any).

pmess generates parameters LTXTAA, LTXTAB,
These names are associated with individual messages
that might be printed, and are identified by comments of
the form cAA, cAB, . . . generated by pmess. The values
generated for these parameters are the character posi-
tions of the message in the particular character array in
which that message is stored. Messages are first stored
in a character array named MTXTAA, but if a line con-
sisting of a single ‘$’ in column 1 is encountered the last
two letters of this name are advanced as for LTXTxx,
and further text is stored in the new character array.
pmess generates both the declarations and the data for
these character arrays.

The comments (and just the comments) generated by
pmess can be used as inputs to pmess. Thus we rec-
ommend including these comments in the code both as
documentation for the messages, and to simplify gen-
erating the data if changes to messages are desired. If
these comments are passed as input to pmess, then the
reference to column 1 above should be to column 5.

pmess replaces a blank in column 72 of output character
strings with a ‘$’, and inserts a blank in the continued
string. This is done because some editors delete trail-
ing blanks, and some compilers require that the trailing
blanks in continued character data be present.

There are three special cases used in pmess, none of
which generates text in the output arrays. A “$C” at
the end of a line indicates that the text on the following
line is a continuation of the text on this line. At least for
use in a Fortran 77 environment one should not use input
lines longer than 68 characters to allow for the 4 extra
spaces required by the generated comments. A “$ ” at
the start of a line causes the code to use a new array
for the following text, and a “$ D” at the start of a line
tells pmess to separate the data for the preceding text
into separate array elements. The latter is necessary if
the text would require more than 19 continuation lines.

June 17, 2010 Extended Error Message Processor 19.3–5

Special comments for the conversion to C are also output
for this case.

Recall that for error messages, the text must start with
the subprogram name, this name should be terminated
with ‘$B’. We suggest that after the subprogram name,
one give the text for the error messages in order. Then
the text for error message i, can be located from an array
referenced by the error index.

C. Examples and Remarks

pmess transformed the data in drsmess.err to state-
ments included in the listing for DRSMESS.FOR. The
output from running DRSMESS is given in ODSMESS.
This illustrates how error messages can be generated,
and how the length of the output line can be changed
from the default (which is 79) to 40.

Other library routines can be examined to see how vari-
ous error messages and diagnostic outputs have been im-
plemented. Most of the features described here can be
found in the source code for either DIVA or DIVADB,

D. Functional Description

The routines mentioned here are called by a number of
library routines for the printing of both error messages
and diagnostic information. The user can call the rou-
tines described here to alter the actions they take when
called by other library routines.

Other approaches to handling error messages can be
found in the references cited below.

References

1. P. A. Fox, A. D. Hall, and N. L. Schryer, The
PORT mathematical subroutine library, ACM Trans.
on Math. Software 4, 2 (June 1978) 104–126.

2. P. A. Fox, A. D. Hall, and N. L. Schryer, Algo-
rithm 528: Framework for a portable library [Z], ACM
Trans. on Math. Software 4, 2 (June 1978) 177–188.

3. IMSL, MATH/LIBRARY Version 1.1, 2500
ParkWest Tower One, 2500 CityWest Boulevard, Hous-
ton TX 77042-3020 (1989) 1130–1136.

4. Rondall E. Jones and David K. Kahaner, XERROR,
the SLATEC error-handling package, Software Prac-
tice and Experience 13 (1983) 251–257.

E. Error Procedures and Restrictions

Use of indexes other than those described here, cause
MESS to print the message “Actions in MESS termi-
nated due to error in usage of MESS.” and then to re-
turn. There are a two errors that cause MESS to execute
an unrequested “STOP.” Such a STOP will print one of
the two following messages.

“Could not assign scratch unit in MESS.”
“Stopped in MESS -- Column width too small in a head-
ing.”

F. Supporting Information

The source language is ANSI Fortran 77.

Algorithm and code due to F. T. Krogh, JPL, Novem-
ber, 1991. Last change in March, 2006 to add output of
sparse vectors.

Entry Required Files

DMESS AMACH, DMESS, MESS

MESS AMACH, MESS

SMESS AMACH, MESS, SMESS

drsmess.err

DRSMESS$B
Desc r ip t i on o f e r r o r . (With one r e a l) FDATA1 = $F . $E
Desc r ip t i on o f 2nd e r r o r . (With no data)$E
Desc r ip t i on o f 3 rd e r r o r . (With one i n t e g e r) IDATA1 = $I . $E
Desc r ip t i on o f 4 th e r r o r . (With two i n t e g e r s and one r e a l)$N
IDATA1 = $I , IDATA2 = $I , FDATA2 = $F . $E

19.3–6 Extended Error Message Processor June 17, 2010

DRSMESS

c program DRSMESS
c>> 1998−11−02 DRSMESS Krogh Typed a l l v a r i a b l e s .
c>> 1994−09−09 DRSMESS Krogh Added CHGTYP code .
c>> 1993−06−25 DRSMESS Krogh Addi t ions f o r Conversion to C.
c>> 1992−03−24 DRSMESS Krogh −− I n i t i a l Code .
c
c−−S r ep l a c e s ”?”: DR?MESS, ?MESS
c

integer I , IDAT(3) , ILOC(4) , MACT(5) , MACT1(3)
real FDAT(2)
log ica l LIN40

c
integer MERET, MEEMES, MESTOP, MEELIN
parameter (MERET =51)
parameter (MEEMES =52)
parameter (MESTOP =20)
parameter (MEELIN =14)
integer MLOC(4)

c ∗∗∗∗∗∗∗∗∗ Error message t e x t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c [Last 2 l e t t e r s o f Param . name] [Text genera t ing message .]
cAA DRSMESS$B
cAB Descr ip t i on o f er ror . (With one r e a l) FDATA1 = $F . $E
cAC Descr ip t i on o f 2nd error . (With no data)$E
cAD Descr ip t i on o f 3 rd error . (With one i n t e g e r) IDATA1 = $I . $E
cAE Descr ip t i on o f 4 th error . (With two i n t e g e r s and one r e a l)$N
c IDATA1 = $I , IDATA2 = $I , FDATA2 = $F . $E

integer LTXTAA,LTXTAB,LTXTAC,LTXTAD,LTXTAE
parameter (LTXTAA= 1 ,LTXTAB= 10 ,LTXTAC= 64 ,LTXTAD=107 ,LTXTAE=168)
character MTXTAA(2) ∗ (135)
data MTXTAA/ ’DRSMESS$BDescription o f e r r o r . (With one r e a l) FDAT

∗A1 = $F . $EDescr ipt ion o f 2nd e r r o r . (With no data) $EDescr ipt ion o
∗ f 3 rd e r r o r . (W’ , ’ i t h one i n t e g e r) IDATA1 = $I . $EDescr ipt ion o f$
∗ 4 th e r r o r . (With two i n t e g e r s and one r e a l)$NIDATA1 = $I , IDATA2
∗ = $I , FDATA2 = $F . $E ’ /

c −−−−−−−−− End o f code genera ted by PMESS from DRSMESS.ERR −−−−−−−−−−−
data MLOC /LTXTAB,LTXTAC,LTXTAD,LTXTAE/

c
c 1 2 3 4 5

data MACT / MEEMES,25 , 0 , 0 , MERET /
data MACT1 / MEELIN, 40 , MERET /
data FDAT / 1 .7E−12, −12.3456789E0 /
data IDAT / 17 , −178, 4 /
data ILOC / 1 , 1 , 2 , 2 /

c
LIN40 = . f a l s e .

c Loop to p r i n t e r ror messages .
10 do 100 I = 1 , 4

MACT(3) = I
MACT(4) = MLOC(I)
ca l l SMESS(MACT, MTXTAA, IDAT(ILOC(I)) , FDAT(ILOC(I)))

100 continue
i f (LIN40) stop

c Change the l i n e l e n g t h to 40 and do i t again .
ca l l MESS(MACT1, MTXTAA, IDAT)
LIN40 = . t rue .
go to 10
end

June 17, 2010 Extended Error Message Processor 19.3–7

ODSMESS

$$
DRSMESS r epo r t s e r r o r : Stop l e v e l = 2 , Pr int l e v e l = 5 , Error index = 1
Desc r ip t i on o f e r r o r . (With one r e a l) FDATA1 = 1.6999999E−12.
$$

$$
DRSMESS r epo r t s e r r o r : Stop l e v e l = 2 , Pr int l e v e l = 5 , Error index = 2
Desc r ip t i on o f 2nd e r r o r . (With no data)
$$

$$
DRSMESS r epo r t s e r r o r : Stop l e v e l = 2 , Pr int l e v e l = 5 , Error index = 3
Desc r ip t i on o f 3 rd e r r o r . (With one i n t e g e r) IDATA1 = −178.
$$

$$
DRSMESS r epo r t s e r r o r : Stop l e v e l = 2 , Pr int l e v e l = 5 , Error index = 4
Desc r ip t i on o f 4 th e r r o r . (With two i n t e g e r s and one r e a l)
IDATA1 = −178, IDATA2 = 4 , FDATA2 = −12.345679.
$$

$$
DRSMESS r epo r t s e r r o r : Stop l e v e l = 2 ,
Pr int l e v e l = 5 , Error index = 1
Desc r ip t i on o f e r r o r . (With one r e a l)
FDATA1 = 1.6999999E−12.
$$

$$
DRSMESS r epo r t s e r r o r : Stop l e v e l = 2 ,
Pr int l e v e l = 5 , Error index = 2
Desc r ip t i on o f 2nd e r r o r . (With no
data)
$$

$$
DRSMESS r epo r t s e r r o r : Stop l e v e l = 2 ,
Pr int l e v e l = 5 , Error index = 3
Desc r ip t i on o f 3 rd e r r o r . (With one
i n t e g e r) IDATA1 = −178.
$$

$$
DRSMESS r epo r t s e r r o r : Stop l e v e l = 2 ,
Pr int l e v e l = 5 , Error index = 4
Desc r ip t i on o f 4 th e r r o r . (With two
i n t e g e r s and one r e a l)
IDATA1 = −178, IDATA2 = 4 , FDATA2 =
−12.345679.
$$

19.3–8 Extended Error Message Processor June 17, 2010

	Extended Error Message Processor
	Purpose
	Usage
	Program Prototype, Setting or Getting a Message Processor Parameter
	Argument Definitions
	Getting and Setting the Default for Digits to Print for Floating Point Numbers
	Advanced Features
	Constructing Message Data with pmess

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

