
2.17 Fresnel Integrals

A. Purpose

The subprograms described in this chapter compute the
Fresnel Integrals
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and the associated functions
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as defined by Equations 7.3.1, 7.3.2, 7.3.5 and 7.3.6 in
[1].

B. Usage

B.1 Program Prototype, Single Precision

To compute C(x) use

REAL SFRENC, X, Y

Y = SFRENC(X)

To compute S(x) use

REAL SFRENS, X, Y

Y = SFRENS(X)

To compute f(x) use

REAL SFRENF, X, Y

Y = SFRENF(X)

To compute g(x) use

REAL SFRENG, X, Y

Y = SFRENG(X)

B.2 Argument Definitions

X [in] The value at which the function is to be evalu-
ated.

B.3 Modifications for Double Precision

Change the REAL type statements to double precision,
and change the initial letter of the subprogram names
from S to D. It is important that the subprogram names
be explicitly typed.
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C. Examples and Remarks

See DRSFRENL and ODSFRENL for an example of the
usage of this subprogram.

There are no restrictions on the range of applicability of
these functions. The accuracy of the trigonometric func-
tions decreases, however, for large |x|. Thus evaluation
of C(x), S(x), f(−|x|) or g(−|x|) for large |x| will be
less accurate than evaluation of f(|x|) and g(|x|) for the
same value of x. When formulating an application, one
should when possible use C(x) and S(x) when |x| ≤ 1.6
(to achieve maximum efficiency). To achieve maximum
accuracy and efficiency use f(x) and g(x) when x > 1.6,
and avoid using x < −1.6.

D. Functional Description

The computer approximations for these functions use
Chebyshev rational approximations developed by W. J.
Cody, described in [2]. Cody provides approximations
for C(x) and S(x) for |x| ≤ 1.6, and for f(x) and
g(x) for x > 1.6. The approximations for f(x) and
g(x) for x > 2.4 have the same asymptotic form as
the functions. We compute f(x) and g(x) from S(x)
and C(x) when |x| ≤ 1.6, and vice versa for x > 1.6.
For x < 0 we use C(−x) = −C(x), S(−x) = −S(x),
g(−x) = cos(π/2 x2) + sin(π/2 x2)− g(x) and f(−x) =
cos(π/2 x2)− sin(π/2 x2)− f(x).

The approximations and programming were checked by
comparing the double precision functions to an extended
precision computation of w(z), the Fadeeva function de-
scribed in Chapter 2.16. Testing consisted of dividing
several regions of the argument range into 200 equal-
sized intervals, and selecting a point randomly in each
interval. To test f(x) and g(x) when 50 < x < 1000 we
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Argument Mean Max Mean Max Mean Max
Function Interval ULP ULP REL REL ABS ABS
C(x) [0..1.2] 0.57 ρ 2.18 ρ 0.40 ρ 1.29 ρ 0.19 ρ 0.83 ρ

(1.2..1.6] 0.70 ρ 2.52 ρ 0.48 ρ 1.55 ρ 0.19 ρ 0.63 ρ
S(x) [0..1.2] 0.74 ρ 2.42 ρ 0.52 ρ 1.39 ρ 0.09 ρ 0.65 ρ

(1.2..1.6] 0.75 ρ 2.20 ρ 0.55 ρ 1.55 ρ 0.38 ρ 1.10 ρ
f(x) (1.6..1.9] 0.51 ρ 1.50 ρ 0.36 ρ 1.10 ρ 0.06 ρ 0.19 ρ

(1.9..2.4] 0.30 ρ 0.96 ρ 0.26 ρ 0.77 ρ 0.04 ρ 0.12 ρ
(2.4..6.0] 0.43 ρ 1.15 ρ 0.29 ρ 0.80 ρ 0.02 ρ 0.07 ρ
(6.0..50.0] 0.45 ρ 1.05 ρ 0.31 ρ 0.71 ρ 0.00 ρ 0.03 ρ
(50..1000] 0.39 ρ 1.02 ρ 0.27 ρ 0.72 ρ 0.00 ρ 4E−3 ρ

g(x) (1.6..1.9] 0.53 ρ 1.92 ρ 0.38 ρ 1.11 ρ 0.01 ρ 0.02 ρ
(1.9..2.4] 1.06 ρ 3.43 ρ 0.75 ρ 1.93 ρ 0.01 ρ 0.02 ρ
(2.4..6.0] 1.51 ρ 4.04 ρ 1.01 ρ 2.61 ρ 0.00 ρ 0.01 ρ
(6.0..50.0] 1.40 ρ 3.62 ρ 0.97 ρ 2.11 ρ 0.00 ρ 3E−4 ρ
(50..1000] 1.09 ρ 2.40 ρ 0.75 ρ 1.50 ρ 0.00 ρ 2E−7 ρ

divided the range 10−3 < 1/x < .02 into 200 equal sub-
ranges. In each interval we report the error in units of the
last position of the test value in the column headed ULP,
the error relative to the true value in the column headed
REL, and the absolute error in the column headed ABS.
The quantity ρ is the round off level, that is, the dif-
ference between 1.0 and the next representable number,
which is provided by D1MACH(4) (Chapter 19.1). For
IEEE arithmetic, ρ ≈ 2.22E−16 in double precision. The
results are summarized above.

Cody’s testing of the approximations, as described in
[2], indicates a relative accuracy in the approximations
of 15 to 18 digits, so one should not expect to achieve
more accuracy simply by carrying out the calculations
using more precision, as, for example, by using double
precision on a Cray computer.

The errors in f(x) and g(x) decrease as x increases in the
range 6 < x ≤ 1000. The approximations for f(x) and
g(x) have the same asymptotic form as the functions
when x > 2.4, and therefore they become more accu-
rate as x increases. For IEEE format double precision
arithmetic, the approximation for f(x) is identical to the
asymptotic expansion when x > 29, and the approxima-
tion for g(x) is identical to the asymptotic expansion
when x > 14.

We verified correct programming of f(x) and g(x) for
|x| ≤ 1.6, and for C(x) and S(x) for x > 1.6, by com-
paring results to values in table 7.7 in [1]. Extensive ac-
curacy testing would simply have validated the trigono-

metric function routines.
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E. Error Procedures and Restrictions

There are no restrictions on the argument range for these
functions; they do not announce any errors.

F. Supporting Information

The source language is ANSI Fortran 77.

Entry Required Files

DFRENC AMACH, DFRENL
DFRENF AMACH, DFRENL
DFRENG AMACH, DFRENL
DFRENS AMACH, DFRENL
SFRENC AMACH, SFRENL
SFRENF AMACH, SFRENL
SFRENG AMACH, SFRENL
SFRENS AMACH, SFRENL

Subprograms designed and developed by W. V. Snyder,
JPL, 1992.
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DRSFRENL
c program DRSFRENL
c>> 2001−05−25 DRSFRENL Krogh −− Added comma to format .
c>> 1996−06−18 DRSFRENL Krogh Minor changes in formats f o r C convers ion .
c>> 1996−01−29 DRSFRENL WV Snyder Corrected formats
c>> 1994−10−19 DRSFRENL Krogh Changes to use M77CON
c>> 1993−02−25 DRSFRENL CLL. Minor e d i t s . De le ted Format s ta tements .
c>> 1992−03−18 DRSFRENL WV Snyder Corrected f a i l u r e to c a l l SFRENS
c>> 1992−03−18 DRSFRENL CLL Minor e d i t s .
c>> 1992−02−03 DRSFRENL WV Snyder JPL Or i g ina l code .
c
c Demonstration d r i v e r f o r Fresne l I n t e g r a l s f unc t i on s .
c
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c−−S r ep l a c e s ”?”: DR?FRENL, ?FRENC, ?FRENS, ?FRENG, ?FRENF
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real X, YC, YF, YG, YS
real SFRENC, SFRENF, SFRENG, SFRENS
external SFRENC, SFRENF, SFRENG, SFRENS
integer I

c
print ’ (11x , ’ ’X ’ ’ ,9x , ’ ’C(x ) ’ ’ ,11x , ’ ’ S ( x ) ’ ’ ,11x , ’ ’ g ( x ) ’ ’ ,11x ,

∗ ’ ’ f ( x ) ’ ’ ) ’
do 30 I = −12, 12

X = 0.5 ∗ I
YC = SFRENC(X)
YS = SFRENS(X)
YG = SFRENG(X)
YF = SFRENF(X)
print ’ (1p , 5 e15 . 0 7 ) ’ , X, YC, YS, YG, YF

30 continue
stop
end

ODSFRENL

X C(x ) S(x ) g (x ) f ( x )
−6.0000000E+00 −4.9953148E−01 −4.4696075E−01 9.9953145E−01 9.4696075E−01
−5.5000000E+00 −4.7842142E−01 −5.5368412E−01 −1.3071709E+00 −5.9905142E−01
−5.0000000E+00 −5.6363118E−01 −4.9919137E−01 9.9919140E−01 −1.0636312E+00
−4.5000000E+00 −5.2602589E−01 −4.3427297E−01 1.3054551E+00 4.7051251E−01
−4.0000000E+00 −4.9842602E−01 −4.2051578E−01 9.9842602E−01 9.2051578E−01
−3.5000000E+00 −5.3257245E−01 −4.1524801E−01 1.3042227E+00 4.5043051E−01
−3.0000000E+00 −6.0572076E−01 −4.9631301E−01 9.9631298E−01 −1.1057208E+00
−2.5000000E+00 −4.5741299E−01 −6.1918175E−01 −1.3128265E+00 −6.6760296E−01
−2.0000000E+00 −4.8825341E−01 −3.4341568E−01 9.8825341E−01 8.4341568E−01
−1.5000000E+00 −4.4526112E−01 −6.9750500E−01 −1.3315728E+00 −7.4461448E−01
−1.0000000E+00 −7.7989340E−01 −4.3825918E−01 9.3825918E−01 −1.2798934E+00
−5.0000000E−01 −4.9234423E−01 −6.4732432E−02 1.1329203E+00 1.4199099E−01
0.0000000E+00 0.0000000E+00 0.0000000E+00 5.0000000E−01 5.0000000E−01
5.0000000E−01 4.9234423E−01 6.4732432E−02 1.7364271E−01 3.9920503E−01
1.0000000E+00 7.7989340E−01 4.3825918E−01 6.1740816E−02 2.7989340E−01
1.5000000E+00 4.4526112E−01 6.9750500E−01 2.5009766E−02 2.0341848E−01
2.0000000E+00 4.8825341E−01 3.4341568E−01 1.1746596E−02 1.5658432E−01
2.5000000E+00 4.5741299E−01 6.1918175E−01 6.2636342E−03 1.2640692E−01
3.0000000E+00 6.0572076E−01 4.9631301E−01 3.6870006E−03 1.0572079E−01
3.5000000E+00 5.3257245E−01 4.1524801E−01 2.3401754E−03 9.0765551E−02
4.0000000E+00 4.9842602E−01 4.2051578E−01 1.5739668E−03 7.9484239E−02
4.5000000E+00 5.2602589E−01 4.3427297E−01 1.1078332E−03 7.0683539E−02
5.0000000E+00 5.6363118E−01 4.9919137E−01 8.0861803E−04 6.3631192E−02
5.5000000E+00 4.7842142E−01 5.5368412E−01 6.0798827E−04 5.7855371E−02

June 17, 2010 Fresnel Integrals 2.17–3



6.0000000E+00 4.9953148E−01 4.4696075E−01 4.6853212E−04 5.3039238E−02
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