
3.1 Uniform Random Numbers

A. Purpose

Generate pseudorandom numbers from the uniform dis-
tribution. Capabilities are also provided for optionally
setting and fetching the “seed” of the generator.

B. Usage

B.1 Generating uniform pseudorandom num-
bers

Three subprograms are provided for generation of single
precision uniform random numbers:

X = SRANU() Returns one random number in [0, 1].

call SRANUA(XTAB, N) Returns an array of N
random numbers in [0, 1].

call SRANUS(XTAB, N, A, B) Returns an array
of N numbers scaled as A + B × U where U is ran-
dom in [0, 1].

Corresponding double precision subprograms are also
provided.

B.1.a Program Prototype, A Single Random
Number, Single Precision

REAL SRANU, X

X = SRANU()

Argument Definitions

SRANU [out] The function returns a pseudorandom
number from the uniform distribution on [0.0, 1.0].

B.1.b Program Prototype, An Array of Ran-
dom Numbers, Single Precision

INTEGER N

REAL XTAB(≥N)

Assign a value to N.

CALL SRANUA(XTAB, N)

Computed values will be returned in XTAB().

Argument Definitions

XTAB() [out] Array into which the subroutine will
store N pseudorandom samples from the uniform dis-
tribution on [0.0, 1.0].

N [in] Number of pseudorandom numbers requested.
The subroutine returns immediately if N ≤ 0.

B.1.c Program Prototype, An Array of Scaled
Random Numbers, Single Precision

INTEGER N

REAL XTAB(≥N), A, B

Assign values to N, A, and B.

CALL SRANUS(XTAB, N, A, B)

Computed values will be returned in XTAB().

Argument Definitions

XTAB() [out] Array into which the subroutine will
store N numbers computed as A + B × U, where for
each number, U is a pseudorandom sample from a
uniform distribution on [0.0, 1.0].

N [in] Number of pseudorandom numbers requested.
The subroutine returns immediately if N ≤ 0.

A, B [in] Numbers defining the linear transformation
(A + B × U) to be applied to the random numbers.

B.2 Modifications for Double Precision

For double precision usage change the REAL type state-
ments above to DOUBLE PRECISION and change the
initial “S” of the function and subroutine names to “D.”
Note particularly that if the function name, DRANU,
is used it must be typed DOUBLE PRECISION either
explicitly or via an IMPLICIT statement.

B.3 Operations relating to the seed

The handling of the seed is modeled on the function
RANDOM SEED which is a new intrinsic function in-
troduced in Fortran 90. Random number generation
does not require any initialization calls by the user, but
initialization capabilities are provided in case they are
wanted.

The seed for random number generation is a set of KSIZE
numbers of type INTEGER. The value of KSIZE de-
pends on the algorithm and implementation used for
generating uniform random numbers.

call RANSIZ(KSIZE) Returns the value of KSIZE
for the current library implementation.

call RAN1 Sets the seed to its default initial value.

call RANPUT(KSEED) Sets the seed to the array
of KSIZE values given in KSEED().

call RANGET(KSEED) Fetches the current seed
into the array KSEED().
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Besides resetting the seed, RAN1 and RANGET set val-
ues in common that have the effect of reinitializing all of
the pseudorandom number generators of Chapters 3.1,
3.2 and 3.3.

If one needs to produce the same sequence of pseudo-
random numbers more than once within the same run,
a suggested approach is to initialize the package at each
point in the computation where the sequence is to be
started or restarted. One could either use RAN1 to ini-
tialize the package to its standard starting seed or use
RANPUT to initialize the package to a seed selected by
the user.

The seed returned by RANGET may be the seed associ-
ated with the next uniform number that will be returned
by the package, but generally this will not be the case.
Due to buffering within the package this seed may be
associated with a uniform number that will be returned
some tens of requests later.

A potential use for the RANGET function would be to
assure a different set of random numbers on a subsequent
run. Thus one could use RANGET at the end of a run
and write to a file the seed value returned by RANGET.
Then on a subsequent run one could read this seed from
the file and use RANPUT to initialize the package to
this seed value. This would assure a new sequence of
numbers.

B.3.a Program Prototype, Get the value of
KSIZE

INTEGER KSIZE

CALL RANSIZ(KSIZE)

A value will be returned in KSIZE.

Argument Definitions

KSIZE [out] The subroutine sets KSIZE to the number
of integers needed to constitute a seed for the current
library implementation of a random number genera-
tion algorithm. The user should use this information
to verify that the dimension of the array KSEED()
is adequate before calling RANPUT or RANGET.
The preferred algorithm in the MATH77 library has
KSIZE = 2. If this is replaced by a different algo-
rithm KSIZE could change.

B.3.b Program Prototype, Set seed to default
value

CALL RAN1

Argument Definitions

This subroutine has no arguments. It causes the seed
stored in the random number generation code to be reset

to its default initial value. It also sets values in common
that have the effect of reinitializing all of the pseudoran-
dom number generators of Chapters 3.1, 3.2, and 3.3.

B.3.c Program Prototype, Set the seed

INTEGER KSEED(≥KSIZE)

Assign values to KSEED().

CALL RANPUT(KSEED)

Argument Definitions

KSEED() [in] Array of KSIZE integers to be used to
set a new seed value. Any integer values are accept-
able. If the given values do not conform to internal
requirements the subroutine will derive usable values
from the given values.

In the preferred MATH77 implementation the internal
integer sequence consists of numbers in the range from 1
to 68719476502. For example, to set the seed to the
value 10987654321 one should set KSEED(1) = 109876
and KSEED(2) = 54321. In general RANPUT will com-
pute KSEED(1) × 105 + KSEED(2) using either single
precision or double precision arithmetic, depending on
the “mode” described in Section D, and then alter the
result, if necessary, to obtain a seed in the range from 1
to 68719476502.

This subroutine also sets values in common that have
the effect of reinitializing all of the pseudorandom num-
ber generators of Chapters 3.1, 3.2, and 3.3.

B.3.d Program Prototype, Get the seed

INTEGER KSEED(≥KSIZE)

CALL RANGET(KSEED)

Values will be returned in KSEED(). See the discussion
at the beginning of Section B.2 for information on the
applicability of this subprogram.

Argument Definitions

KSEED() [out] Array into which the subroutine will
store the KSIZE integers constituting the current seed.

C. Examples and Remarks

DRSRANU demonstrates the use of SRANU to compute
uniform random numbers and uses SSTAT1 and SSTAT2
to compute and print statistics and a histogram based
on a sample of 10000 numbers delivered by SRANU.

The uniform distribution on [0, 1] has mean 0.5 and stan-
dard deviation

√
1/12 ≈ 0.288675.

The smallest number that can be produced by SRANU,
DRANU, SRANUA, or DRANUA is approximately
0.15 × 10−10. The largest value that can be produced
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is approximately 1.0 − 0.15 × 10−10. The single preci-
sion subprograms SRANU and SRANUA will return this
largest value as exactly 1.0 on many computer systems.

DRDRAN provides a critical test of the correct perfor-
mance of the core integer sequence generator on what-
ever host system it is run. The seed values are set to
cause the generation of the largest and smallest num-
bers possible in the underlying integer sequence. This
program is expected to generate exactly the same values
in the column headed “Integer sequence” on all compil-
er/computer systems. DRDRAN also calls RN2 to show
the value of MODE (described below in Section D) being
used on the host system. See the output listing, ODD-
RAN, for results.

To compute random numbers, uniform in [C, D], one can
use the statement

X =C + (D − C) * SRANU()

or to put N such numbers into an array XTAB() one can
write

call SRANUS(XTAB, N, C, D − C)

To compute random INTEGER’s in the range from I1
through I2, (I1 < I2), with equal probability, one can
write

FAC = real(I2 − I1 + 1)
K = min(I2, I1 + int(FAC * SRANU() ) )

The min function is used in the above statement because
SRANU will, with very low probability, return the exact
value 1.0.

If one needs to compute many random numbers and ex-
ecution time is critical, one should note that one call
to SRANUA with a sizeable value of N will take less
execution time than N references to SRANU. For even
greater efficiency one could write the random number
generation in line, since it only requires a few declara-
tions and a few executable statements. When and if
Fortran 90 compilers come into widespread usage it will
probably be more efficient to use the new intrinsic sub-
routine RANDOM NUMBER, although this subroutine
is not specified to generate the same sequence on differ-
ent computers.

D. Functional Description

D.1 The core algorithm for generation of uni-
form pseudorandom numbers

A sequence of integer values, ki, is generated by the equa-
tion

ki = aki−1 mod m (1)

The rational number, ki/m, is returned as a pseudoran-
dom number from the uniform distribution on [0, 1].

When m is prime and a is a primitive root of m, this
integer sequence has period m − 1, attaining all integer
values in the range [1, m − 1]. According to [1], this
sequence will have good equidistribution properties, at
least in dimensions up to d, if the numbers νi and µi,
i = 2, ..., d, that are functions of m and a, are not ex-
ceptionally small. Finding satisfactory values of νi and
µi is simplified by having m large and a not too small.
The size of m and a is limited however by the require-
ment of computing Eq. (1) exactly at a reasonable cost.

We have determined a pair of integers m and a that
satisfy all these requirements. The values of νi and µi,
i = 2, ..., 6, attained are excellent compared with any
of the 30 (m, a) pairs listed in Table 1, pp. 102–103 of
[1], which includes pairs used in a number of widely dis-
tributed random number generation subprograms. We
use the values

MDIV = m = 6 87194 76503 = 236 − 233

and
AFAC = a = 612 662 ≈ 0.58 × 220

The number m− 1 is the product of three primes, p(i),
listed here with other relevant number-theoretic values.

i p(i) q(i) = (m− 1)/p(i) aq(i) mod m
1 2 3 43597 38251 m− 1
2 43801 15 68902 2 49653 21011
3 784451 87602 1 44431 31136

The fact that values in the last column above are not 1
verifies that a is a primitive root of m.

The values of µi and log base 2 of νi are

(Log2νi, i = 2, 6) = 18.00, 12.00, 8.60, 7.30, 6.00
(µi, i = 2, 6) = 3.00, 3.05, 3.39, 4.55, 6.01

These values may be compared with Table 1, pp. 102–
103, [1], that lists the same measures for a number of
other random number generators.

This package contains both a short and a long algorithm
to implement Eq. (1). Let XCUR be the program vari-
able containing the current value of ki of Eq. (1). The
short algorithm for advancing XCUR is

XCUR = mod(AFAC * XCUR, MDIV).

The long algorithm, using ideas from [2], is

Q = aint(XCUR/B)
R = XCUR − Q * B
XCUR = AFAC * R − C * Q
do while(XCUR .lt. 0.0)

XCUR = XCUR + MDIV
end do

June 17, 2010 Uniform Random Numbers 3.1–3



where B and C are constants related to MDIV and AFAC
by MDIV = B × AFAC + C. We use B = 112165 and
C = 243273. The average number of executions of the
statement XCUR = XCUR + MDIV is 1.09 and the
maximum number of executions is 3.

The largest number that must be handled in the short
algorithm is the product of AFAC with the maxi-
mum value of XCUR, i.e., 612 662 × 6 87194 76502 =
42 10181 19126 68324 ≈ 0.58 × 256. Thus, the short al-
gorithm requires arithmetic exact to at least 56 bits.

The largest number that must be handled in the long al-
gorithm is the product of C with the maximum value of
aint(XCUR/B), i.e., 243273×612664 ≈ 0.14904×1012 ≈
0.54 × 238. Thus the long algorithm requires arithmetic
exact to at least 38 bits.

To accommodate different compiler/computer systems
this program unit contains code for 3 different ways of
computing the new XCUR from the old XCUR, each
producing the same sequence of values. Initially we have
MODE = 1. When MODE = 1 the code does tests to
see which of the three implementation methods will be
used, and sets MODE = 2, 3, or 4 to indicate the choice.

Mode 2 will be used in machines such as the Cray that
have at least a 38 bit significand in single precision arith-
metic. XCUR will be advanced using the long algorithm
in single precision arithmetic.

Mode 3 will be used on machines that don’t meet the
Mode 2 test, but can maintain at least 56 bits exactly
in computing mod(AFAC × XCUR, MDIV) in dou-
ble precision arithmetic. This includes VAX, UNISYS,
IBM 30xx, and some IEEE machines that have clever
compilers that keep an extended precision representa-
tion of the product AFAC × XCUR within the math
processor for use in the division by MDIV. XCUR will
be advanced using the short algorithm in double preci-
sion arithmetic.

Mode 4 will be used on machines that don’t meet the
Mode 2 or 3 tests, but have at least a 38 bit signifi-
cand in double precision arithmetic. This includes IEEE
machines that have not-so-clever compilers. XCUR is
advanced using the long algorithm in double precision
arithmetic.

If a user wishes to know which mode has been selected,
the statement

CALL RN2( MODE )

can be used after at least one access has been made to
one of the random number generators or to RANPUT or
RANGET. This call will set the integer variable MODE
to the mode value of 2, 3, or 4 that the package is using.

D.2 Remarks on alternative algorithms

From [3] and [4] it appears that a multiplicative con-
gruential generator of the form of Eq. (1) using the
values MDIV = 2147483647 = (231) − 1 and AFAC
= 16807 = 75 ≈ 0.513 × 215 has been widely used,
and is quite satisfactory. However, the associated val-
ues of µi and νi are smaller than those associated with
the MDIV and AFAC we are using. With these values,
XCUR would take all integer values in [1, MDIV − 1].
The maximum value of the product, AFAC × XCUR
would be approximately 0.361× 1014 ≈ 0.51× 246, so at
least 46-bit arithmetic would be needed.

The method of [2] is interesting in that it illustrates
techniques for getting a very long period generator
(0.36 × 1014 ≈ 0.51 × 246) using relatively low-precision
arithmetic. This method uses at least three integer mod
operations, three integer multiplications, three floating
divisions, two floating additions, and a floating mod;
there does not appear to be any theoretical measure of
the quality of the sequence, such as the µi and νi de-
scribed in [1].

D.3 Organization of the package

The basic uniform pseudorandom number generation al-
gorithm for the MATH77 library is contained in the pro-
gram unit RANPK2 that returns an array of N numbers
when called at any one of the entry points, SRANUA,
SRANUS, DRANUA, or DRANUS. A single sequence of
pseudorandom integers is managed within this program
unit. Calling any of these four entry points will cause
updating of this single pseudorandom integer sequence.
The other random number subprograms in Chapters 3.2
and 3.3 depend on uniform pseudorandom numbers ob-
tained by calling SRANUA or DRANUA.

The function SRANU is a separate program unit.
SRANU references common blocks that contain a REAL
buffer array of length 97, and an index into the array. If
the value of the index indicates the buffer contains un-
used random numbers, SRANU simply decrements the
index and returns the next number from the buffer. If
the index indicates the buffer is empty, SRANU calls
SRANUA to fill the buffer with uniform random num-
bers and then reinitializes the index and returns one ran-
dom number.

The common blocks are also referenced and used in
this way by other random number subprograms need-
ing single-precision uniform random numbers: SRANE,
SRANG, SRANR, and IRANP.

The double-precision subprograms, DRANU, DRANE,
DRANG, and DRANR share reference to a different
common block that is used similarly to buffer an array
of double-precision uniform pseudorandom numbers.
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RAN1 and RANPUT are entries in a program unit
RANPK1. When either of these entries is called, the
pointers in common will be set to indicate the empty
state and a call will be made to the appropriate one of
two private entry points in program unit RANPK2 to
make the requested change in the seed.

RANSIZ and RANGET are entries in RANPK2 that
simply return stored values, a constant in the case of
RANSIZ, and a variable integer array in the case of
RANGET.

D.4 Accuracy tests

We have run tests of equidistribution in 1, 2, and 3 di-
mensions, as well as the run test and gap test described
in [1]. Results were satisfactory. The main basis for con-
fidence in this algorithm is the number-theoretic prop-
erties of the pair (m, a) described above.

Values returned as double-precision random numbers
will have random bits throughout the word, however the
quality of randomness should not be expected to be as
good in a low-order segment of the word as in a high-
order part.
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E. Error Procedures and Restrictions

If the argument N in SRANUA, SRANUS, DRANUA, or
DRANUS is nonpositive the subroutine will return im-
mediately and make no reference to the array XTAB().

When using RANPUT or RANGET, the user must as-
sure that the array, KSEED(), has an adequate dimen-
sion. Violation of this condition will have unpredictable
effects. The user can call RANSIZ to determine the re-
quired dimension.

If none of the three modes of computation (See MODE
= 2, 3, or 4 in Section D.) succeeds, the program unit
RANPK2 will write an error message directly to the sys-
tem output unit and stop. This is unlikely, as it would
only happen if the host system cannot at least do exact
38-bit arithmetic in double precision.

F. Supporting Information

The source language is ANSI Fortran 77.

Entry Required Files

DRANU DRANU, ERFIN, ERMSG, RANPK1,
RANPK2

DRANUA ERFIN, ERMSG, RANPK2

DRANUS ERFIN, ERMSG, RANPK2

RAN1 ERFIN, ERMSG, RANPK1, RANPK2

RANGET ERFIN, ERMSG, RANPK2

RANPUT ERFIN, ERMSG, RANPK1, RANPK2

RANSIZ ERFIN, ERMSG, RANPK2

RN2 ERFIN, ERMSG, RANPK2

SRANU ERFIN, ERMSG, RANPK1, RANPK2,
SRANU

SRANUA ERFIN, ERMSG, RANPK2

SRANUS ERFIN, ERMSG, RANPK2

Designed by C. L. Lawson and F. T. Krogh, JPL,
April 1987. Programmed by C. L. Lawson and S. Y.
Chiu, JPL, April, 1987. November 1991: Lawson re-
designed RANPK2 to have MODES 2, 3, and 4 for bet-
ter portability. Also reorganized and renamed common
blocks.
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DRSRANU

c program DRSRANU
c>> 1996−05−28 DRSRANU Krogh Added e x t e r na l s ta tement .
c>> 1994−10−19 DRSRANU Krogh Changes to use M77CON
c>> 1992−03−13 DRSRANU CLL
c>> 1987−12−09 DRSRANU Lawson I n i t i a l Code .
c
c Driver to demonstrate use o f SRANU to genera te random numbers
c from the uniform d i s t r i b u t i o n on [ 0 . 0 , 1 . 0 ] .
c Program computes his togram fo r N numbers
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c−−S r ep l a c e s ”?”: DR?RANU, ?RANU, ?STAT1, ?STAT2
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

integer N, NCELLS
parameter (N = 10000 , NCELLS = 10+2)
external SRANU
real SRANU, STATS(5 ) , YTAB(1 ) , Y1 , Y2
integer I , IHIST(NCELLS)
data Y1 , Y2 / 0 .0E0 , 1 . 0E0 /

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
STATS(1) = 0 .0E0
do 20 I = 1 , N

c Get random number
YTAB(1) = SRANU( )

c Accumulate s t a t i s t i c s and his togram .
c

ca l l SSTAT1(YTAB(1 ) , 1 , STATS, IHIST , NCELLS, Y1 , Y2)
20 continue

c Print the s t a t i s t i c s and his togram .
c

write (∗ , ’ (13x , a //) ’ ) ’ Uniform random numbers from SRANU’
ca l l SSTAT2(STATS, IHIST , NCELLS, Y1 , Y2)
stop
end
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ODSRANU

Uniform random numbers from SRANU

BREAK PT COUNT PLOT OF COUNT
0.00 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1000 0 ∗
0 .10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1010 0 ∗
0 .20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

990 0 ∗
0 .30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1017 0 ∗
0 .40 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1016 0 ∗
0 .50 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

971 0 ∗
0 .60 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

976 0 ∗
0 .70 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1022 0 ∗
0 .80 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

997 0 ∗
0 .90 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1001 0 ∗
1 .00 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Count Minimum Maximum Mean Std . Deviat ion

10000 0.28041E−03 0.99990 0.49944 0.28929
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DRDRAN

c program drdran
c>> 2001−07−16 DRDRAN Krogh Added comma in two fomrats .
c>> 1996−06−19 DRDRAN Krogh Minor format change f o r C convers ion .
c>> 1994−10−19 DRDRAN Krogh Changes to use M77CON
c>> 1992−02−24 DRDRAN CLL
c>> 1987−12−10 Or i g ina l time stamp
c−−D rep l a c e s ”?”: DR?RAN, ?RANUA
c++S Defau l t NDIG = 6
c++ Defau l t NDIG = 12
c++ Replace ” f15 .12” = ” f ”//NDIG+3//”.”//NDIG
c Reports MODE fo r hos t system , and p r i n t s a few i n t e g e r s in the
c i n t e g e r sequence under l y ing the pseudorandom number package f o r
c the MATH77 l i b r a r y . These i n t e g e r s shou ld be e x a c t l y the
c same on a l l hos t systems . The l i s t e d i n t e g e r s i nc l ude the
c sma l l e s t and l a r g e s t in the en t i r e sequence .
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

integer I , KASE, KSEED(2 , 2 ) , MODE
double precision X(1)
data KSEED(1 , 1 ) , KSEED(2 , 1 ) / 249979 , 65550 /
data KSEED(1 , 2 ) , KSEED(2 , 2 ) / 437215 , 10953 /

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
do 20 KASE = 1 ,2

print ’ (1x//4x , ’ ’ I n t eg e r sequence ’ ’ ,10x , ’ ’Number returned ’ ’ /1x ) ’

print ’ (7x , i7 , ’ ’ , ’ ’ , i 5 ) ’ ,KSEED(1 ,KASE) ,KSEED(2 ,KASE)
ca l l RANPUT(KSEED(1 ,KASE) )
do 10 I = 1 ,10

ca l l DRANUA(X, 1 )
ca l l RANGET(KSEED(1 ,KASE) )

print ’ (7x , i7 , ’ ’ , ’ ’ , i5 , 10 x , f15 . 1 2 ) ’ ,KSEED(1 ,KASE) ,KSEED(2 ,KASE) ,
∗ X(1)

10 continue
20 continue

ca l l RN2(MODE)
print ’ (/1x , a , i 2 ) ’ ,

∗ ’MODE may be 2 , 3 , or 4 . On the cur rent host i t i s ’ ,MODE
stop
end
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ODDRAN

I n t eg e r sequence Number returned

249979 ,65550
687194 ,76502 0.999999999985
687188 ,63841 0.999991084594
369621 ,32774 0.537869824611
276585 ,97792 0.402485571769
422879 ,97043 0.615371350234
441300 ,56424 0.642176842282
239519 ,29877 0.348546454308
115303 ,75451 0.167789046683
668584 ,81671 0.972918960872
327383 ,74992 0.476406059213

In t eg e r sequence Number returned

437215 ,10953
0 , 1 0.000000000015
6 ,12662 0.000008915406

317573 ,43729 0.462130175389
410608 ,78711 0.597514428231
264314 ,79460 0.384628649766
245894 ,20079 0.357823157718
447675 ,46626 0.651453545692
571891 , 1052 0.832210953317
18609 ,94832 0.027081039128

359811 , 1511 0.523593940787

MODE may be 2 , 3 , or 4 . On the cur rent host i t i s 4
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