
5.4 Eigenvalues and Eigenvectors of an Unsymmetric Matrix

A. Purpose

Compute all eigenvalues and right eigenvectors of a real
N × N unsymmetric matrix A. Some or all of the eigen-
values and eigenvectors may be complex.

B. Usage

B.1 Program Prototype, Single Precision

REAL A(LDA,≥N) [LDA≥N], VR(≥N), VI(≥ N),
VEC(LDA,≥N), WORK(≥N)

INTEGER LDA, N, IFLAG(≥N)

Assign values to A(,), LDA, and N.

CALL SEVVUN(A, LDA, N, VR, VI,
VEC, IFLAG, WORK)

Results are returned in VR(), VI(), VEC(,), and
IFLAG(1). The contents of A(,), IFLAG(), and
WORK() will be modified.

B.2 Argument Definitions

A(,), LDA, N A(,) is [inout], LDA and N are [in].
On entry A(,) must contain the N × N matrix A
whose eigenvalues and eigenvectors are to be com-
puted. The integer LDA is the dimension of the first
subscript of the arrays A(,) and VEC. Require LDA
≥ N. On return the contents of A(,) will be modified.

VR(), VI() [out] The subroutine will store the J th

eigenvalue in VR(J) and VI(J), J = 1, ..., N. The
real part is stored in VR(J), and the imaginary part
in VI(J). If the J th eigenvalue is real VI(J) will be
zero. The eigenvalues will be sorted so that VR(1) ≤
VR(2) ≤ ... ≤ VR(N), and if VR(J) = VR(J+1) for
some J then |VI(J)| ≤ |VI(J + 1)|.
Complex eigenvalues will occur in conjugate pairs.
Such pairs will be stored in adjacent locations with
the eigenvalue having positive imaginary part preced-
ing its conjugate partner.

VEC(,) [out] The eigenvectors will be stored in this
array. If the J th eigenvalue is real then the J th eigen-
vector will be real and will be stored in column J of
VEC(,). It will be normalized to have unit Euclidean
length.

If the J th and (J + 1)st eigenvalues are a complex
conjugate pair, then the J th eigenvector will be com-
plex, say u + iv, and the (J + 1)st eigenvector will
be its complex conjugate vector, u − iv. The sub-
routine will store u in column J of VEC(,) and will

store v in column J + 1 of VEC(,). The eigenvector
u + iv will be normalized to have unit unitary norm
and real first component, i.e. the first component of
v will be zero.

IFLAG() [out, scratch] The N-array IFLAG() will be
used as INTEGER working space. In addition, the
first location, IFLAG(1), will be used to pass infor-
mation back to the user as follows:

= 1 If successful and all eigenvalues are real.

= 2 If successful and some eigenvalues are complex.

See Section E for use of IFLAG(1) in error conditions.

WORK() [scratch] Working space.

B.3 Modifications for Double Precision

Change SEVVUN to DEVVUN, and the REAL type
statement to DOUBLE PRECISION.

C. Examples and Remarks

The following unsymmetric matrix A is given on page 84
of [1].

A =

 8 −1 −5
−4 4 −2
18 −5 −7

 .
The eigenvalues are 1, 2 + 4i, and 2 − 4i. The (unnor-
malized) right eigenvectors are column vectors with the
following triples of elements: (1, 2, 1), (1, 1 + i, 1 − i),
and (1, 1 − i, 1 + i). This example illustrates the way
SEVVUN returns complex eigenvalues and eigenvectors
in storage.

The demonstration program DRSEVVUN below applies
SEVVUN to compute eigenvalues and eigenvectors for
the above matrices. The results are in the file OD-
SEVVUN. Before the call to SEVVUN, the matrix is
saved in order to compute the relative residual matrix D
defined as

D = (AW −WΛ) /γ,

where A denotes the current test matrix, W is the ma-
trix whose columns are the computed eigenvectors of A,
Λ is the diagonal matrix of eigenvalues, and γ is the
maximum-row-sum norm of A. The (possibly complex)
matrix D is packed into the array D(,) and printed.
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D. Functional Description.

Given an N × N real unsymmetric matrix A there exists
an N × N nonsingular matrix C such that the matrix

U = C−1AC

is N × N upper triangular. The matrices C and U may
be complex. The diagonal elements of U are called the
eigenvalues of A. This set of N numbers is uniquely de-
termined by A although C and U are not unique. Note
that λ is an eigenvalue of A if and only if A − λI is
singular.

A nonzero vector w is a right eigenvector of A associated
with an eigenvalue λ if

Aw = wλ

If A has N distinct eigenvalues then it will also have
N linearly independent eigenvectors. If the eigenvalues
of A are not all distinct then an eigenvalue λ of multi-
plicity µ may have any number of linearly independent
eigenvectors from 1 to µ. If some multiple eigenvalue of
A has fewer linearly independent eigenvectors than its
multiplicity the matrix is called defective.

If a set of computed eigenvalues returned by SEVVUN
are equal or nearly equal, it is not uncommon for the
associated computed eigenvectors to be linearly depen-
dent, or nearly so. This subroutine cannot be used to
distinguish between defective and nondefective matrices.

The subroutine SEVVUN was developed using the sub-
routines BALANC, ELMHES, ELTRAN, HQR2, and
BALBAK from the EISPACK package of eigenvalue-
eigenvector subroutines, [2]. The Fortran subroutines in
EISPACK are based directly on the earlier set of Algol
procedures described in [3].

Subroutine SEVVUN first calls SEVBH which consists of
the two EISPACK subroutines BALANC and ELMHES.

BALANC applies similarity permutations to isolate
eigenvalues available by inspection, if any. Then, ap-
plies diagonal similarity scaling to balance the size of
the matrix elements

B = D−1PTAPD.

ELMHES reduces B to upper Hessenberg form using sta-
bilized elementary transformations

H = G−1BG.

The remainder of SEVVUN consists of a minor modifi-
cation of three EISPACK subroutines: ELTRN, HQR2,
and BALBAK.

ELTRN computes explicitly the matrix G that was
stored in factored form by SEVBH.

HQR2 applies the QR algorithm to H. This is an it-
erative process which reduces H to a real nearly-upper-
triangular matrix R

R = QTHQ.

The transformations applied to H are also applied to G
forming

K = GQ.

The matrix R has a mixture of single elements and 2×2
blocks on its diagonal and is otherwise upper triangular.

The eigenvalues of A are the single diagonal elements of
R along with the eigenvalues of the 2 × 2 blocks on the
diagonal of R. These latter eigenvalues are computed by
direct formulas.

The eigenvectors of R, say z1, ..., zN are each computed
by a single back substitution process without any itera-
tion. These eigenvectors are transformed to eigenvectors
of B, say s1, ..., sN by computing

sj = Kzj , j = 1, ..., N.

BALBAK transforms the vectors sj to eigenvectors of A,
say wj , j = 1, ..., N by computing

wj = PDsj , j = 1, ..., N.

SEVVUN normalizes each eigenvector wj to have unit
unitary norm and a real first component, and then re-
orders the eigenvalues along with their associated eigen-
vectors, to achieve the ordering described in Section B.
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E. Error Procedures and Restrictions

If N ≤ 0 or if there is convergence failure in the QR algo-
rithm the error processing subroutine ERMSG of Chap-
ter 19.2 will be called with an error level of 0 to print an
error message. Upon return, IFLAG(1) = 3 or 4 to indi-
cate N ≤ 0 or convergence failure, respectively. In these
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error conditions all computed eigenvalues and eigenvec-
tors should be regarded as invalid.

If a set of computed eigenvalues are equal or nearly
equal, the set of associated computed eigenvectors will
frequently not have as large a numerical rank as would
be possible for the given matrix.

F. Supporting Information

The source language is ANSI Fortran 77.

The EISPACK package of Fortran subroutines was ac-
quired at JPL from Argonne National Laboratories
where it was developed with financial support from the
AEC and the NSF. The subroutine SEVVUN was writ-
ten by F. T. Krogh, JPL, October 1991.

Entry Required Files

DEVVUN AMACH, DEVBH, DEVVUN, DNRM2,
DSCAL, ERFIN, ERMSG

SEVVUN AMACH, ERFIN, ERMSG, SEVBH,
SEVVUN, SNRM2, SSCAL

DRSEVVUN

c program DRSEVVUN
c>> 1996−05−28 DRSEVVUN Krogh Added e x t e r na l s ta tement .
c>> 1994−10−19 DRSEVVUN Krogh Changes to use M77CON
c>> 1994−09−22 DRSEVVUN CLL
c>> 1992−04−23 CLL
c>> 1992−03−04 DRSEVVUN Krogh I n i t i a l v e r s i on .
c Demonstrate unsymmetric e i g enva l u e / e i g env e c t o r sub rou t ine SEVVUN.
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c−−S r ep l a c e s ”?”: DR?EVVUN, ?EVVUN, ?VECP, ?MATP, ?DOT
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

integer I , J , LDA, N
parameter (LDA = 3)
integer IFLAG(LDA)
real A(LDA,LDA) , VR(LDA) , VI (LDA) , VEC(LDA, LDA)
real WORK(LDA) , ASAV(LDA, LDA) , D(LDA, LDA) , ANORM
external SDOT
real SDOT
data (A(1 , I ) , I =1 ,3) / 8 .0 e0 , −1.0e0 , −5.0 e0 /
data (A(2 , I ) , I =1 ,3) / −4.0e0 , 4 . 0 e0 , −2.0 e0 /
data (A(3 , I ) , I =1 ,3) / 18 .0 e0 , −5.0e0 , −7.0 e0 /
data ANORM / 30 .0 e0 /
data N / LDA /

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
print ∗ , ’DRSEVVUN. . Demo d r i v e r f o r SEVVUN. ’

c
c F i r s t copy A() to ASAV() f o r l a t e r r e s i d u a l check .
c

do 20 J = 1 , N
do 10 I = 1 , N

ASAV( I , J ) = A( I , J )
10 continue
20 continue

ca l l SEVVUN(A(1 , 1 ) , LDA, N, VR, VI , VEC, IFLAG, WORK)

print ’ ( a , I2 ) ’ , ’ IFLAG(1) =’ ,IFLAG(1)
i f (IFLAG(1) . l e . 2) then

ca l l SVECP(VR, N, ’ Real part o f the e i g enva lu e s ’ )
ca l l SVECP(VI , N, ’ Imaginary part o f the e i g enva lu e s ’ )
ca l l SMATP(VEC, LDA, N, N,

∗ ’ 0 E igenvector s as columns or pa i r s o f columns ’ )
c
c As a check compute D = (ASAV∗VEC − VEC∗EVAL) / ANORM.
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c Expect D to be c l o s e to the machine p r e c i s i on .
c

do 50 J = 1 , N
i f (VI ( J ) . eq . 0 . 0 e0 ) then

c Compute r e s i d u a l f o r a r e a l e i g enva l u e and e i g env e c t o r
do 30 I = 1 , N

D( I , J ) = (SDOT(N, ASAV( I , 1 ) , LDA, VEC(1 , J ) , 1) −
∗ VEC( I , J ) ∗ VR(J ) ) / ANORM

30 continue
else i f (VI ( J ) . gt . 0 . 0 e0 ) then

do 40 I = 1 , N
D( I , J ) = (SDOT(N,ASAV( I , 1 ) ,LDA,VEC(1 , J ) , 1 ) −

∗ VEC( I , J )∗VR(J)+VEC( I , J+1)∗VI(J ) )/ANORM
D( I , J+1) = (SDOT(N,ASAV( I , 1 ) ,LDA,VEC(1 , J+1) ,1) −

∗ VEC( I , J )∗VI(J)−VEC( I , J+1)∗VR(J ) )/ANORM
40 continue

end i f
50 continue

ca l l SMATP(D, LDA, N, N,
∗ ’ 0 Packed r e s i d u a l matrix D = (A∗EVEC − EVEC∗EVAL) / ANORM’ )

else
print ’ (/ a ) ’ , ’ Fa i l u r e in SEVVUN. ’

end i f
stop
end

ODSEVVUN

DRSEVVUN. . Demo d r i v e r f o r SEVVUN.
IFLAG(1) = 2
Real part o f the e i g enva lu e s

1 TO 3 0.9999997 2.000000 2.000000
Imaginary part o f the e i g enva lu e s

1 TO 3 0.000000 4.000000 −4.000000

Eigenvector s as columns or pa i r s o f columns

COL 1 COL 2 COL 3
ROW 1 0.4082483 0.4472136 0.000000
ROW 2 0.8164966 0.4472136 0.4472136
ROW 3 0.4082483 0.4472136 −0.4472135

Packed r e s i d u a l matrix D = (A∗EVEC − EVEC∗EVAL) / ANORM

COL 1 COL 2 COL 3
ROW 1 0.000000 9.9341078E−09 −1.1920929E−08
ROW 2 1.9868216E−09 7.9472864E−09 1.9868216E−09
ROW 3 2.3841858E−08 2.7815501E−08 −3.1789146E−08
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