
19.2 Error Message Processor

A. Purpose

This package of subroutines processes diagnostic mes-
sages, providing options to write or not write the mes-
sage, and to return or stop after message processing.
These subroutines are intended primarily for use by
other library subprograms although they are not re-
stricted to that usage.

By passing error messages through these subroutines it
is possible to (a) avoid having Fortran I/O statements
in other library subprograms that do not otherwise ex-
ecute any I/O functions, and (b) provide a means, via
the subroutine ERMSET, for a user program to alter the
nominal action of error message processing.

B. Usage

To process an error message the program detecting the
error must make a sequence of one or more calls to sub-
routines of this package. Such a sequence of calls is dis-
tinguished by the condition that the argument, FLAG,
has the value ′,′ in all but the last call, and has the
value ′.′ in the last call of the sequence.

The first, and possibly only, call of a sequence must be
to ERMSG, SERM1, DERM1, or IERM1. These sub-
routines all have the argument, LEVEL, that specifies
the nominal action level for the entire sequence of calls.

If there are additional calls in the sequence, the subse-
quent calls must be to SERV1, DERV1, IERV1, or ER-
MOR, each of which may be called any number of times.
These calls provide additional data values or character
strings to be included in the printed error message.

The package contains two additional subroutines:
ERMSET, which can be called by a user to alter the
nominal action of the package, and ERFIN which is
called by other subroutines of the package when FLAG
= ′.′ to handle the common final steps of processing an
error message.

B.1 Type Statements for Arguments

INTEGER IERR, LEVEL, IDATA, IDELTA,
NVAL

CHARACTER SUBNAM*n1, MESS*n2,
FLAG, LABEL*n3

CHARACTER*n4 LABELS(≥NVAL)

REAL SDATA, SVALS(≥NVAL)

DOUBLE PRECISION DDATA, DVALS(≥NVAL)

B.2 Call Statements

In each of these calls, all arguments must be assigned
values before the call and none of the argument values
will be changed by the subroutine. It will usually be
most convenient to supply most of the arguments, par-
ticularly those of type character, as literals in the call
statement.

To initiate an error message:

CALL ERMSG (SUBNAM, IERR, LEVEL,
MESS, FLAG)

To initiate a message, including one REAL datum:

CALL SERM1 (SUBNAM, IERR, LEVEL,
MESS, LABEL, SDATA, FLAG)

To initiate a message, including one DOUBLE PRECI-
SION datum:

CALL DERM1 (SUBNAM, IERR, LEVEL,
MESS, LABEL, DDATA, FLAG)

To initiate a message, including one INTEGER datum:

CALL IERM1 (SUBNAM, IERR, LEVEL,
MESS, LABEL, IDATA, FLAG)

To add a REAL datum to the current message:

CALL SERV1 (LABEL, SDATA, FLAG)

To add a DOUBLE PRECISION datum to the current
message:

CALL DERV1 (LABEL, DDATA, FLAG)

To add an INTEGER datum to the current message:

CALL IERV1 (LABEL, IDATA, FLAG)

c©1997 Calif. Inst. of Technology, 2010 Math à la Carte, Inc.

June 17, 2010 Error Message Processor 19.2–1

To add an additional character string, MESS, to the cur-
rent message:

CALL ERMOR (MESS, FLAG)

To alter the nominal message processing action:

CALL ERMSET (IDELTA)

Subroutine called by other subroutines of the package
when FLAG = ′.′ to print the closing line of dollar signs
and take the final action of returning or stopping:

CALL ERFIN

B.3 Argument Definitions

SUBNAM [in] Name of subprogram in which error
has been detected. Suggest length of name ≤ 12.

IERR [in] Identification number for the error.

LEVEL [in] Should be set to 2, 0, or −2 to specify the
nominal action desired.

2 = print and stop

0 = print and return

−2 = return with no printing

This specification applies over a complete sequence of
calls to the package as described above. In particular
if a stop is to occur, it will not happen until the last
call of a sequence, i.e. a call with FLAG = ′.′ .

The actual action taken is governed by:

NALPHA = NDELTA + LEVEL,

where NDELTA is a saved local variable in the pack-
age. The initial value of NDELTA is zero but it can
be changed by use of subroutine ERMSET.

MESS [in] Error message of length ≤ 72.

FLAG [in] A single character, either a comma or a
period. A comma means further data or character
strings to be included in the error message will be
provided by subsequent calls. A period means this is
the last call relating to the current error message.

LABEL [in] An identifying label to be printed with
the data value given in SDATA, DDATA, or IDATA.
Suggest length of label ≤ 35.

SDATA [in] Data item of type REAL to be printed
with the error message.

DDATA [in] Data item of type DOUBLE PRECISION
to be printed with the error message.

IDATA [in] Data item of type INTEGER to be printed
with the error message.

NVAL [in] Number of array elements to be printed
from LABELS() and from SVALS() or DVALS().

LABELS() [in] An array of NVAL labels to be
printed with the data values given in SVALS() or
DVALS(). The array elements should have CHAR-
ACTER length ≤ 35.

SVALS() [in] An array of NVAL REAL values to be
printed.

DVALS() [in] An array of NVAL DOUBLE PRECI-
SION values to be printed.

IDELTA [in] New value to be assigned to the saved lo-
cal variable NDELTA. Alters the action of the error
processing.

C. Examples and Remarks

Usage is illustrated by the program DRERMSG and the
output ODERMSG.

D. Functional Description

D.1 Levels of action

The actual action level, NALPHA, computed as LEVEL
+ NDELTA, determines the action as follows:

NALPHA ≥ 2 print message and STOP.
NALPHA = −1, 0 or 1 print message and RETURN.
NALPHA ≤ −2 RETURN, doing no printing.

D.2 Effects of resetting NDELTA

The saved local variable, NDELTA, initially has the
value zero. If it is changed by a call to ERMSET the
effect can be interpreted as follows:

NDELTA Effect

2 Print and stop on all diagnostics that would other-
wise be printed.

0 Take the standard action.

−1 Do not stop on any diagnostics. Print as usual.

−2 Never stop. Print only those diagnostics that nomi-
nally result in a stop.

−4 Do not print or stop on any diagnostic.

D.3 Form of the error message

The message will begin with a line of 72 dollar signs.
The next two lines will be:

Subprogram SUBNAM reports Error No. IERR

The initial message, MESS.

Following may be lines of the following forms:

19.2–2 Error Message Processor June 17, 2010

(1) LABEL = value

where value is SDATA, DDATA, or IDATA,

(2) label1 = val1, label2 = val2, ...

where the labels are from LABELS() and the values are
from SVALS() or DVALS(), or

(3) MESS

transmitted by subroutine ERMOR.

Finally the message will be terminated with another line
of 72 dollar signs.

E. Error Procedures and Restrictions

This package shares data via a COMMON block named
M77ERR. The user must not use this name for any other
COMMON block.

If any of the character string arguments are longer
than the suggested maximum lengths, the correspond-
ing printed line of the error message will exceed a length
of 72 characters.

The subroutine ERMSET should not be called between
the beginning and end of a sequence of calls to the error
processing subroutines.

F. Supporting Information

The source language is ANSI Fortran 77. Uses common
block M77ERR.

Entry Required Files

DERM1 DERM1, DERV1, ERFIN, ERMSG

DERV1 DERV1, ERFIN

ERFIN ERFIN

ERMOR ERFIN, ERMOR

ERMSET ERFIN, ERMSG

ERMSG ERFIN, ERMSG

IERM1 ERFIN, ERMSG, IERM1, IERV1

IERV1 ERFIN, IERV1

SERM1 ERFIN, ERMSG, SERM1, SERV1

SERV1 ERFIN, SERV1

This package is based on the subroutine EMESS, de-
signed by F. T. Krogh, JPL, 1974, and programmed by
S. A. Singletary, JPL, 1974. Present version designed
and programmed by C. L. Lawson and S. Chiu, JPL,
April 1983.

DRERMSG

c program DRERMSG
c>> 1988−11−16 DRERMSG CLL
c

integer IDELTA
real SX
double precision DX

c
data SX,DX / 1 .0E0 , 2 . 0D0 /

c
ca l l ERMSG(’AAAA’ ,1 , 0 , ’ De s c r ip t i on o f e r r o r . ’ , ’ , ’)
ca l l SERV1(’SX ’ ,SX, ’ . ’)
ca l l ERMSG(’BBBB’ ,2 , 0 , ’ De s c r ip t i on o f 2nd e r r o r . ’ , ’ . ’)
ca l l SERM1(’CCCC’ ,3 , 0 , ’ De s c r ip t i on o f 3 rd e r r o r . ’ , ’SX ’ ,SX, ’ . ’)
ca l l DERM1(’DDDD’ ,4 , 0 , ’ De s c r ip t i on o f 4 th e r r o r . ’ , ’DX’ ,DX, ’ . ’)
do 10 IDELTA = −2, 3

ca l l ERMSET(IDELTA)
ca l l IERM1(’EEEE ’ ,5 , 0 , ’ Test ing ERMSET’ , ’IDELTA ’ ,IDELTA, ’ . ’)

10 continue
stop
end

June 17, 2010 Error Message Processor 19.2–3

ODERMSG

$$
SUBPROGRAM AAAA REPORTS ERROR NO. 1
Desc r ip t i on o f e r r o r .

SX = 1.0000000
$$

$$
SUBPROGRAM BBBB REPORTS ERROR NO. 2
Desc r ip t i on o f 2nd e r r o r .
$$

$$
SUBPROGRAM CCCC REPORTS ERROR NO. 3
Desc r ip t i on o f 3 rd e r r o r .

SX = 1.0000000
$$

$$
SUBPROGRAM DDDD REPORTS ERROR NO. 4
Desc r ip t i on o f 4 th e r r o r .
DX = 2.0000000000000000

$$

$$
SUBPROGRAM EEEE REPORTS ERROR NO. 5
Test ing ERMSET

IDELTA = −1
$$

$$
SUBPROGRAM EEEE REPORTS ERROR NO. 5
Test ing ERMSET

IDELTA = 0
$$

$$
SUBPROGRAM EEEE REPORTS ERROR NO. 5
Test ing ERMSET

IDELTA = 1
$$

$$
SUBPROGRAM EEEE REPORTS ERROR NO. 5
Test ing ERMSET

IDELTA = 2
$$

19.2–4 Error Message Processor June 17, 2010

	Error Message Processor
	Purpose
	Usage
	Type Statements for Arguments
	Call Statements
	Argument Definitions

	Examples and Remarks
	Functional Description
	Levels of action
	Effects of resetting NDELTA
	Form of the error message

	Error Procedures and Restrictions
	Supporting Information

