
19.4 Converting Codes to Different Versions

A. Purpose

This program, m77con, converts codes from one version
to another. It is used to convert between different preci-
sions, and to support the special comments used in some
of the Fortran codes for input to a program that con-
verts programs from Fortran to C. Support is provided
for precision greater than double for systems that sup-
port such a feature. Support is provided for conversion
between real programs and integer or complex versions
of a program, and also partial double precision and par-
tial quadruple precision. Most MATH77 codes contain
the comments only for conversion between the single and
double precision cases. Although designed for use with
MATH77 codes, m77con could be used in other appli-
cations that want a portable means to support multiple
versions. Any version of a code can be used as input to
m77con for the purpose of getting another version.

B. Usage

One uses this program by creating a control file named
m77job, and executing the program m77con from the
command line. The first part of this section describes
the control file which defines what version is desired. The
second part describes the comments in the code which
indicate how different versions are to be obtained.

B.1 Transforming an Instrumented Code

In the descriptions below, items in brackets are optional;
Li is used for letters (frequently the first letter in the
name of a program, which indicates the precision); and
Ti is used for letters associated with types. Types sup-
ported include: S, D, Q, I, C, Z, and W, which are
used for Single precision, Double precision, Quadruple
precision (or at least some precision greater than dou-
ble), Integer, Complex, double precision complex, and
quadruple precision complex respectively.

“C...” is a comment and can appear anywhere in the con-
trol file. A comment of the form “C>>yyyy−mm−dd...”
is treated as a special case. It inserts a date stamp in
the file being processed, which is used to track changes
in MATH77 codes. Details on this can be found in the
code listing for m77con.

“MAKE Lout [with type Tout] [from Lin [with type Tin]]”
is used to define a letter in the names of the output and
input files and types associated with these files. Lout is
a letter used in output file names. Tout is the type for
the output file. If Tout is not given it is assumed to be
Lout if Lout is an allowed type, is assumed to be S or D,
for Lout = P or X respectively, and otherwise an error

results. (P is assumed to be used for partial double pre-
cision, and X for partial quadruple precision.) Lin and
Tin are defined as for Lout and Tout, except they apply
to input files. If the “from” clause is missing, Lin is D,
except when Lout is D, in which case Lin is S. The case of
letters is not significant, except for Lout. The case used
for Lout determines the case used when substituting Lout

or Lin into a file name, and thus the case is significant
on systems where case is significant in a file name.

“T Defined by: Lexp, keyword, type conv, mach const”
“T Defined by: keyword, type conv, conj, imag part”
One of these lines is needed only if the input or output
code makes use of a nonstandard type, namely, Q, Z, or
W. Note that W makes use of Q, and thus if it is used,
Q must also be defined. The first type of line is used to
define real (as opposed to complex) types. Lexp is the
letter used to define the exponent part of floating point
constants, keyword is the text used to declare a variable
of type T , type conv is the name of the function used
for type conversion to type T , mach const is the name
of the function used for getting machine constants, conj
and imag part are the functions used to conjugate or get
the imaginary part of a complex expression, respectively.
The standard S, D, and C types are initialized as if one
had input:
“S Defined by: E, real, real, r1mach”,
“D Defined by: D, double precision, dble, d1mach”, and
“C Defined by: complex, cmplx, conjg, aimag”

Note that at most one embedded blank is allowed in-
side keyword, and if such a blank is desired it must be
included on this line. Internally, ‘I’ defines keyword as
“integer”, and type conv as “int”.

“VERIFY path” if present will compare the lines of the
result files with lines in the files of the same name as
the result files preceded by “path”, and when lines are
different, both lines will be printed. The text in “path”
is taken exactly as given, and is considered terminated
by either a blank or an end of line. This comparison
is not sensitive to changes in the special comment lines
described in the following subsection, or to differences in
the number of blanks.

“SET A1, A2, ... An” is used to set values for the
metavariables defined by the assignments Ai. These as-
signments, which sometimes are necessary to get the ver-
sion of a code desired, and the metavariables set by these
assignments, are described in the following subsection.
One can have any number of “SET...” lines.

“STOP ...” acts like an end of file, i.e. no more lines are
read in the control file.

c©1997 Calif. Inst. of Technology, 2010 Math à la Carte, Inc.

June 17, 2010 Converting Codes to Different Versions 19.4–1

“FILE name[[,] ext]” is used to specify the name of a file
to be processed. A “?” in name may be used to param-
eterize the name if desired. Lin is substituted for the
“?” (if any) and a file of this name is processed as the
input file. Then Lout is substituted for “?” to obtain
the name of the output file. If the “, ext” is present and
one of the first two characters in ext is “.” this name is
further modified by searching backward from the end of
“name” looking for the first character in “ext”. When
this character is found, this character and the following
characters in name are replaced by “ext”. If the “, ext
is present and neither of the first two characters is a “.”,
ext is used as the name of the output file. The input
and output files can have the same name. If the “?”
is missing, there is no need to have had a “MAKE...”
line. Any characters except “,” can appear in “name”
or “ext”, as long as the results will serve as valid file
names. Examples and Remarks, below, gives samples of
FILE statements.

Processing a “FILE...” line involves carrying out con-
versions on the specified input file and placing the result
in the output file. If a “VERIFY...” line is present, the
output file will be compared with the file specified there.
After processing a “FILE ...” line, the next line from
the control file, m77job, is read, and actions are taken
as requested there. All metavariables defined in previ-
ous SET instructions become undefined if there is a new
SET instruction; otherwise the old values are kept.

B.2 Instrumenting a Code

We use the notation:

L, L1, ... Li Letters
T , T1, ... Ti Letters used to denote types
I, I1, ... Ii Integer constants
V , V1, ... Vi Metavariables
E, E1, ... Ei Expressions
A, A1, ... Ai Assignments

The types are: S, D, Q, I, C, Z, and W, which are used for
Single precision, Double precision, Quadruple precision
(or at least some precision greater than double), Inte-
ger, Complex, double precision complex, and quadruple
precision complex respectively. An “L” equal to one of
these letters is used for a code of the corresponding type.
Other letters are used for mixtures of types. In particu-
lar, P (Partial double) is used for a code that uses some D
in a code that is primarily S (perhaps to save on storage),
and X (eXtended) is used for a code that is primarily in
D, but uses some Q. No other precisions are supported.

There are integer, logical, and string metavariables and
constants. An integer constant is defined as in Fortran.
The logical constants are .T. .F. .U. .D. .S. .I. and .C.
Of course .T. is always true, and .F. is false; .U. is un-
defined (see below); .D. .S. and .I. have a value of .T. if

the upper case of the letter Lout in a MAKE command
matches the letter between the dots, has a value of .F.
if Lout is defined but does not match, and otherwise has
the value .U.; and .C. has the value .T. if a version of
the code used as input to the Fortran to C converter is
being generated, and is .F. otherwise. Initially .C. =.F.;
its value can be set to .T. with the statement “SET .C.”
in m77job, and can be reset to .F. with the statement
“SET ∼.C.”. (With T=.T., F=.F., and U=.U., we have,
U|F=.U., U|T=.T., U&F=.F., U&T=.U., ∼U=.U. If U
is on either side of a relational operator, the result is .U.)

A string is defined as an arbitrary sequence of charac-
ters enclosed by either apostrophes (’), or quotes ("),
has the same form as a metavariable (see below), or is
.X., .Y., or .N. .X. gives the string consisting of the
letter used for floating point exponents in the output,
.Y. gives the string consisting of the letter Tout, and .N.
gives the string consisting of the letter Lout. If a logical
value of a string is required by the context, a string has
the value .U.

A metavariable is any number of nonoperators, not all
of which are digits, and not one of the letters “TFUXN”
preceded and followed by a “.”. Metavariables once de-
fined remain defined until the end of the file. Those
metavariables defined in m77job remain defined past the
end of file, until the next “SET...” line read in m77job.
Note that metavariables appear only in “C++...” lines
and in lines immediately following “C++ Substitute for
...” lines.

Expressions may use the following operators, all of which
have the same meaning and precedence as their Fortran
counterparts.

Arithmetic: + − * / **
Relational: < > == /= <= >=
Alt. Relational: = ∼=
Logical: | (or) & (and) ∼ (not)
Concatenation: //
Grouping letters: { }
Other: () ,

The “{” and “}” are used to define a special operand.
If the letter Lout from the “MAKE...” line, see “Trans-
forming an Instrumented Code” above, appears inside
the {...}, then this operand has the value true, and oth-
erwise has the value false. The letters inside the {...}
may optionally be separated by commas. Thus {SP} is
true if Lout is either S or P, and is false otherwise.

We recommend using “==” rather than “=” in rela-
tional expressions. “=” is allowed for compatibility with
comments written for an earlier processor. The first “=”
in an assignment statement is part of the assignment
statement, not part of an expression.

An expression can be formed as one would expect using

19.4–2 Converting Codes to Different Versions June 17, 2010

the operators that are available. A diagnostic is given
if one tries to mix types in a way that make no sense.
Integer and logical are converted to strings when they
appear as an operand of “//”.

As assignment has the form: V = E, or simply V . The
latter form is equivalent to writing V =.T.

Three kinds of comments in the source code initiate
special processing by the program. (Not counting the
“C<<...” comments which are used for date stamps.)
Those headed by “C++” are intended primarily to sup-
port different versions of a program. Those headed by
“C−−” are intended primarily to support different pre-
cisions, which involves changing types in Fortran state-
ments. Those headed by “C%%” are used to convert the
code to the form needed for the Fortran to C conversion
program. The actions for “C++...” lines precede other
actions, and thus a “C++...” line could result in turning
off a “C−−...” line. Also, if there was no “MAKE...”
line, type conversion is turned off, and “C−−...” lines
are simply treated like any other comments. These com-
ments allow either case for the “C” and also allow an
“*” in column one.

“C++...” lines have the form:

(1) “C++ Code for E is active”
(2) “C++ Code for E is inactive”
(3) “C++ END”
(4) “C++ Of next I lines, only the first E are active”
(5) “C++ Default A1, A2, ... Ai”, or

“C++L Default A1, A2, ... Ai”, or
“C++(E) Default A1, A2, ... Ai”

(6) “C++ Current has A”
(7) “C++ Substitute for V1, V2, ... Vi below”
(8) “C++ Replace A1, A2, ... Ai”
(9) “C++ [With first index E1,]

Save data by elements if E2”

A line of form (1) or (2) initiates a scope of applicabil-
ity that is terminated by the next line of form (1), (2),
or (3). In either case (1) or (2), if E=.U., no change is
made in this line or in the lines in its scope.

In the case of (1), if E=.T. there is no change. If E=.F.,
the word “active” is changed to “inactive” and in the fol-
lowing scope, columns 1–71 are shifted to columns 2–72
and a C placed in column 1. An error message is printed
if the original line was not blank in column 72. (Only
the first 72 characters of input lines are read.)

In the case of (2), if E=.F. there is no change. If E=.T.
the word “inactive” is replaced by “active” and in the
following scope, columns 2–72 are copied to columns 1–
71, and a blank placed in column 72.

No other “C++...” line may appear between a line of
type (1) or (2) and the next line of type (1), (2), or (3).

No code changing action can be active when the end of
a Fortran program unit is reached.

Examples from AMACH of lines of type (1), (2) and (3)
are,

c++ Code for SYS = IEEE is ACTIVE

...

c++ Code for SYS = AMDAHL is INACTIVE

C ...

c++ END

In case (4), one must have I (an integer constant) > 0,
and E must have an integer value <= I. The following
I lines in the code must be valid Fortran statements if
column 1 is set to a blank and there must be I lines pre-
ceding the last line of the Fortran program unit. This
causes the action of storing a ‘ ’ in column 1 of the fol-
lowing E lines, and then storing a ‘C’ in column 1 for
the remaining I − E lines (neither shifts the line).

An example from DIVA of using this feature is (the first
two lines given here are one line in the code):

c++ Of next 23 lines, only the first

KDIM+MAXORD are active

data B(1) / 5.00000...0D-1 /

...

data B(22) / 1.97628...5D-3 /

C data B(23) / 1.81159...2D-3 /

In case (5) when no L or (E) is present each assignment,
Ai, is executed if and only if the Vi on the left of the “=”
in the Ai is not already defined. (Recall that if Ai does
not contain an “=” sign, it is as if it had the form “Vi =
.T.”.) Vi may have been defined either from a “SET...”
line in m77job or from an earlier “C++” line. When L is
present, L must be a sequence of letters and the assign-
ments will be processed as described for the case when
no L is present if and only if the current Lout matches
one of the letters in L. When (E) is present, the line is
processed as above if E is a logical expression with the
value .T., else the line rest of the line is ignored.

The following example from DRDIVA illustrates defin-
ing a default value for NDIG of 4 for type of “S” or “P”,
and a default value for NDIG of 10 in other cases. If
NDIG has been set in m77job, then the value set there
will be used.

c++SP Default NDIG = 4

c++ Default NDIG = 10

In case (6), the A must have an “=” sign. If the V on
the left side of the “=” in A is not defined this works just
like a “C++ Default A” line. If V is defined, then the

June 17, 2010 Converting Codes to Different Versions 19.4–3

text on the right of the “=” is replaced by the current
value of V .

The following line from AMACH shows that AMACH is
currently configured for SYS = IEEE. If SYS is not set
in m77job, this value for SYS will continue to be used.
Otherwise the new value will replace the IEEE on this
line.

c++ CURRENT HAS SYS = IEEE

In case (7), the following line is examined for each of the
Vi’s in turn. If such a metavariable name is found fol-
lowed by an “=” sign, and an integer value, the integer
is replaced by the integer value of Vi. If the “=” sign is
followed by a logical value, this value is replaced by the
corresponding Fortran logical constant for Vi. A type
mismatch in either of these cases results in a diagnostic,
with no change. A value of .U. in this case is treated as
a mismatch.

The following from DRDIVA illustrates using this fea-
ture.

c++ Substitute for NDIG below

parameter (NDIG = 10)

In case (8), the left side of each Ai must be a constant
character string, i.e. either ’xx...x’ or "xx...x", and the
right side, Ei, must be an expression that evaluates to
a string value. Occurrences (case of letters must match)
of the “xx...x” on the left of Ai are replaced by the value
for Ei. The replacement is made on “C++ Replace...”
lines, and other lines not starting with “C++”. If this
line precedes a “C−−...” line of type (1), see below, then
the replacement applies starting with the first line of the
file else it applies starting with the current line.

The following from DRDRAN illustrates this feature.

c++S Default NDIG = 6

c++ Default NDIG = 12

c++ Replace "f15.12" = "f"//NDIG+3//"."//NDIG

...

print’(7x,i7,’’,’’i5,10x,f15.12)’,K...

Case (9) is intended primarily to avoid unnecessary mess
in Fortran code that would have too many continuation
lines for a data statement in Fortran when declared with
a single array. The C converter we are using generates
much better code when such data statements are de-
clared with a single array instead of a separate statement
for each element. E1 must be a integer expression, and
E2 must be logical. If the part containing E1 is missing
the action is as if E1 were present with a value of 1. The
data statement following this must contain exactly one

data item per line. When E2 = .T., the first line and
every following line that is either a continuation line, or
is a data statement for the same name, is changed (if
necessary) to be a data statement for a single element of
the array. The index used for the array element is E1 for
the first data statement and is incremented by one for
the following statements. If E1 is .F. the first data state-
ment line uses only the array name, and following lines
that are either continuation lines, or data statements for
the same name are changed to be continue statements.
There is no limit on the number of continued lines.

The “C−−...” lines have the form:

(1) “C−−L Replaces “?”: V1, V2, ...”
(2) “C−−T (Type)Replaces “?”: V1, V2, ...”
(3) “C−−& v1, v2, ...”
(4) “C−−T Next line special: S1, S2, ...”
(5) “C−− Begin mask code changes”
(6) “C−− End mask code changes”

At most one of (1) or (2) can occur in a file, and all lines
of type (3) must follow immediately after a (1) (2) or
(3). (No embedded comments.) In case (1) L denotes
the value of Lout for the current version of the code. (See
the description of the “MAKE...” line in Usage above.)
If L = Lout, then no names are changed. When L = Lin

the L in this statement is replaced by Lout. Each of the
Vi, or vi, must be Fortran names with one of the letters
replaced by a “?”. These names with the “?” replaced
by Lin are searched for and replaced as described below,
starting at the beginning of the file. A line of type (2)
must follow immediately after a line of type (1) or (3).
The action for this kind of line is similar to that for type
(1), but with L, Lout, and Lin, replaced by T , Tout, and
Tin respectively.

The following excerpt from DWCOMP illustrates lines
of type (1) and (3).

c--D replaces "?": ?WCOMP,?WATAN,...

c--& ?WSQRT,?WEXP,?WSIN,?WCOS,...

Case (4) is used to indicate either that something dif-
ferent from the standard conversion is to be used on the
next line, or that conversion to or from integer or one
of the complex types is allowed. Conversions to or from
integer types occur only on lines so marked. For a con-
version to or from a code corresponding to the first letter
of one of the pairs, (C, S), (Z, D), (W, Q), the conversion
is done as if the second letter applied, except for lines
marked in this manner. T indicates the type to assume
for the input on the following line. The T is replaced by
the value used for the type of the output on the next line.
The Si is either a single Li, or an expression of the form
Li => Ti. If Lout is the same as any of these Li, then

19.4–4 Converting Codes to Different Versions June 17, 2010

the following line is treated as special based on this Si.
If there is no “=> Ti” part then presumably Li is I, C,
Z, or W, and the following line is modifiable to suit these
types. If the “=> Ti” part is present, then the following
line is to be converted as if the output type were Ti. If
none of the Li match the Lout from the “MAKE...” line,
the following line is treated just like any other line.

The following from DRDIVA illustrates specifying
metavariables with a higher than usual precision when
Lout is “P” or “X”. In all other cases the declaration
here would be what one would expect from the letter
specifying the precision.

c--D Next line special: P=>D, X=>Q

double precision TSPECS(4), Y(IYDIM)...

?VECPR is one of the few codes in MATH77 which al-
lows all the real precisions, and also allows integer. The
first pair of lines below get converted to the second pair
when DVECPR is converted to IVECPR.

c--D Next line special: I

double precision V(N)

c--I Next line special: I

integer V(N)

Lines of type (5) and (6) mark the beginning and end,
respectively, of a set of lines in which all code modifica-
tions due to “C−−” commands will be inhibited.

The “C%%” lines are documented here so that those
looking at the library source will understand their pur-
pose. These lines only have a special meaning when they
are not being treated in a special way for some other rea-
son. In particular, if a “C++ END” statement would be
acceptable, then such lines are not treated in a special
way. When .C. = .T., the “C” is deleted from column one
in any sequence of consecutive lines containing “C%%”,
and a C is inserted at the start of the first line (one line
only) that does not start in this way. If .C. = .F., and
the lines are not being treated in a special way for some
other reason, then consecutive lines starting with “%%”
have a C inserted in column 1, and the next line has the
character in column 1 deleted. These lines provide a way
of indicating changes required to get the code converted
to C, without using the “C++” mechanism, which makes
the code difficult to read when used frequently.

C. Examples and Remarks

If one wanted to get the partial double precision ver-
sion of the integration program DIVA, Chapter 14.1, one
could set m77job to the following for a unix machine.
(For a PC replace the .f with .for.)

MAKE p

FILE ?iva.f

FILE ?ivag.f

FILE ?ivadb.f

To convert amach for a VAX running UNIX, m77job

would contain the following to obtain the output file
amach.f from the input file amach.

SET SYS = VAX

FILE amach.f

D. Functional Description

The program m77con converts between different versions
of Fortran 77 source code that satisfy conventions used
for MATH77. It combines functionality from earlier
programs: “The Specializer” [1], “MARVEL” [2], and
“CHGTYP” [3].

The code is processed a line at a time, first doing ac-
tions on “C++...” lines, then for other lines doing the
actions called for by “C++...” lines (except for replacing
strings), then doing actions on “C−−...” lines, and then
doing other replacements. Processing restarts with the
first line after initial processing of “C−−” lines of types
1–3.

Except for strings defined by “C++ Replace...” lines,
all comparisons done by this code are case insensitive,
all replacements are done in the same case as for the
text found, and blanks are removed before comparisons
are made in the source code.

Let “in” denote a string, keyword, variable name, or
function name we are searching for, and “out” denote the
corresponding replacement. When conversion results in
substitutions, if “out” is longer than “in”, characters to
the right of “in” are shifted right to leave enough space
to insert “out”. A diagnostic results if in the process
nonblank characters are shifted beyond column 72 (and
thus lost). If “out” is shorter than “in”, then “out” is
padded with blanks so as to occupy the same space as
“in”.

When type conversion is on (as it is if there is a
“MAKE...” line in the control file), then all lines, ex-
cept those with “++” or “−−” in columns 2 and 3, are
examined in turn for the following:

If the “in” keyword is found, it is replaced by the “out”
keyword.

Then “in” default function names for type conversion
and getting machine constants (see “T Defined by:...”
lines in Usage above) are searched for, and when found
are replaced by the corresponding names of the “out”
functions. When searching for names (here and below)

June 17, 2010 Converting Codes to Different Versions 19.4–5

they are only found if they are preceded and followed by
a nonletter or nondigit. Function names which do not
have “mach” as their last four letters are found only if
followed by a ‘(’.

Then the Vi’s and vi’s generated from the “C−−L...”,
“C−−T...”, and “C−−&” lines are searched for. When
found, Lout (or Tout for names defined on “C−−T
(Type)...” lines or “C−−&” lines following such lines)
replaces the letter in the position of the “?”, preserving
the case of the letter that was there.

Then, those strings defined by the “C++ Replace...”
lines are searched for and replaced if found.

Then, floating point constants are converted. These are
assumed to consist of (not a letter).(0 or more digits)(the
letter used for floating point constants in the current ver-
sion)(an optional + or −)(a digit). If such a string is
found, the letter is replaced as specified.

Whether type conversion is on or not, lines consisting
of only “END” are searched for. When found, m77con
checks if there are any “C++...” actions still active or
if the processing is not in “usual precision” mode. In
either of these cases a diagnostic is given and the pro-
cessing returns to normal mode.

References

1. Fred T. Krogh, A Language to Simplify Main-
tenance of Software which Has Many Versions.

Internal Computing Memorandum 359, Jet Propulsion
Laboratory (April 1974).

2. Charles L. Lawson, MARVEL – A Tool for Main-
taining Multiversion Software. Internal Report
463, Jet Propulsion Laboratory, Pasadena, CA (June
1980). Revised September 1989.

3. Charles L. Lawson, CHGTYP – A Tool for De-
veloping Fortran 77 Software in Single-Precision
and Double-Precision Versions. Internal Report
524, Jet Propulsion Laboratory, Pasadena, CA (April
1988). Revised May 1989.

E. Error Procedures and Restrictions

The program prints a variety of error messages on the
standard output. An error in the control file causes the
program to stop. In most cases of errors in the special
comments of the files being processed, processing contin-
ues. After 10 comparison errors in a single file, no more
comparison errors are printed for that file.

F. Supporting Information

The source language is ANSI Fortran 77.

Design and code due to F. T. Krogh, JPL, October 1994.
Multiple minor modifications through April 1996.

19.4–6 Converting Codes to Different Versions June 17, 2010

	Converting Codes to Different Versions
	Purpose
	Usage
	Transforming an Instrumented Code
	Instrumenting a Code

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

