
8.4 Computing Numerical Derivatives, Gradients and Jacobians

A. Purpose

This subroutine computes approximate gradient vectors
and Jacobian matrices of vector functions f(y) in several
variables. This routine is used to compute approximate
derivatives for problems where only function information
is available. To approximate a scalar derivative function,
consider it an equivalent 1 × 1 Jacobian matrix. Either
one-sided or central differences can be used.

B. Usage

B.1 Program Prototype, Double Precision

INTEGER MODE, M, N, LDFJAC, IOPT(k),
LWK, IWK(LIWK≥ 21), LIWK
See the description of IOPT for the k required.

DOUBLE PRECISION Y(≥N), F(≥M),
FJAC(LDFJAC,≥N), YSCALE(1 or ≥N),
FAC(≥N), WK(LWK ≥ 3*M+18)

Assign values to M, N, LDFJAC and IOPT().
Set Y() to the value of the vector y at which

partial derivatives are needed, and set F()
to f(y).

Set MODE = 0.
10 continue
C Approximate FJAC(,) as the M × N Jacobian
C matrix of first partial derivatives of f(y) with
C respect to y, evaluated at Y():

CALL DJACG(MODE, M, N, Y, F,
FJAC, LDFJAC, YSCALE, FAC,
IOPT, WK, LWK, IWK, LIWK)

if (MODE .gt. 0) then
Compute WK() as an M-vector of function

values f(y) evaluated at perturbed y in Y().
go to 10

end if
Here the process is normally completed, if there
are no error conditions. Approximations to the
partials are in FJAC(,), with related scaling
and performance data in FAC() and IWK().

B.2 Argument Definitions

MODE [inout] On initial entry set MODE = 0. The
routine DJACG will normally return a number of
times with MODE = J, the index of the derivative
being computed. A return value of MODE=0 means
the approximate derivatives are computed. A return
value of MODE = K < 0 means that argument num-
ber −K has an error condition.

For J > 0 the calling code should compute WK() as
a function of Y() and call DJACG again, not altering
MODE.

M [in] Number of terms in F() and number of rows of
data in FJAC(,). Must have M .gt. 0.

N [in] Number of terms in Y() and number of columns
of data in FJAC(,). Must have N .gt. 0.

Y() [inout] Initially must contain the vector y at which
the partial will be computed. Contains perturbed y
on each return with MODE = J > 0. On final return
with MODE = 0, contains the original y. Only com-
ponent J is perturbed with each return, but more
than one evaluation for a given J may occur. Af-
ter DJACG computes FAC() for the problem, one
evaluation per variable is typically needed if central
differences are not used..

F() [in] On entries with MODE ≥ 0, the user has func-
tion values in F(), i.e., F(I) = fIy). The user should
initialize F()=f(y) before the routine is entered with
MODE = 0.

FJAC(,) [inout] , The numerical derivatives, i.e.,
FJAC(i, j) = ∂fi/∂yj . For default usage, this is des-
ignated as [out] except in columns receiving special
treatment, as noted in IOPT().

LDFJAC [in] Declared first dimension of the array
FJAC(,). Require LDFJAC ≥ M or N=1.

YSCALE() [in] An array of length 1 or N. The user
can provide representative sizes for y values in the
array YSCALE(). The user can also use YSCALE()
to give appropriate directions for the differences. If
YSCALE(1) =0 then Y() itself is used for the scaling.

FAC() [inout] An array of length N. The value FAC(J)
contains the factor for differencing variable J. If
FAC(1)=0, the array FAC() is set to the square root
of machine precision on the first call to DJACG. Un-
less the user wishes to initialize FAC(), this array
should not be altered between subsequent calls to
DJACG.

The user may provide FAC() values if desired. If the
user provides these values, FAC(J) should be set to a
value between 0 and 1. The routine DJACG ensures
that FACMIN ≤ FAC(J) ≤ FACMAX. The values for
FACMIN and FACMAX are saved in the storage lo-
cations WK(3M+1), WK(3M+2) when DJACG exits
with MODE .gt. 0.

IOPT() [in] An integer array defining the methods
used to compute the derivatives. The default is to use
one-sided differences to compute derivatives. Entries
in this array are interpreted as follows.

June 17, 2010 Computing Numerical Derivatives, Gradients and Jacobians 8.4–1

0 Use the current settings for all remaining variables.
The starting setting is to use one-sided differ-
ences.

k > 0 Use the current settings for all variables from
the last specified up to and including variable k.

−1 Set to use one-sided differences. (Not needed at
the beginning since this is the default state.)

−2 Set to use central differences.

This will typically yield more accuracy than the
one-sided differences, but with the expense of
an additional function evaluation per variable.
The increment used for central differencing is
T=macheps−1/6 times the increment used in
one-sided differencing.

To change this factor for succeeding variables,
assign a new value between calls with MODE =
J in the storage location FAC(J).

The default value T=macheps−1/6 is based
on the approximate relation T*FAC(J) =

macheps2/3. This value is near an opti-
mal choice, under certain conditions on higher
derivatives, provided FAC(J) = macheps1/2.
Sometimes larger or smaller values of FAC(J)
will give more accuracy than the default.

−3 Set to accumulate the result from whatever type
of differences have been specified above into ini-
tial values provided in FJAC(1:M,J). This must
be followed by a number ≥ 0 as any number < 0
will turn this off.

This partial consists of the prior computed val-
ues FJAC(1:M,J) plus additional values that are
computed with divided differences. The value
F() should equal the part of the function to be
differenced.

−4 Skip variables. This must be followed by a value
≥ 0 as any number < 0 will turn this off.

No function evaluation is made when skipping a
variable. It is assumed that this partial is com-
puted in the user’s program in some way other
than with divided differences.

An an illustration, suppose column 3 is not to
be computed and column 4 is to be accumu-
lated. The rest of the columns are computed
with one-sided differences and no additional options.
These requirements are designated by: IOPT(1:7) =
2, −4, 3, −3, 4, −1, 0.

WK() [inout] A work array whose dimension is at
least LWK. Values of f(y) are placed in WK() when
MODE = J > 0 is returned. The additional locations
of WK() are used for scratch storage.

LWK [in] The required length of the work array, LWK
≥ 3M+18.

IWK() [inout] An integer array whose dimension is
at least LIWK. The first 10 positions of IWK() con-
tain diagnostic information, which can normally be
ignored. The remaining locations are used for scratch
storage.

IWK(1) gives the number of times the function, i.e.
f(y), was computed.

IWK(2) gives the number of columns in which three
attempts were made to increase a percentage factor
for differencing (i.e. a component in the FAC() array)
but the computed ∆J remained too small relative to
Y(J) or YSCALE(J). In such cases the percentage
factor is set to the square root of the unit roundoff
of the machine.

IWK(3) gives the number of columns in which the
computed ∆J was zero to machine precision because
Y(J) or YSCALE(J) was zero. In such cases ∆J is
set to the square root of the unit roundoff.

IWK(4) gives the number of Jacobian columns which
had to be recomputed because the largest difference
formed in the column was close to zero relative to
scale, where

scale = max(|fi(y)|, |fi(y + ∆)|)

and i denotes the row index of the largest difference
in the column currently being processed. IWK(10)
gives the last column where this occurred.

IWK(5) gives the number of columns whose largest
difference is close to zero relative to scale after the
column has been recomputed.

IWK(6) gives the number of times scale information
was not available for use in the roundoff and trunca-
tion error tests. this occurs when

min(|fi(y)|, |fi(y + ∆)|) = 0.

where i is the index of the largest difference for the
column currently being processed.

IWK(7) gives the number of times the increment for
differencing ∆J was computed and had to be in-
creased because (Y(J)+ ∆J)− Y(J) was too small
relative to Y(J) or YSCALE(J).

IWK(8) gives the number of times a component of the
FAC() array was reduced because changes in function
values were large and excess truncation error was sus-
pected. IWK(9) gives the last column in which this
occurred.

IWK(9) gives the index of the last column where the
corresponding component of the FAC() array had to
be reduced because excessive truncation error was
suspected.

8.4–2 Computing Numerical Derivatives, Gradients and Jacobians June 17, 2010

IWK(10) gives the index of the last column where
the difference was small and the column had to be re-
computed with an adjusted increment, as in IWK(4).
The largest derivative in this column may be inaccu-
rate due to excessive roundoff error.

LIWK [in] The required length of the array IWK(),
LIWK ≥ 21.

B.3 Modifications for Single Precision

For single precision usage change the DOUBLE PRE-
CISION statements to REAL and change the name
DJACG to SJACG. It is recommended that one use the
double precision rather than the single precision version
of this package for better reliability and accuracy.

C. Example

C.1 A Gradient Computation

The function is f(y1, y2) = a exp(by1) + cy1y2
2. Its gra-

dient vector, or 1× 2 Jacobian matrix, is

[∂f/∂y1, ∂f/∂y2] = [ab exp(by1) + cy2
2, 2cy1y2]

This formula is used for comparison to the computed
results. Values of the parameters and variables in the
program are:

a = 2.5, b = 3.4, c = 4.5

y1 = 2.1, y2 = 3.2

This driver illustrates how to:

1. Compute approximate derivatives using one-sided di-
vided differences (default)

2. Use one-sided differences on the first component and
analytically compute the second component

3. Accumulate a known term of the first component
with a differenced term that is not known a priori

4. Use central differences for both partials, getting more
accuracy with additional function evaluations

[The code and output listing are shown below.]

D. Functional Description

Let y denote the vector given initially in Y(). Let ε de-
note the machine precision, macheps. This is provided
by the functions D1MACH(4) and R1MACH(4) in single
precision. (See Chapter 19.1).

Let ej denote the n-vector that is all zeros except for the
jth component which is one.

For each i and j compute

FJAC(i,j) =
fi(y + hjej)− fi(y)

hj

The error in this difference approximation to the deriva-
tive ∂fi/∂yj is bounded by the magnitude of

hjM2/2 + δ/hj

where M2 denotes the magnitude of ||∂2f/∂2yj ||2 evalu-
ated at some point on the line segment from y to y+hjej ,
and δ is a bound on the error in computing ||f(y)||.

A key feature of DJACG is its heuristic for efficiently
estimating values of ∆j = hj = facj×scalej to maintain
precision. The algorithm for choosing facj is found in
Salane, [1]. August, 1986. A user should save values of
facj between computations of partials, particularly when
values of y do not change much and several evaluations
of the partials are anticipated.

The routine DJACG is re-entrant and thread-safe. This
is done by avoiding the use of elementary functions, ex-
cept SQRT(). All required scalars are saved in the work-
ing arrays WK() and IWK() during reverse communica-
tion.

An evaluation of the function f(y) can use DJACG as
part of that computation. This feature will be useful
when approximating higher order derivatives of a smooth
function, or using threaded algorithms to concurrently
compute the Jacobian matrix columns. To use the re-
entrant or threaded functionality, separate storage copies
of the arguments are usually required.

References

1. D. E. Salane, Adaptive Routines for Forming Ja-
cobians Numerically. Technical Report SAND86–
1319, Sandia Laboratory, Albuquerque, NM (Aug.
1986).

E. Error Procedures

Require MODE = 0 or > 0 on any entry to DJACG.
A returned value of MODE = 0 is normal, meaning the
derivatives are approximated. Values of MODE = K
< 0 mean that argument number −K has an error con-
dition. Additional diagnostic information about numer-
ical cancellation or excessive truncation error is found in
IWK(2:10).

F. Supporting Information

The source language is ANSI Fortran 77.

Entry Required Files

DJACG AMACH
SJACG AMACH

Designed and programmed by D. A. Salane, Sandia Labs.
(1986). Modified by R. J. Hanson, Rice University,
(June, 2002) with advice from F. T. Krogh.

June 17, 2010 Computing Numerical Derivatives, Gradients and Jacobians 8.4–3

DRDJACG1

program DRDJACG1
c>> 2006−04−12 DRDJACG1 Hanson −− Reduced l e n g t h s o f d jacg work arrays .
c>> 2003−07−08 DRDJACG1 Hanson −− Check f o r MODE < 0 .
c>> 2003−07−07 DRDJACG1 Krogh −− Changed 3 arg max to 2 arg f o r C conv .
c>> 2002−06−21 DRDJACG1 R. J . Hanson Example 1 Code , wi th Download
c Demo dr i v e r f o r DJACG, us ing numerical d e r i v a t i v e s f o r a g rad i en t .
c −−
c−− D rep l a c e s ”?”: DR?JACG1, ?JACG

c
c The func t i on used f o r t h i s demo i s f (y 1 , y 2) = a∗ exp (b∗ y 1)+c∗ y 1
C ∗(y 2)∗∗2 .
c I t s g rad i en t v e c t o r i s (d f /dy 1 , d f / dy 2)=
C (a∗b∗ exp (b∗ y 1)+c ∗(y 2)∗∗2 , 2∗c∗ y 1 ∗ y 2) .
C This i s used f o r comparison o f the computed r e s u l t s wi th a c t ua l
C r e s u l t s .

C This d r i v e r shows how to :

C A. Compute approximate d e r i v a t i v e s us ing one−s i d ed d i v i d ed
C d i f f e r e n c e s
C B. Use one−s i d ed d i f f e r e n c e s on the f i r s t component and
C a n a l y t i c a l l y compute the second component
C C. Accumulate a known term of the f i r s t component wi th a
C d i f f e r e n c e d term tha t i s not known a p r i o r i
C D. Use c en t r a l d i f f e r e n c e s on both components
C (No check ing f o r error cond i t i ons , i . e . MODE < 0 .)
C Define s i z e s and parameters .

INTEGER I , MODE, M, N, LDFJAC, LWK, LIWK
PARAMETER(M=1, N=2, LDFJAC=M, LWK=3∗M+18, LIWK=21)
INTEGER IOPT(04) , IWK(LIWK)
DOUBLE PRECISION Y(N) , F(M) , FJAC(LDFJAC,N) , XSCALE(N) ,
. FAC(N) , WK(LWK) , ACTUAL(LDFJAC,N) , RE(4 , 2)
DOUBLE PRECISION A, B, C, F2 , U, MAXERR, D1MACH
CHARACTER∗55 WHAT(4)
CHARACTER∗1 uv
DATAWHAT /
. ’One s ided pa r t i a l s , d e f au l t s e t t i n g s ’ ,
. ’One s ided pa r t i a l , second p a r t i a l known and skipped ’ ,
. ’One s ided pa r t i a l s , f i r s t p a r t i a l accumulated ’ ,
. ’ Centra l d i f f e r e n c e p a r t i a l s ’ /

C Define data and po in t o f e va l ua t i on :
A=2.5D0
B=3.4D0
C=4.5D0

Y(1)=2.1D0
Y(2)=3.2D0

C Machine prec i s i on , f o r measuring e r ro r s
U=D1MACH(4)

C Set d e f a u l t s f o r increments and s c a l i n g :
FAC(1)=0.D0
XSCALE(1)=0.D0

8.4–4 Computing Numerical Derivatives, Gradients and Jacobians June 17, 2010

C Compute t rue va l u e s o f p a r t i a l s .
ACTUAL(1 ,1)=A∗B∗EXP(B∗Y(1))+C∗Y(2)∗∗2
ACTUAL(1 ,2)=2∗C∗Y(1)∗Y(2)

C A. No v a r i a b l e g e t s s p e c i a l t reatment
IOPT(1)=0

C Sta r t each problem with MODE=0. Other s t a r t i n g
C va l u e s are e r ro r s . Values < 0 or > N are caught .

MODE=0

10 CONTINUE
WK(1)=A∗EXP(B∗Y(1))+C∗Y(1)∗Y(2)∗∗2

C This s e t s the func t i on va lue used in forming one−s i d ed d i f f e r e n c e s .
IF (MODE . eq . 0) THEN

F(1)=WK(1)
END IF
CALL DJACG(MODE,M,N,Y,F ,
. FJAC,LDFJAC,XSCALE,FAC, IOPT,
. WK,LWK,IWK,LIWK)
IF (MODE . gt . 0) GO TO 10

C Check f o r an error cond i t i on .
IF (MODE . l t . 0) THEN

PRINT ’ (’ ’ I n i t i a l e r r o r in argument number ’ ’ , I2) ’ ,−MODE
GO TO 60

END IF

C Check the r e l a t i v e accuracy o f one−s i d ed d i f f e r e n c e s .
C They shou ld be good to about ha l f−p r e c i s i on .

FJAC(1 ,1)=(FJAC(1 ,1)−ACTUAL(1 , 1)) /ACTUAL(1 ,1)
FJAC(1 ,2)=(FJAC(1 ,2)−ACTUAL(1 , 2)) /ACTUAL(1 ,2)
RE(1 ,1)=FJAC(1 ,1)/ sq r t (U)
RE(1 ,2)=FJAC(1 ,2)/ sq r t (U)

C B. Skip v a r i a b l e number 2 .
IOPT(1)= 1
IOPT(2)=−4
IOPT(3)= 2
MODE=0

20 CONTINUE
WK(1)=A∗EXP(B∗Y(1))+C∗Y(1)∗Y(2)∗∗2
IF (MODE . eq . 0) THEN

F(1)=WK(1)
C The second component p a r t i a l i s sk ipped ,
C s ince i t i s known a n a l y t i c a l l y

FJAC(1 ,2)=2.D0∗C∗Y(1)∗Y(2)
END IF
CALL DJACG(MODE,M,N,Y,F ,
. FJAC,LDFJAC,XSCALE,FAC, IOPT,
. WK,LWK,IWK,LIWK)
IF (MODE . gt . 0) GO TO 20

C Check f o r an error cond i t i on .
IF (MODE . l t . 0) THEN

PRINT ’ (’ ’ I n i t i a l e r r o r in argument number ’ ’ , I2) ’ ,−MODE
GO TO 60

END IF
FJAC(1 ,1)=(FJAC(1 ,1)−ACTUAL(1 , 1)) /ACTUAL(1 ,1)
FJAC(1 ,2)=(FJAC(1 ,2)−ACTUAL(1 , 2)) /ACTUAL(1 ,2)

June 17, 2010 Computing Numerical Derivatives, Gradients and Jacobians 8.4–5

RE(2 ,1)=FJAC(1 ,1)/ sq r t (U)
RE(2 ,2)=FJAC(1 ,2)/ sq r t (U)

C C. Accumulate a par t o f the f i r s t p a r t i a l .
IOPT(1)=−3
IOPT(2)= 1

C Sh i f t to us ing one−s i d ed d i f f e r e n c e s f o r the
C r e s t o f the v a r i a b l e s .

IOPT(3)=−1
IOPT(4)=0

MODE=0

30 CONTINUE
C Since par t o f the p a r t i a l i s known , e va l ua t e what i s
C to be d i f f e r e n c e d .

IF (MODE . ne . 2) WK(1)=A∗EXP(B∗Y(1))
IF (MODE . eq . 0) THEN

C Sta r t wi th par t o f the d e r i v a t i v e t ha t i s known .
F(1)=WK(1)
FJAC(1 ,1)=C∗Y(2)∗∗2

C This i s the func t i on va lue f o r the p a r t i a l wrt y 2 .
F2=C∗Y(1)∗Y(2)∗∗2

END IF

IF (MODE . eq . 2) THEN
C The func t i on va lue f o r the second p a r t i a l has the par t removed
C tha t depends on the f i r s t v a r i a b l e on ly .

F(1)=F2
WK(1)=C∗Y(1)∗Y(2)∗∗2

END IF
CALL DJACG(MODE,M,N,Y,F ,
. FJAC,LDFJAC,XSCALE,FAC, IOPT,
. WK,LWK,IWK,LIWK)

IF (MODE . gt . 0) GO TO 30
C Check f o r an error cond i t i on .

IF (MODE . l t . 0) THEN
PRINT ’ (’ ’ I n i t i a l e r r o r in argument number ’ ’ , I2) ’ ,−MODE
GO TO 60

END IF

FJAC(1 ,1)=(FJAC(1 ,1)−ACTUAL(1 , 1)) /ACTUAL(1 ,1)
FJAC(1 ,2)=(FJAC(1 ,2)−ACTUAL(1 , 2)) /ACTUAL(1 ,2)
RE(3 ,1)=FJAC(1 ,1)/ sq r t (U)
RE(3 ,2)=FJAC(1 ,2)/ sq r t (U)

C D. Use c en t r a l d i f f e r e n c e s and ge t more accuracy .
C Twice the func t i on e va l u a t i on s are needed .

IOPT(1)=−2
IOPT(2)= 0

C Set the increment used at the d e f a u l t va lue .
C This va lue must be as s i gned when us ing c en t r a l d i f f e r e n c e s .

WK(3∗M+3)=0.D0

MODE=0
40 CONTINUE

WK(1)=A∗EXP(B∗Y(1))+C∗Y(1)∗Y(2)∗∗2

8.4–6 Computing Numerical Derivatives, Gradients and Jacobians June 17, 2010

IF (MODE . eq . 0) THEN
F(1)=WK(1)

END IF
CALL DJACG(MODE,M,N,Y,F ,
. FJAC,LDFJAC,XSCALE,FAC, IOPT,
. WK,LWK,IWK,LIWK)
IF (MODE . gt . 0) GO TO 40

C Check f o r an error cond i t i on .
IF (MODE . l t . 0) THEN

PRINT ’ (’ ’ I n i t i a l e r r o r in argument number ’ ’ , I2) ’ ,−MODE
GO TO 60

END IF

C Check the r e l a t i v e accuracy o f c en t r a l d i f f e r e n c e s .
C They shou ld be good to about two th i r d s−p r e c i s i on .

FJAC(1 ,1)=(FJAC(1 ,1)−ACTUAL(1 , 1)) /ACTUAL(1 ,1)
FJAC(1 ,2)=(FJAC(1 ,2)−ACTUAL(1 , 2)) /ACTUAL(1 ,2)
F2=(3.D0∗U)∗∗ (2 .D0/3 .D0)
RE(4 ,1)=FJAC(1 ,1)/F2
RE(4 ,2)=FJAC(1 ,2)/F2

C Output the r e s u l t s and what i s expec ted .

PRINT ’ (’ ’ Rel Err o f p a r t i a l s , f= a∗exp (b∗y 1)+c∗y 1 ∗(y 2)∗∗2 . ’ ’ /
. ’ ’ Case df /dy 1 df /dy 2 , u=macheps ∗∗ . 5 , v=(3∗macheps)∗∗ (2/3) ’ ’) ’

MAXERR=0.D0
UV=’u ’
DO 50 I=1,4

MAXERR=max(MAXERR, max(ABS(RE(I , 1)) , ABS(RE(I , 2))))
IF (I . eq . 4) uv=’v ’
PRINT ’ (I3 , 2(F7 . 2 ,A1, 2 x) , A55) ’ ,

. I ,RE(I , 1) , uv , RE(I , 2) , uv , WHAT(I)
50 CONTINUE

C Al l expec ted r e l a t i v e e r ro r s (in un i t s o f t runca t i on error)
C shou ld not exceed 8 . I f they do the r e may be an error .

IF (MAXERR . l e . 8 .D0) THEN
PRINT ’ (’ ’ Numbers above with abso lu t e va lue s . l e . 8 are ’ ’ ,

. ’ ’ c ons ide r ed acceptab l e . ’ ’) ’
ELSE

PRINT ’ (’ ’ Numbers above with abso lu t e va lue s . gt . 8 are ’ ’ ,
. ’ ’ c ons ide r ed unacceptable . ’ ’) ’
END IF

60 CONTINUE
END

ODDJACG1

Rel Err o f p a r t i a l s , f= a∗exp (b∗y 1)+c∗y 1 ∗(y 2)∗∗2 .
Case df /dy 1 df /dy 2 , u=macheps ∗∗ . 5 , v=(3∗macheps)∗∗ (2/3)

1 3 .62u 3 .97u One s ided pa r t i a l s , d e f au l t s e t t i n g s
2 3 .62u 0 .00u One s ided pa r t i a l , second p a r t i a l known and skipped
3 3 .60u 0 .34u One s ided pa r t i a l s , f i r s t p a r t i a l accumulated
4 4 .11 v −0.77v Centra l d i f f e r e n c e p a r t i a l s

Numbers above with abso lu t e va lue s . l e . 8 are cons ide r ed acceptab l e .

June 17, 2010 Computing Numerical Derivatives, Gradients and Jacobians 8.4–7

	Computing Numerical Derivatives, Gradients and Jacobians
	Purpose
	Usage
	Program Prototype, Double Precision
	Argument Definitions
	Modifications for Single Precision

	Example
	A Gradient Computation

	Functional Description
	Error Procedures
	Supporting Information

