
18.3 Sorting Partially Ordered Data of
Arbitrary Structure in Memory

A. Purpose

Sort data having an organization or structure not sup-
ported by one of the subprograms in Chapter 18.1, for
example, data having more than one key to determine
the sorted order. This subprogram has similar function-
ality to GSORTP of Chapter 18.2 and is more efficient
when the data are initially partially ordered, or when
the ordering criterion is expensive to determine.

B. Usage

B.1 Program Prototype

INTEGER N, L(≥N), L1, COMPAR

EXTERNAL COMPAR

Assign values to N and data elements indexed by 1
through N. Require N ≥ 1.

CALL INSORT (COMPAR, N, L, L1)

Following the call to INSORT the contents of L(1)
through L(N) contain a linked list that defines the sorted
order of the data. L1 is the index of the first record of
the sorted sequence. Let I = L(J). If I = 0 record J is
the last record in the sorted sequence, else record I is the
immediate successor of record J in the sorted sequence.

B.2 Argument Definitions

COMPAR [in] An INTEGER FUNCTION subpro-
gram that defines the relative order of elements of the
data. COMPAR is invoked as COMPAR(I, J), and is
expected to return −1 (or any negative integer) if the
Ith element of the original data is to precede the Jth

element in the sorted sequence, +1 (or any positive
integer) if the Ith element is to follow the Jth ele-
ment, and zero if the order is immaterial. INSORT
does not have access to the data. It is the caller’s
responsibility to make the data known to COMPAR.
Since COMPAR is a dummy procedure, it may have
any name. Its name must appear in an EXTERNAL
statement in the calling program unit.

N [in] The upper bound of the indices to be presented
to COMPAR.

L() [out] An array to contain the definition of the sorted
sequence. L(1:N) are set so that the immediate suc-
cessor of the Jth record of the sorted sequence is L(J)
if the Jth record is not the last record in the sorted
sequence, else L(J) is zero.

L1 [out] The index of the first record of the sorted se-
quence.

B.3 Converting the Linked List in L() to a Per-
mutation Vector

The linked list produced by INSORT (or by INSRTX,
see Chapter 18-04) in the array L() may be converted to
a permutation vector by

CALL PVEC (L, L1)

where L() and L1 are as above. Upon return from PVEC,
L() is a permutation vector, as described for the argu-
ment IP() of GSORTP (Chapter 18.2).

C. Examples and Remarks

The program DRINSORT illustrates the use of INSORT
to sort 1000 randomly generated real numbers. The out-
put should consist of the single line

INSORT succeeded

Stability

A sorting method is said to be stable if the original rel-
ative order of equal elements is preserved. This subrou-
tine uses a merge sort algorithm, which is not inherently
stable. To impose stability, return COMPAR = I − J if
the Ith and Jth elements are equal.

D. Functional Description

The INSORT subprogram uses an opportunistic merge
sort algorithm, as described by Sedgewick [1], with a
modification suggested by Power [2]. In the basic oppor-
tunistic merge sort algorithm, the first step consists of
detecting either ascending or descending sequences of ini-
tially ordered data. In the second step, these sequences
are merged in pairs to form half as many sequences, each
approximately twice as long as the original sequences
(descending sequences are considered in reverse order).
The second step is repeated until only one sequence re-
mains. The Power modification consists of putting each
sequence into a “bucket” indexed by the base-2 loga-
rithm of its length. When a third sequence is to be put
into a bucket, the two longest sequences are merged and
put into the next bucket. If this would require putting
three sequences into the next bucket, the process is re-
peated. Finally, sequences remaining in the buckets af-
ter the initial order-detecting stage are merged, start-
ing with the smallest sequences and proceeding to the
largest, to produce a single sequence.

c©1997 Calif. Inst. of Technology, 2010 Math à la Carte, Inc.

June 17, 2010 Sorting Partially Ordered Data of Arbitrary Structure in Memory 18.3–1

References

1. Robert Sedgewick, Algorithms, Addison Wesley,
Reading, Mass. (1983).

2. Leigh R. Power, Internal sorting using a minimal tree
merge strategy, ACM Trans. on Math. Software 6,
1 (March 1980) 68–79.

E. Error Procedures and Restrictions

INSORT neither detects nor reports any erroneous con-
ditions.

Limitations on the size of array that can be sorted are im-
posed by the amount of memory available to hold the ar-

ray, and the length of an internal array to hold the “buck-
ets” used in the Power modification. The number of
buckets is given by a Fortran PARAMETER, currently
set to 32. This permits sorting at least 4,294,467,295
records.

F. Supporting Information

The source language is Fortran 77.

Entry Required Files

INSORT INSORT
PVEC PVEC

Designed and coded by W. V. Snyder, JPL 1974. Power
modification 1980. Adapted to MATH77, 1990.

DRINSORT

c>> 1990−02−09 DRINSORT Snyder I n i t i a l code .
c
c Test d r i v e r f o r INSORT.
c
c Construct an array o f 1000 random numbers us ing SRANUA.
c Sort i t us ing INSORT.
c Check whether i t i s in order .
c

log ica l OK
integer COMPAR,L(1 : 1 000) , L1 , LS ,NCOMP
external COMPAR
real PREV,R(1 : 1000)
common /RCOM/ NCOMP,R

c
c Generate 1000 random numbers

ca l l sranua (r , 1000)
c Sort them us ing INSORT.

ncomp=0
ca l l i n s o r t (compar ,1000 , l , l 1)
l s = l 1

c Check the order .
ok=.TRUE.
prev=−1.0

10 i f (l 1 . ne . 0) then
i f (r (l 1) . l t . prev) ok=.FALSE.
prev=r (l 1)
l 1=l (l 1)
go to 10

end i f
c Convert l to a permutat ion vec to r .

ca l l pvec (l , l s)
c Check the order again .

do 20 l s = 2 , 1000
i f (r (l (l s)) . l t . r (l (l s −1))) ok=.FALSE.

20 continue
c Print the r e s u l t s .

i f (ok) then
print ’ (’ ’ INSORT succeeded us ing ’ ’ , i6 , ’ ’ compares ’ ’) ’ , ncomp

else
print ∗ , ’INSORT f a i l e d ’

18.3–2 Sorting Partially Ordered Data of Arbitrary Structure in Memory June 17, 2010

end i f
c

end
integer function COMPAR(I , J)

c
c Determine the r e l a t i v e order o f R(I) and R(J) , where R i s in
c the common b l o c k /RCOM/. Return −1 i f R(I) shou ld preceed R(J)
c in the so r t ed order , +1 i f R(I) shou ld f o l l ow R(J) , and 0
c o therw i s e .
c

integer I , J , NCOMP
real R(1 : 1000)
common /RCOM/ NCOMP,R
ncomp=ncomp+1
i f (R(I)−R(J)) 10 ,20 ,30

10 compar=−1
return

20 compar=0
return

30 compar=+1
return

c
end

June 17, 2010 Sorting Partially Ordered Data of Arbitrary Structure in Memory 18.3–3

	Sorting Partially Ordered Data of Arbitrary Structure in Memory
	Purpose
	Usage
	Program Prototype
	Argument Definitions
	Converting the Linked List in L() to a Permutation Vector

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

