
1.0 MATH77 and mathc90

This manual and the software described herein consti-
tute the Math à la Carte MATH77 and mathc90 libraries.
MATH77 is a library of Fortran 77 subprograms im-
plementing algorithms useful in numerical computation.
MATH77 contains over 550 user-callable entries.

mathc90 is an ANSI C language version of most of the
MATH77 library. For usage of mathc90 see Appendices
C and D. The remainder of this introductory chapter
applies primarily to MATH77 (Fortran).

The Table of Contents provides a directory of the li-
brary by topics. The Index lists each user-callable sub-
program name, with its argument list, and a reference
to the chapter in which it is described. Appendix A lists
for each subprogram name all of the program files from
MATH77 needed for that subprogram. Appendix B lists
all SUBROUTINE, FUNCTION, ENTRY, and COM-
MON names used in the library. This will be useful if
one wishes to avoid using the same names.

A set of demonstration drivers that illustrate the use of
library subprograms accompanies the library. These can
be used to test that the library is properly installed on
a new system. An individual driver may be useful to a
user as a starting point for using a library subprogram.
Listings of about half the demonstration drivers are in-
cluded in this manual.

These libraries were developed at the Jet Propulsion
Laboratory from 1977–1997 and have been licensed to
Math à la Carte by the California Institute of Technol-
ogy.

1.1 Purpose and Scope

The purpose of high-quality mathematical subprogram
libraries is to make scientific and engineering computing
more reliable and economical, and to reduce the length
of time from problem conception until a solution is ob-
tained. The MATH77 and mathc90 libraries are partic-
ularly useful in that there are no language portability
difficulties to inhibit transport of the libraries to all For-
tran 77 and ANSI C environments.

Computers ranging from microcomputers to supercom-
puters are used for scientific and engineering comput-
ing. Most of these systems support both ANSI For-
tran 77 and ANSI C, and thus allow use of the MATH77
and/or mathc90 libraries. For persons programming in
other languages, most systems provide support for mak-
ing calls to Fortran 77 or ANSI C libraries.

The Fortran 77 language was initially issued as an ANSI
standard in 1978, [1], and was reaffirmed by ANSI in

1988. It was also a U.S. Federal standard (FIPS PUB
69, Sept. 1980) and an international (ISO) standard.
The ANSI X3J3 committee then developed Fortran 90,
[2], and Fortran 95, [3], which became the current For-
tran standard. Fortran 90 was designed to include all
of Fortran 77, although this is no longer true of For-
tran 95. There are a very few programs in MATH77
that do not satisfy the Fortran 95 standard, but these
should still compile on such compilers. Although the
later versions of Fortran are a substantial improvement
over Fortran 77, we continue to use Fortran 77, as it is
only in this language that we have a way to generate the
C library automatically.

The first ANSI standard for C was issued in 1989 [4],
and ANSI C is also a U.S. Federal standard (FIPS PUB
160, March 1991).

The MATH77 library of mathematical subprograms has
the following attributes:

1. Most of the subprograms in MATH77 do not require
any modifications to function as described in this
document on any computer system supporting the
full Fortran 77 language. The only program file re-
quiring attention when moving the library to differ-
ent machines is AMACH. This file contains machine-
dependent constants that are accessed by other li-
brary subprograms, and can also be accessed by user
programs, by referencing D1MACH, R1MACH, and
I1MACH. See Chapter 19.1 for instructions on con-
verting the file AMACH to different systems.

2. All subprograms in MATH77 are coded in conformity
to the Fortran 77 standard. This property has been
checked by use of a processor for standards check-
ing and by use of the standards checking option on
various compilers.

1.2 Access to the MATH77 and mathc90
Libraries

Access to the libraries is via the URL, http://

mathalacarte.com. One can freely browse what is avail-
able, but if you wish to download anything you must
register.

Items available include mangled (i.e. compiler readable
only) and clean source code for the library codes, clean
source for the demonstration drivers, as well as the users’
manual suitable for viewing or printing with a PDF,
PostScript, or dvi processor.

c©1997 Calif. Inst. of Technology, 2010 Math à la Carte, Inc.
c©1997 Calif. Inst. of Technology, 2010 Math à la Carte, Inc.

June 17, 2010 MATH77 and mathc90 1.0–1

http://mathalacarte.com
http://mathalacarte.com


1.2.a Files containing the users’ manual

Individual chapters and appendices of the users’ manual
are processed under Linux using teTEX.

Special processors can be used on the .pdf, or .ps, .dvi
files to view the manual as it appears on the printed page.
There are also processors that convert .dvi files to files
that can be printed (such as .ps files); the .ps and .pdf

files can usually be printed directly. Most machines have
public domain versions of the processors mentioned here.

1.3 Conventions Followed in the Code
and Documentation

A number of conventions are followed in the library code
and its descriptions. All of the library subprograms,
demonstration drivers, and test drivers exist as ANSI
Fortran 77 source code.

Subprograms that produce printed output use the
PRINT or WRITE(*,...) statement to write to the stan-
dard system output unit. Exceptions are the message
writing subroutines of Chapter 19.3 which can write to
arbitrary user-specified Fortran I/O units. Error mes-
sage writing is handled through subroutines described
in Chapters 19.2. and 19.3.

For most library subprograms we follow the convention
introduced in the BLAS [5] and LINPACK [6], by which
the initial letter of the name of a SUBROUTINE is C,
D, I, S, or Z, to indicate the principal type of data
with which the subprogram is concerned, and the ini-
tial letter of the name of a FUNCTION is C, D, I, or
S, to indicate the type of the returned result. These
letters denote, respectively, COMPLEX (or CHARAC-
TER), DOUBLE PRECISION, INTEGER, REAL, or
double-precision complex. The Fortran 77 standard does
not directly support a double-precision complex type, so
subprograms oriented toward this type of data use pairs
of DOUBLE PRECISION numbers. This representation
is compatible with the representation used by most com-
pilers that extend the Fortran 77 standard to provide a
double precision complex data type, and is compatible
with the representation specified by the later Fortran
standards.

When a DOUBLE PRECISION or COMPLEX valued
FUNCTION from this library is used, it is essential to
have the FUNCTION name appear in a DOUBLE PRE-
CISION or COMPLEX type statement.

Each subprogram description consists of six sections:

A. Purpose
B. Usage
C. Examples and Remarks
D. Functional Description

E. Error Procedures and Restrictions
F. Supporting Information

The contents of each of these sections and special nota-
tional conventions used in the descriptions are specified
below under these six headings.

A. Purpose

A brief statement of the area of application of the sub-
program is given here.

B. Usage

A detailed explanation of how to use the subprogram is
given in this section. Typical subsections are as follows:

B.1 Program Prototype

Specification statements, variables that must be initial-
ized, calling sequences, and any other statements likely
to be required are given here. It should not be diffi-
cult to use the subprogram if one follows this subsection
line-by-line.

In giving dimension information, a statement of the form

REAL A(IDIMA, ≥ N), B(≥ 5 × J + 20)

is used to indicate that A() is a real two-dimensional ar-
ray with a first dimension that must equal IDIMA and a
second dimension that can be assigned any value greater
than or equal to the value assigned to N, and that B() is
a real one dimensional array with dimension ≥ 5×J+20.

The calling sequence for any entry is always enclosed in a
box. For FUNCTION subprograms, the calling sequence
is always given in the form Y = FNAME(...). The reader
should recall that Fortran syntax also permits a FUNC-
TION name to be used directly in an expression, as for
instance Y = 2.0 * FNAME(...) + SQRT(X).

B.2 Argument Definitions

A detailed explanation of the parameters in the calling
sequence is given here. Any parameter that is an array
name is followed by “()” to call attention to this fact.
The intent attributes in, out, and inout, that are de-
scribed in the Fortran 90 standard [2], are listed for each
subprogram argument. We also use intent attributes
work or scratch, not part of the Fortran 90 standard, to
describe parameters for which the using program must
provide space, but need not provide initial values, and
in which no meaningful results are returned.

B.3 Modifications

One or more Modifications subsections may be present
to describe such things as DOUBLE PRECISION ver-
sions of a subprogram or to describe significantly distinct
options in the usage of a subprogram.

1.0–2 MATH77 and mathc90 June 17, 2010



C. Examples and Remarks

This section discusses a sample (“demo”) program, with
output, illustrating the use of the subprogram. Any list-
ings and actual output are at the end of the chapter.

In designing the demonstration programs, the example
problems have purposely been kept simple. The reader
should keep in mind that the subprograms described
frequently have features and modes of usage that are
not illustrated in the demonstration program. Thus the
reader is encouraged to read the entire subprogram de-
scription and not judge the range of applicability of a
subprogram on the basis of the demonstration programs
alone.

This section may also contain remarks that will help one
in using the subprogram.

D. Functional Description

This section describes what the subprogram does. It
also gives information on the methods used, and, if ap-
propriate and available, gives timing, accuracy data and
references.

E. Error Procedures and Restrictions

Information on how errors are treated, and any perti-
nent information concerning restrictions in the use of the
subprogram are given here. Some subprograms return a
flag indicating the success or failure mode. Some sub-
programs call the error message processing subroutines
described in Chapters 19.2 and 19.3. These subroutines
provide a means for the user to alter the action of error
message processing.

F. Supporting Information

This section gives names of all program files needed in
order to use the described subprograms. Those respon-
sible for the development of the subprograms are also
identified.

References

1. American National Standards Institute, Inc., New
York, American National Standard Program-
ming Language FORTRAN, ANSI X3.9–1978,
(1978).

2. American National Standards Institute, Inc., 11 West
42nd Street, New York, NY 10036, American Na-
tional Standard Programming Language For-
tran 90, X3.198–1991, (May 1991).

3. American National Standards Institute, Inc., 11 West
42nd Street, New York, NY 10036, Information tech-
nology – Programming languages – Fortran
- Part 1: Base language, ISO/IEC 1539-1:1997,
(1997).

4. American National Standards Institute, Inc., New
York, American National Standard Program-
ming Language — C, X3.159–1989, (Dec. 1989).

5. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh, Basic Linear Algebra Subprograms for Fortran
usage, ACM Trans. on Math. Software 5, 3 (Sept.
1979) 308–323.

6. J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W.
Stewart, LINPACK Users’ Guide, Society for In-
dustrial and Applied Mathematics, Philadelphia (1979)
320 pages.

June 17, 2010 MATH77 and mathc90 1.0–3


	MATH77 and mathc90 
	Purpose and Scope
	Access to the MATH77 and mathc90 Libraries
	Files containing the users' manual
	Conventions Followed in the Code and Documentation
	Purpose
	Usage
	Program Prototype
	Argument Definitions
	Modifications
	Examples and Remarks


	Functional Description
	Error Procedures and Restrictions
	Supporting Information


