
6.3 Basic Linear Algebra Subprograms (BLAS1)

A. Purpose

This is a set of subroutine and function subprograms for
basic mathematical operations on a single vector or a
pair of vectors. The operations provided are those com-
monly used in algorithms for numerical linear algebra
problems, e.g., problems involving systems of equations,
least-squares, matrix eigenvalues, optimization, etc.

B. Usage

Described below under B.1 through B.13 are:

B.1 Vector Arguments . 1
B.2 Dot Product [SDOT, DDOT, CDOTC,

CDOTU, DSDOT, SDSDOT] 2
B.3 Scalar times a Vector Plus a Vector

[SAXPY, DAXPY, CAXPY] 2
B.4 Set up Givens Rotation [SROTG, DROTG] 2
B.5 Apply Givens Rotation [SROT, DROT] 3
B.6 Set up Modified Rotation

[SROTMG, DROTMG] . 3
B.7 Apply Modified Rotation [SROTM, DROTM] . .3
B.8 Copy X into Y [SCOPY, DCOPY, CCOPY] . . . 4
B.9 Swap X and Y [SSWAP, DSWAP, CSWAP] 4
B.10 Euclidean Norm

[SNRM2, DNRM2, SCNRM2]4
B.11 Sum of Absolute Values

[SASUM, DASUM, SCASUM] 4
B.12 Constant Times a Vector

[SSCAL, DSCAL, CSCAL, CSSCAL] 4
B.13 Index of Element Having Maximum Absolute

Value [ISAMAX, IDAMAX, ICAMAX] 5

B.1 Vector Arguments

For subprograms of this package a vector is specified by
three arguments, say N, SX, and INCX, where

N denotes the number of elements in the vector,

SX (or DX or CX) identifies the array containing
the vector, and

INCX is the (signed) storage increment between suc-
cessive elements of the vector.

Let xi, i = 1, ..., N, denote the vector stored in the ar-
ray SX(). Within a subprogram of this package the array
argument, SX, will be declared as

REAL SX(∗)
In the common case of INCX = 1, xi is stored in
SX(i). More generally, if INCX ≥ 0, xi is stored in
SX(1 + (i − 1) × INCX), and if INCX < 0, xi is stored
in X(1 + (N− i)× |INCX|).

With indexing as specified above, looping operations
within the subprograms are performed in the order i=1,
2, ..., N.

Only positive values of INCX are allowed for subpro-
grams that have a single vector argument. For sub-
programs having two vector arguments, the two incre-
ment parameters, INCX and INCY, may independently
be positive, zero, or negative.

Due to the Fortran 77 rules for argument association
and array storage, the actual argument playing the role
of SX is not limited to being a singly dimensioned ar-
ray. It may be an array of any number of dimensions,
or it may be an array element with any number of sub-
scripts. The standard does not permit this argument to
be a simple variable, however.

If the actual argument is an array element, i.e., a sub-
scripted array name, then it identifies x1, the first ele-
ment of the vector, if INCX≥ 0, and xN , the last element
of the vector, if INCX < 0.

The most common reason for using an increment value
different from one is to operate on a row of a matrix.
For example, if an array is declared as

DOUBLE PRECISION A(5, 10)

The third row of A(,) begins at element A(3,1) and has
a storage spacing of 5 (double precision) storage loca-
tions between successive elements. Thus this row-vector
of length 10 would be described by the parameter triple
(N, DX, INCX) = (10, A(3,1), 5) in calls to subprograms
of this package.

See Section C for examples illustrating the specifications
of vector arguments.

In the following subprogram descriptions we assume the
following declarations have been made for any subpro-
grams that use these variable names

INTEGER N, INCX, INCY

REAL SX(mx), SY(my)

DOUBLE PRECISION DX(mx), DY(my)

COMPLEX CX(mx), CY(my)

In the common case of INCX = 1, mx must satisfy
mx ≥ N. More generally, mx must satisfy mx ≥
1 + (N− 1)× |INCX|. Similarly, my must be consistent
with N and INCY.

In Sections B.2 through B.13 we use the convention that
x denotes the vector contained in the storage array SX(),

c©1997 Calif. Inst. of Technology, 2010 Math à la Carte, Inc.

June 17, 2010 Basic Linear Algebra Subprograms (BLAS1) 6.3–1

DX(), or CX(), a denotes the scalar value contained in
SA, DA, or CA, etc.

B.2 Dot Product Subprograms

REAL SDOT, SDSDOT, SB, SW

DOUBLE PRECISION DDOT, DSDOT, DW

COMPLEX CDOTC, CDOTU, CW

The first four subprograms each compute

w =

N∑
i=1

xiyi

Single precision:

SW = SDOT(N, SX, INCX, SY, INCY)

Double precision:

DW = DDOT(N, DX, INCX, DY, INCY)

Single precision data. Uses double precision arithmetic
internally and returns a double precision result:

DW = DSDOT(N, SX, INCX, SY, INCY)

Complex (unconjugated):

CW = CDOTU(N, CX, INCX, CY, INCY)

CDOTC computes

w =

N∑
i=1

x̄iyi

where x̄i denotes the complex conjugate of the given xi.
This is the usual inner product of complex N-space.

CW = CDOTC(N, CX, INCX, CY, INCY)

SDSDOT computes

w = b+

N∑
i=1

xiyi

using single precision data, double precision internal
arithmetic, and converting the final result to single pre-
cision:

SW = SDSDOT(N, SB, SX, INCX, SY, INCY)

In each of the above six subprograms the value of the
summation from 1 to N will be set to zero if N ≤ 0.

B.3 Scalar Times a Vector Plus a Vector

REAL SA

DOUBLE PRECISION DA

COMPLEX CA

Given a scalar, a, and vectors, x and y, each of these
subroutines replaces y by ax + y. If a = 0 or N ≤ 0,
each subroutine returns, doing no computation.

Single precision:

CALL SAXPY (N, SA, SX, INCX, SY, INCY)

Double precision:

CALL DAXPY (N, DA, DX, INCX, DY, INCY)

Complex:

CALL CAXPY (N, CA, CX, INCX, CY, INCY)

B.4 Construct a Givens Plane Rotation

REAL SA, SB, SC, SS

DOUBLE PRECISION DA, DB, DC, DS

Single precision:

CALL SROTG (SA, SB, SC, SS)

Double precision:

CALL DROTG (DA, DB, DC, DS)

Given a and b, each of these subroutines computes c and
s, satisfying[

c s
−s c

]
·
[
a
b

]
=

[
r
0

]
subject to c2 +s2 = 1 and r2 = a2 +b2. Thus the matrix
involving c and s is an orthogonal (rotation) matrix that
transforms the second component of the vector [a, b]t to
zero. This matrix is used in certain least-squares and
eigenvalue algorithms.

If r = 0 the subroutine sets c = 1 and s = 0. Otherwise
the sign of r is set so that sgn(r) = sgn(a) if |a| > |b|,
and sgn(r) = sgn(b) if |a| ≤ |b|. Then, c = a/r and
s = b/r.

Besides setting c and s, the subroutine stores r in place
of a and another number, z, in place of b. The num-
ber z is rarely needed. See [1]– [4] in Section D for a
description of z.

These subroutines are designed to avoid extraneous over-
flow or underflow in cases where r2 is outside the expo-
nent range of the computer arithmetic but r is within
the range.

6.3–2 Basic Linear Algebra Subprograms (BLAS1) June 17, 2010

B.5 Apply a Plane Rotation

REAL SC, SS

DOUBLE PRECISION DC, DS

Single precision:

CALL SROT (N, SX, INCX,
SY, INCY, SC, SS)

Double precision:

CALL DROT (N, DX, INCX,
DY, INCY, DC, DS)

Given vectors, x and y, and scalars, c and s, this sub-
routine replaces the 2×N matrix[

xt

yt

]
by the 2×N matrix

[
c s
−s c

]
·
[

xt

yt

]
.

If N ≤ 0 or if c = 1 and s = 0, these subroutines return,
doing no computation.

B.6 Construct a Modified Givens Transforma-
tion

REAL SD1, SD2, SX1, SX2, SPARAM(5)

DOUBLE PRECISION DD1, DD2, DX1, DX2,
DPARAM(5)

Single precision:

CALL SROTMG (SD1, SD2,
SX1, SX2, SPARAM)

Double precision:

CALL DROTMG (DD1, DD2,
DX1, DX2, DPARAM)

The input quantities d1, d2, x1, and x2, define a 2-vector
[w1 w2]t in partitioned form as[

w1

w2

]
=

[
d
1/2
1 0

0 d
1/2
2

]
·
[
x1
x2

]
.

The subroutine determines the modified Givens rotation
matrix H that transforms x2 and thus w2 to zero. It also
replaces d1, d2, and x1 with δ1, δ2, and ξ1, respectively.
These quantities satisfy

[
ω
0

]
=

[
δ
1/2
1 0

0 δ
1/2
2

]
·H ·

[
x1
x2

]

=

[
δ
1/2
1 0

0 δ
1/2
2

]
·
[
ξ1
0

]
,

with ω = ±(w2
1 +w2

2)1/2. A representation of the matrix
H will be stored by this subroutine into SPARAM() or
DPARAM() for subsequent use by subroutines SROTM
or DROTM.

See the Appendix in [1] for more details on the compu-
tation and storage of H.

Most of the time the matrix H will be constructed to have
two elements equal to +1 or −1. Thus multiplication of
a 2-vector by H can be programmed to be faster than
multiplication by a general 2×2 matrix. This is the mo-
tivation for using a modified Givens matrix rather than
a standard Givens matrix; however, these matrix mul-
tiplications must represent a very significant percentage
of the execution time of an application program in order
for the extra complexity of using the modified Givens
matrix to be worthwhile.

B.7 Apply a Modified Givens Transformation

REAL SPARAM(5)

DOUBLE PRECISION DPARAM(5)

Single precision:

CALL SROTM (N, SX, INCX,
SY, INCY, SPARAM)

Double precision:

CALL DROTM (N, DX, INCX,
DY, INCY, DPARAM)

Given vectors, x and y, and a representation of an
H matrix constructed by SROTMG or DROTMG in
SPARAM() or DPARAM(), this subroutine replaces the
2×N matrix[

xt

yt

]
by H ·

[
xt

yt

]
.

Due to the special form of the matrix, H, this matrix
multiplication generally requires only 2N multiplications
and 2N additions rather than the 4N multiplications and
2N additions that would be required if H were an arbi-
trary 2× 2 matrix.

If N ≤ 0 or H is the identity matrix, these subroutines
return immediately.

June 17, 2010 Basic Linear Algebra Subprograms (BLAS1) 6.3–3

B.8 Copy a Vector x to y

Single precision:

CALL SCOPY (N, SX, INCX, SY, INCY)

Double precision:

CALL DCOPY (N, DX, INCX, DY, INCY)

Complex:

CALL CCOPY (N, CX, INCX, CY, INCY)

Each of these subroutines copies the vector x to y. If N
≤ 0 the subroutine returns immediately.

B.9 Swap Vectors x and y

Single precision:

CALL SSWAP (N, SX, INCX, SY, INCY)

Double precision:

CALL DSWAP (N, DX, INCX, DY, INCY)

Complex:

CALL CSWAP (N, CX, INCX, CY, INCY)

This subroutine interchanges the vectors x and y. If N
≤ 0, the subroutine returns immediately.

B.10 Euclidean Norm of a Vector

REAL SNRM2, SCNRM2, SW

DOUBLE PRECISION DNRM2, DW

Single precision:

SW = SNRM2(N, SX, INCX)

Double precision:

DW = DNRM2(N, DX, INCX)

Complex data, REAL result:

SW = SCNRM2(N, CX, INCX)

Each of these subprograms computes

w =

[
N∑
i=1

|xi|2
]1/2

.

If N ≤ 0, the result is set to zero.

These subprograms are designed to avoid overflow or un-
derflow in cases in which w2 is outside the exponent
range of the computer arithmetic but w is within the
range.

B.11 Sum of Magnitude of Vector Components

REAL SASUM, SCASUM, SW

DOUBLE PRECISION DASUM, DW

SASUM and DASUM compute

w =

N∑
i=1

|xi|.

Single precision:

SW = SASUM(N, SX, INCX)

Double precision:

DW = DASUM(N, DX, INCX)

Given a complex vector, x, SCASUM computes a REAL
result for the expression:

w =

N∑
i=1

|<xi|+ |=xi|.

SW = SCASUM(N, CX, INCX)

If N ≤ 0 these subprograms set the result to zero.

B.12 Vector Scaling

REAL SA

DOUBLE PRECISION DA

COMPLEX CA

Given a scalar, a, and vector, x, each of these subrou-
tines replaces the vector, x, by the product ax.

Single precision:

CALL SSCAL (N, SA, SX, INCX)

Double precision:

CALL DSCAL (N, DA, DX, INCX)

Complex:

CALL CSCAL (N, CA, CX, INCX)

Given REAL a and complex x, the subroutine CSSCAL
replaces x by the product ax.

CALL CSSCAL (N, SA, CX, INCX)

If N ≤ 0 these subroutines return immediately.

6.3–4 Basic Linear Algebra Subprograms (BLAS1) June 17, 2010

B.13 Find Vector Component of Largest Mag-
nitude

INTEGER ISAMAX, IDAMAX, ICAMAX,
IMAX

ISAMAX and IDAMAX each determine the smallest i
such that

|xi| = max{|xj | : j = 1, ..., N}

REAL vector, integer result:

IMAX = ISAMAX(N, SX, INCX)

Double precision vector, integer result:

IMAX = IDAMAX(N, DX, INCX)

Given a complex vector, x, ICAMAX determines the
smallest i such that

|<xi|+ |=xi| = max{|<xj |+ |=xj | : j = 1, ..., N}

IMAX = ICAMAX(N, CX, INCX)

If N ≤ 0, each of these subprograms sets the integer
result to zero.

C. Examples and Remarks

The program, DRDBLAS1, and its output, ODDBLAS1,
illustrate the use of various BLAS1 subprograms to com-
pute matrix-vector and matrix-matrix products.

Problems (1) and (2) show two ways of computing the
matrix-vector product, Ab. Using DDOT accesses the
elements of A by rows. Using DAXPY accesses A by
columns. The column ordering has an efficiency advan-
tage on virtual memory systems since Fortran stores ar-
rays by columns and there will therefore be fewer page
faults.

Problem (3) illustrates multiplication by the transpose
of a matrix without transposing the matrix in storage.

Problem (4) illustrates matrix-matrix multiplication.
This operation could also be programmed to use DAXPY
rather than DDOT.

These examples also illustrate the feature that matrix di-
mensions and storage array dimensions need not be the
same. Thus, in DRDBLAS1, a 2× 3 matrix A is stored
in a 5× 10 storage array A(,).

The program, DRDBLAS2, with output, ODDBLAS2,
illustrates a complete algorithm for solving a linear least-
squares problem. The algorithm first performs sequen-
tial accumulation of data into a triangular matrix, using
DROTG and DROT to build and apply Givens orthogo-
nal transformations. It then solves the triangular system

using DCOPY and DAXPY. This is a very reliable al-
gorithm.

The problem solved is the determination of coefficients
c1, c2, and c3 in the expression c1 + c2x+ c3 exp(−x) to
produce a least-squares fit to the data given in XTAB()
and YTAB(). Note that by changing dimension param-
eters, and the statements assigning values to the array
W(), DRDBLAS2 could be altered to solve any specific
linear least-squares problem.

D. Functional Description

This set of subprograms is described in more detail in [1].
For discussion of the standard and modified Givens or-
thogonal transformations and their use in least-squares
computations see [5].

There is an error in [1] in the discussion of the param-
eter, z, which is returned by SROTG or DROTG. This
error was corrected by [3], after which [4] corrected an
error in [3].

References

1. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh, Basic Linear Algebra Subprograms for Fortran
usage, ACM Trans. on Math. Software 5, 3 (Sept.
1979) 308–323.

2. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh, Algorithm 539: Basic Linear Algebra Subpro-
grams for Fortran usage [F1], ACM Trans. on Math.
Software 5, 3 (Sept. 1979) 324–325.

3. David S. Dodson and Roger G. Grimes, Remark on
“Algorithm 539: Basic Linear Algebra Subprograms for
Fortran usage [F1]”, ACM Trans. on Math. Soft-
ware 8, 4 (Dec. 1982) 403–404.

4. David S. Dodson, Corrigendum: Remark on “Algo-
rithm 539: Basic Linear Algebra Subroutines for FOR-
TRAN usage”, ACM Trans. on Math. Software 9,
1 (March 1983) 140–140.

5. Charles L. Lawson and Richard J. Hanson, Solving
Least-Squares Problems, Prentice-Hall, Englewood
Cliffs, N. J. (1974) 340 pages.

6. Fred T. Krogh, On the Use of Assembly Code
for Heavily Used Modules in Linear Algebra.
Internal Technical Memorandum 303, Jet Propulsion
Laboratory, Pasadena, CA (May 1972).

7. R. Hanson, F. Krogh, and C. Lawson, A proposal
for standard linear algebra subprograms. Internal
Technical Memorandum 33–660, Jet Propulsion Labo-
ratory (Nov. 1973).

8. Jack J. Dongarra, Jeremy Du Croz, Sven Ham-
marling, and Richard J. Hanson, An extended set of
FORTRAN Basic Linear Algebra Subprograms, ACM
Trans. on Math. Software 14, 1 (March 1988) 1–17.

June 17, 2010 Basic Linear Algebra Subprograms (BLAS1) 6.3–5

9. Jack J. Dongarra, Jeremy Du Croz, Sven Hammar-
ling, and Iain Duff, A set of level 3 Basic Linear Alge-
bra Subprograms, ACM Trans. on Math. Software
16, 1 (March 1990) 1–17.

10. R. J. Hanson and F. T. Krogh, Algorithm 653:
Translation of Algorithm 539: PC-BLAS Basic Lin-
ear Algebra Subprograms for FORTRAN usage with the
INTEL 8087, 80287 numeric data processor, ACM
Trans. on Math. Software 13, 3 (Sept. 1987) 311–
317.

E. Error Procedures and Restrictions

These subprograms do not issue any error messages. If
INCX ≤ 0 in any of the subprograms having a single
vector argument the results are unpredictable.

A value of N = 0 is a valid special case. Values of N < 0
are treated like N = 0.

F. Supporting Information

The source language is ANSI Fortran 77.

Each program unit has a single entry with the same name
as the program unit. No program units contain external
references.

As a result of experiments done in [6], a BLAS-type pack-
age was originally proposed in [7]. The package was sub-
sequently developed and tested over the period 1973–77
as an ACM SIGNUM committee project, with the final

product being announced in [1]. This package was sub-
sequently used as a component in many other numerical
software packages and optimized machine-language ver-
sions were produced for a number of different computer
systems.

This package was identified as BLAS when it appeared
in 1979 [1], however it is now identified as “BLAS1”,
or “Level 1 BLAS” since publication of BLAS2 [8] for
matrix-vector operations and BLAS3 [9] for matrix-
matrix operations. These latter two packages support
more efficient use of vector registers, processor cache,
and parallel processors than is possible in BLAS1.

Adapted to Fortran 77, by C. Lawson and S. Chiu, JPL,
January 1984. Replaced L2 norm routines with new ver-
sions which avoid undeflow in all cases and which don’t
use assigned go to’s, F. Krogh, May 1998.

All entries need one file of the same name, except for
DNRM2, SCNRM2, and SNRM2 all of which also re-
quire AMACH.

Entries
CAXPY CCOPY CDOTC CDOTU
CSCAL CSSCAL CSWAP DASUM
DAXPY DCOPY DDOT DNRM2
DROT DROTG DROTM DROTMG
DSCAL DSDOT DSWAP ICAMAX
IDAMAX ISAMAX SASUM SAXPY
SCASUM SCNRM2 SCOPY SDOT
SDSDOT SNRM2 SROT SROTG
SROTM SROTMG SSCAL SSWAP

DRDBLAS1

c program DRDBLAS1
c>> 1996−06−18 DRDBLAS1 Krogh Minor format change f o r C convers ion .
c>> 1996−05−28 DRDBLAS1 Krogh Added e x t e r na l s ta tement .
c>> 1994−10−19 DRDBLAS1 Krogh Changes to use M77CON
c>> 1992−03−24 DRDBLAS1 CLL Removed r e f e r ence to DBLE() func t i on .
c>> 1991−12−02 DRDBLAS1 CLL
c>> 1991−07−25 DRDBLAS1 CLL
c>> 1987−12−09 DRBLAS1 Lawson I n i t i a l Code .
c
c Demonstrate usage o f DAXPY, DCOPY, and DDOT from the BLAS
c by computing
c (1) p = A ∗ b us ing DDOT
c (2) q = A ∗ b us ing DCOPY & DAXPY
c (3) r = (A Transposed) ∗ p us ing DDOT
c (4) S = A ∗ E using DDOT
c −−
c−−D rep l a c e s ”?”: DR?BLAS1, ?AXPY, ?COPY, ?DOT
c −−

external DDOT
double precision DDOT
integer M2, M3, M4, N2 , N3 , N4
parameter (M2=5, M3=10, M4=12)

6.3–6 Basic Linear Algebra Subprograms (BLAS1) June 17, 2010

parameter (N2=2, N3=3, N4=4)
integer I , J
double precision A(M2,M3) , E(M3,M4) , S(M2,M4)
double precision B(M3) , P(M2) , Q(M2) , R(M3)
double precision ZERO(1)

c
data ZERO(1) / 0 .0 d0 /
data (A(1 , J) , J=1,N3) / 2 .0 d0 , −4.0d0 , 3 . 0 d0 /
data (A(2 , J) , J=1,N3) / −5.0d0 , −2.0d0 , 6 . 0 d0 /
data (B(J) , J=1,N3) / 7 .0 d0 , −3.0d0 , 5 . 0 d0 /
data (E(1 , J) , J=1,N4) / −4.0d0 , 2 . 0 d0 , 3 . 0 d0 , −6.0d0 /
data (E(2 , J) , J=1,N4) / 7 .0 d0 , 5 . 0 d0 , −6.0d0 , −3.0d0 /
data (E(3 , J) , J=1,N4) / 3 .0 d0 , 4 . 0 d0 , −2.0d0 , 5 . 0 d0 /

c −−−
c
c 1 . p = A ∗ b us ing DDOT
c

do 10 I = 1 , N2
P(I) = DDOT(N3 ,A(I , 1) ,M2,B, 1)

10 continue
c
c 2 . q = A ∗ b us ing DCOPY and DAXPY
c

ca l l DCOPY(N2 ,ZERO,0 ,Q, 1)
do 20 J = 1 , N3

ca l l DAXPY(N2 ,B(J) ,A(1 , J) , 1 ,Q, 1)
20 continue

c
c 3 . r = (A Transposed) ∗ p us ing DDOT
c

do 30 J = 1 , N3
R(J) = DDOT(N2 ,A(1 , J) , 1 ,P, 1)

30 continue
c
c 4 . S = A ∗ E using DDOT
c

do 50 I = 1 , N2
do 40 J = 1 , N4

S(I , J) = DDOT(N3 ,A(I , 1) ,M2,E(1 , J) , 1)
40 continue
50 continue

c
print ∗ , ’DRDBLAS1 . . Demo dr i v e r f o r DAXPY, DCOPY, and DDOT’
print ’ (/ ’ ’ P() = ’ ’ , 7x , 4 f 8 . 1) ’ , (P(J) , J=1,N2)
print ’ (/ ’ ’ Q() = ’ ’ ,7x , 4 f 8 . 1) ’ , (Q(J) , J=1,N2)
print ’ (/ ’ ’ R() = ’ ’ ,7x , 4 f 8 . 1) ’ , (R(J) , J=1,N3)
print ’ (/ ’ ’ S (,) = ’ ’) ’
do 60 I = 1 ,N2

print ’ (’ ’ Row ’ ’ , i2 , 5 x , 4 f 8 . 1) ’ , I , (S (I , J) , J=1,N4)
60 continue

stop
end

June 17, 2010 Basic Linear Algebra Subprograms (BLAS1) 6.3–7

ODDBLAS1

DRDBLAS1 . . Demo dr i v e r f o r DAXPY, DCOPY, and DDOT

P() = 41 .0 1 .0

Q() = 41 .0 1 .0

R() = 77 .0 −166.0 129 .0

S (,) =
Row 1 −27.0 −4.0 24 .0 15 .0
Row 2 24 .0 4 .0 −15.0 66 .0

DRDBLAS2

c program DRDBLAS2
c>> 1996−06−18 DRDBLAS2 Krogh Minor format change f o r C convers ion .
c>> 1994−10−19 DRDBLAS2 Krogh Changes to use M77CON
c>> 1991−11−27 DRDBLAS2 CLL
c>> 1987−12−09 Lawson I n i t i a l Code .
c
c Demonstrates the use o f BLAS sub rou t ine s DROTG, DROT, DAXPY,
c and DCOPY to implement an a l gor i thm fo r s o l v i n g a l i n e a r
c l e a s t squares problem us ing s e q u en t i a l accumulat ion o f the
c data and Givens or thogona l t rans format ions .
c YTAB() conta ins rounded va l u e s o f −2 + 2∗X + 3∗Exp(−X)
c −−−
c−−D rep l a c e s ”?”: DR?BLAS2, ?ROTG, ?ROT, ?AXPY, ?COPY
c −−−

integer MC, MC1, MXY
parameter (MC=3, MC1=MC+1, MXY=11)
integer IXY, J , NC, NC1, NXY
double precision X, XTAB(MXY) , Y, YTAB(MXY) , W(MC1)
double precision C, RG(MC1,MC1) , S
double precision COEF(MC) , DIV, ESTSD, ZERO(1)

c
data XTAB / 0 .0 d0 , . 1 d0 , . 2 d0 , . 3 d0 , . 4 d0 , . 5 d0 ,

∗ . 6 d0 , . 7 d0 , . 8 d0 , . 9 d0 , 1 . 0 d0 /
data YTAB / 1.00 d0 , . 91 d0 , . 86 d0 , . 82 d0 , . 81 d0 , . 82 d0 ,

∗ . 85 d0 , . 89 d0 , . 95 d0 , 1 .02 d0 , 1 .10 d0 /
data NXY, NC / MXY, MC /
data ZERO(1) / 0 .0 d0 /

c −−−
NC1 = NC + 1
ca l l DCOPY(MC1∗MC1, ZERO, 0 , RG, 1)
do 20 IXY = 1 , NXY

X = XTAB(IXY)
Y = YTAB(IXY)

c Bui ld new row of [A:B] in W() .
W(1) = 1 .0 d0
W(2) = X
W(3) = exp(−X)
W(4) = Y

c Process W() in t o [R:G] .

6.3–8 Basic Linear Algebra Subprograms (BLAS1) June 17, 2010

do 10 J = 1 , NC
ca l l DROTG(RG(J , J) ,W(J) ,C, S)
ca l l DROT(NC1−J ,RG(J , J+1) ,MC1,W(J+1) ,1 ,C, S)

10 continue
ca l l DROTG(RG(NC1,NC1) ,W(NC1) ,C, S)

20 continue
c Begin : So l ve t r i a n g u l a r system .

ca l l DCOPY(NC,RG(1 ,NC1) , 1 ,COEF, 1)
do 30 J = NC, 1 , −1

DIV = RG(J , J)
i f (DIV . eq . 0 . 0 d0) then

print ’ (’ ’ERROR:ZERO DIVISOR AT J =’ ’ , I2) ’ , J
stop

end i f
COEF(J) = COEF(J) / DIV
ca l l DAXPY(J−1,−COEF(J) ,RG(1 , J) , 1 ,COEF, 1)

30 continue
c End : So lve t r i a n g u l a r system .
c

print ’ (’ ’ So lu t i on : COEF() = ’ ’ ,3 f 8 . 3) ’ , (COEF(J) , J=1,NC)
ESTSD = abs (RG(NC1,NC1)) / sq r t (DBLE(NXY−NC))
print ’ (/ ’ ’ Estimated Std . Dev . o f data e r r o r s =’ ’ , f 9 . 5) ’ , ESTSD
stop
end

ODDBLAS2

So lu t i on : COEF() = −1.968 1 .979 2 .966

Estimated Std . Dev . o f data e r r o r s = 0.00279

June 17, 2010 Basic Linear Algebra Subprograms (BLAS1) 6.3–9

	Basic Linear Algebra Subprograms (BLAS1)
	Purpose
	Usage
	Vector Arguments
	Dot Product Subprograms
	Scalar Times a Vector Plus a Vector
	Construct a Givens Plane Rotation
	Apply a Plane Rotation
	Construct a Modified Givens Transformation
	Apply a Modified Givens Transformation
	Copy a Vector x to y
	Swap Vectors x and y
	Euclidean Norm of a Vector
	Sum of Magnitude of Vector Components
	Vector Scaling
	Find Vector Component of Largest Magnitude

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

