3.2 Gaussian (Normal) Random Numbers and Vectors

A. Purpose
Generate pseudorandom numbers or vectors from the Gaussian (normal) distribution.

B. Usage

B.1 Generating Gaussian (normal) pseudorandom numbers

B.1.a Program Prototype, Single Precision

REAL SRANG, X

\[X = \text{SRANG}() \]

B.1.b Argument Definitions

SRANG [out] The function returns a pseudorandom number from the Gaussian (normal) distribution with mean zero and unit standard deviation.

B.2 Generating Gaussian (normal) pseudorandom vectors

Given an N-vector, \(\mu \), and a symmetric positive-definite \(N \times N \) matrix, \(A \), the objective is to compute pseudorandom N-vectors, \(x \), from the N-dimensional Gaussian (normal) distribution having mean vector, \(\mu \), and covariance matrix, \(A \).

On the first call to SRANGV with a new covariance matrix, \(A \), the user must set HAVEC = .false. to indicate that the Cholesky factor of \(A \) has not yet been computed. SRANGV will replace \(A \) in storage by its lower-triangular Cholesky factor, \(C \), and set HAVEC = .true.

When HAVEC is .true., \(A(.) \) is assumed to contain the Cholesky factor, \(C \).

NDIM [in] First dimension of the array \(A(.) \). Require \(NDIM \geq N \).

N [in] Order of the covariance matrix \(A \) and dimension of the vectors \(U \) and \(X \). Require \(N \geq 1 \).

U() [in] Contains the N-dimensional mean vector, \(\mu \).

X() [out] On return will contain the N-dimensional generated random vector.

HAVEC [inout] See description above for \(A(.) \).

IERR [out] IERR will only be referenced when the subroutine is entered with HAVEC = .false. If the Cholesky factorization is successful, the subroutine will set HAVEC = .true. and IERR = 0. Otherwise, it will leave HAVEC = .false. and set IERR to the index of the row of \(A \) in which failure was noted. In this latter case the results returned in \(A(.) \) and \(X(.) \) will not be useful.

B.3 Modifications for Double Precision

For double-precision usage, change the REAL statements to DOUBLE PRECISION and change the initial “S” of the function and subroutine names to “D.” Note particularly that if the function name, DRANG, is used it must be typed DOUBLE PRECISION either explicitly or via an IMPLICIT statement.

C. Examples and Remarks

The program DRSRANG demonstrates the use of SRANG to compute Gaussian random numbers and uses SSTAT1 and SSTAT2 to compute and print statistics and a histogram based on a sample of 10000 numbers delivered by SRANG.

To compute Gaussian random numbers with mean XMEAN and standard deviation STDDEV, one can use the statement

\[X = \text{XMEAN} + \text{STDDEV} * \text{SRANG()} \]

\[\copyright 1997 \text{ Calif. Inst. of Technology, 2015 Math à la Carte, Inc.} \]
The program DSRANGV demonstrates the use of SRANGV to compute pseudorandom vectors from a 3-dimensional Gaussian distribution with mean vector and covariance matrix specified as

$$\mu = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 0.05 & 0.02 & 0.01 \\ 0.02 & 0.07 & -0.03 \\ 0.01 & -0.03 & 0.06 \end{bmatrix}. $$

To fetch or set the seed used in the underlying pseudorandom integer sequence use the subroutines described in Chapter 3.1.

D. Functional Description

Method

The algorithm for generation of Gaussian random numbers is based on [1]-[3]. This method draws pairs of uniform random numbers x from $[0, 1]$ and y from $[-1, 1]$ until a pair is obtained that satisfies $x^2 + y^2 \leq 1$. The probability of satisfying this constraint is $\pi/4 \approx 0.785$. It then draws another uniform random number u from $[0, 1]$ and computes

$$s = x^2 + y^2$$
$$t = -2 \log u / s$$
$$g_1 = t(x^2 - y^2)$$
$$g_2 = 2xyt$$

The numbers g_1 and g_2 are independent samples from the Gaussian distribution with mean zero and unit standard deviation. The number g_1 is returned when it is computed and g_2 is saved and returned the next time a Gaussian random number is requested. The saved value will be discarded if the underlying uniform sequence is reinitialized by a call to RAN1 or RANPUT of Chapter 3.1.

This method is a mathematically exact transformation from the uniform distribution to the Gaussian distribution so the statistical quality of the delivered numbers depends entirely on the quality of the uniform pseudorandom numbers used. The uniform numbers are obtained by calling SRANUA or DRANUA, using the array in common block /RANCMS/ or /RANCMD/ as a buffer as described in Chapter 3.1.

For the generation of Gaussian random vectors we are given a mean vector μ and a symmetric positive-definite covariance matrix A. The Cholesky method is used to factor the given covariance matrix as $A = CC^T$ where C is a lower triangular matrix. Then for each vector to be delivered the method first constructs a vector g whose components are independent samples from the Gaussian distribution with mean zero and unit standard deviation. It then computes

$$x = \mu + Cg$$

which is a sample from the N-dimensional Gaussian distribution with mean μ and covariance matrix A.

Values returned as double-precision random numbers will have random bits throughout the word, however the quality of randomness should not be expected to be as good in a low-order segment of the word as in a high-order part.

References

E. Error Procedures and Restrictions

While computing the Cholesky factorization of A, subroutine SRANGV or DRANGV may determine that the matrix is not positive-definite. In that case it will return with IERR set to the index of the row of the matrix at which the problem was detected. In this non-positive-definite case the contents of the array A() will have been altered, HAVEC will still have the value .false., and X() will not contain useful results.

When the Cholesky factorization is successful, IERR will be set to zero.

The conditions that $N \geq 1$, and NDIM $\geq N$ are required but not checked.

F. Supporting Information

The source language is ANSI Fortran 77.

Entry Required Files

DRANG	DRANG, ERFIN, ERMSG, RANPK1, RANPK2
DRANGV	DRANG, DRANGV, ERFIN, ERMSG, RANPK1, RANPK2
SRANG	ERFIN, ERMSG, RANPK1, RANPK2, SRANG
SRANGV	ERFIN, ERMSG, RANPK1, RANPK2, SRANG, SRANGV

DRSRANG

program DRSRANG

2001−05−22 DRSRANG Krogh Minor change for making .f90 version.
1996−05−28 DRSRANG Krogh Added external statement.
1994−10−19 DRSRANG Krogh Changes to use M77CON
1987−12−09 DRSRANG Lawson Initial Code.

---S replaces "?": DR?RANG, ?RANG, ?STAT1, ?STAT2

Demonstration driver for SRANG. Generates random numbers from the Gaussian distribution.

integer NCELLS
parameter(NCELLS = 12+2)

external SRANG

real SRANG, STATS(5), Y1, Y2, YTAB(1), ZERO

integer I, IHIST(NCELLS), N

parameter(ZERO = 0.0E0)
data N / 10000/
data Y1, Y2 / −3.0E0, +3.0E0/

STATS(1) = ZERO
do 20 I=1,N
 YTAB(1) = SRANG()
 call SSTAT1(YTAB(1), 1, STATS, IHIST, NCELLS, Y1, Y2)

20 continue

write(∗,'(13x,a//)') 'Gaussian random numbers from SRANG'
call SSTAT2(STATS, IHIST, NCELLS, Y1, Y2)
stop
end
ODSRANG

Gaussian random numbers from SRANG

<table>
<thead>
<tr>
<th>BREAK PT</th>
<th>COUNT</th>
<th>PLOT OF COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.00</td>
<td>13</td>
<td>*</td>
</tr>
<tr>
<td>-2.50</td>
<td>40</td>
<td>0*</td>
</tr>
<tr>
<td>-2.00</td>
<td>149</td>
<td>0*</td>
</tr>
<tr>
<td>-1.50</td>
<td>439</td>
<td>0*</td>
</tr>
<tr>
<td>-1.00</td>
<td>919</td>
<td>0*</td>
</tr>
<tr>
<td>-0.50</td>
<td>1497</td>
<td>0*</td>
</tr>
<tr>
<td>0.00</td>
<td>1950</td>
<td>0*</td>
</tr>
<tr>
<td>0.50</td>
<td>1992</td>
<td>0*</td>
</tr>
<tr>
<td>1.00</td>
<td>1432</td>
<td>0*</td>
</tr>
<tr>
<td>1.50</td>
<td>906</td>
<td>0*</td>
</tr>
<tr>
<td>2.00</td>
<td>433</td>
<td>0*</td>
</tr>
<tr>
<td>2.50</td>
<td>172</td>
<td>0*</td>
</tr>
<tr>
<td>3.00</td>
<td>40</td>
<td>0*</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Count Minimum Maximum Mean Std. Deviation
10000 -4.0209 3.7531 0.32694E−03 0.99037

3.2–4 Gaussian (Normal) Random Numbers and Vectors July 11, 2015
DRSRANGV

program DRSRANGV

!!! 2001−05−22 DRSRANGV Krogh Minor change for making .f90 version.
!!! 1994−10−19 DRSRANGV Krogh Changes to use M77CON
---S replaces "?": DRSRANGV, ?RANGV
--- Demonstration driver for the Gaussian random vector generator,
--- SRANGV.

integer I, J, N, IERR, NMAX, NSAMPL
parameter (NMAX = 3)
real A(NMAX,NMAX), U(NMAX), X(NMAX)
logical HAVEC

!!Data data (U(J), J=1,NMAX)/ 1.0E0, 2.0E0, 3.0E0 /
data (A(1,J), J=1,NMAX)/ 0.05E0, 0.02E0, 0.01E0 /
data (A(2,J), J=1,NMAX)/ 0.02E0, 0.07E0, −0.03E0 /
data (A(3,J), J=1,NMAX)/ 0.01E0, −0.03E0, 0.06E0 /

N = NMAX
NSAMPL = 20
HAVEC = .false.

print '(1x,a/1x)', 'Pseudorandom vectors computed by SRANGV'
do 10 I = 1,NSAMPL
 call SRANGV(A, NMAX, N, U, X, HAVEC, IERR)
 if (IERR.ne.0) then
 print '(1x,i3,i6)', N, IERR
 else
 print '(1x,i3,5x,3f12.3)', I, X
 endif
10 continue
stop
end

July 11, 2015
Gaussian (Normal) Random Numbers and Vectors
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.922</td>
<td>2.079</td>
<td>2.715</td>
</tr>
<tr>
<td>2</td>
<td>0.868</td>
<td>2.135</td>
<td>2.802</td>
</tr>
<tr>
<td>3</td>
<td>0.983</td>
<td>1.943</td>
<td>2.867</td>
</tr>
<tr>
<td>4</td>
<td>1.102</td>
<td>1.874</td>
<td>2.700</td>
</tr>
<tr>
<td>5</td>
<td>0.677</td>
<td>1.883</td>
<td>2.813</td>
</tr>
<tr>
<td>6</td>
<td>0.763</td>
<td>1.981</td>
<td>2.640</td>
</tr>
<tr>
<td>7</td>
<td>0.690</td>
<td>1.970</td>
<td>2.863</td>
</tr>
<tr>
<td>8</td>
<td>0.729</td>
<td>2.339</td>
<td>2.760</td>
</tr>
<tr>
<td>9</td>
<td>0.660</td>
<td>2.061</td>
<td>2.839</td>
</tr>
<tr>
<td>10</td>
<td>1.246</td>
<td>1.847</td>
<td>2.721</td>
</tr>
<tr>
<td>11</td>
<td>1.230</td>
<td>1.907</td>
<td>2.841</td>
</tr>
<tr>
<td>12</td>
<td>1.215</td>
<td>2.414</td>
<td>2.835</td>
</tr>
<tr>
<td>13</td>
<td>0.447</td>
<td>2.037</td>
<td>2.421</td>
</tr>
<tr>
<td>14</td>
<td>1.126</td>
<td>2.210</td>
<td>3.175</td>
</tr>
<tr>
<td>15</td>
<td>0.891</td>
<td>2.439</td>
<td>2.836</td>
</tr>
<tr>
<td>16</td>
<td>0.792</td>
<td>2.118</td>
<td>2.725</td>
</tr>
<tr>
<td>17</td>
<td>1.298</td>
<td>2.129</td>
<td>3.001</td>
</tr>
<tr>
<td>18</td>
<td>0.999</td>
<td>2.092</td>
<td>3.112</td>
</tr>
<tr>
<td>19</td>
<td>0.921</td>
<td>1.941</td>
<td>2.832</td>
</tr>
<tr>
<td>20</td>
<td>0.965</td>
<td>2.172</td>
<td>3.173</td>
</tr>
</tbody>
</table>