Purpose ======= LA_SYEVR / LA_HEEVR compute selected eigenvalues and, optionally, the corresponding eigenvectors of a real symmetric/complex Hermitian matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. LA_SYEVR and LA_HEEVR use a relatively robust representation (RRR) algorithm. It is usually the fastest algorithm of all and uses the least workspace. ======== SUBROUTINE LA SYEVR / LA HEEVR( A, W, JOBZ=jobz, & UPLO=uplo, VL=vl, VU=vu, IL=il, IU=iu, M=m, & ISUPPZ= isuppz, ABSTOL=abstol, INFO=info ) (), INTENT(INOUT) :: A(:,:) REAL(), INTENT(OUT) :: W(:) CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: JOBZ, UPLO REAL(), INTENT(IN), OPTIONAL :: VL, VU INTEGER, INTENT(IN), OPTIONAL :: IL, IU INTEGER, INTENT(OUT), OPTIONAL :: M INTEGER, INTENT(OUT), OPTIONAL :: ISUPPZ(:) REAL(), INTENT(IN), OPTIONAL :: ABSTOL INTEGER, INTENT(OUT), OPTIONAL :: INFO where ::= REAL | COMPLEX ::= KIND(1.0) | KIND(1.0D0) Arguments ========= A (input/output) REAL or COMPLEX square array, shape (:,:). On entry, the matrix A. If UPLO = 'U', the upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the lower triangular part of A contains the lower triangular part of the matrix A. On exit: If JOBZ = 'V', then the first M columns of A contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of A containing the eigenvector associated with the eigenvalue in W(i). If JOBZ = 'N', the upper triangle (if UPLO = 'U') or the lower triangle (if UPLO = 'L') of A, including the diagonal, is destroyed. W (output) REAL array, shape (:) with size(W) = size(A,1). The first M elements contain the selected eigenvalues in ascending order. JOBZ Optional (input) CHARACTER(LEN=1). = 'N': Computes eigenvalues only; = 'V': Computes eigenvalues and eigenvectors. Default value: 'N'. UPLO Optional (input) CHARACTER(LEN=1). = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. Default value: 'U'. VL,VU Optional (input) REAL. The lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Default values: VL = -HUGE() and VU = HUGE(), where ::= KIND(1.0) | KIND(1.0D0). Note: Neither VL nor VU may be present if IL and/or IU is present. IL,IU Optional (input) INTEGER. The indices of the smallest and largest eigenvalues to be returned. The IL-th through IU-th eigenvalues will be found. 1 <= IL <= IU <= size(A,1). Default values: IL = 1 and IU = size(A,1). Note: Neither IL nor IU may be present if VL and/or VU is present. Note: All eigenvalues are calculated if none of the arguments VL, VU, IL and IU are present. M Optional (output) INTEGER. The total number of eigenvalues found. 0 <= M <= size(A,1). Note: If IL and IU are present then M = IU-IL+1. ISUPPZ Optional (output) INTEGER array, shape (:) with size(ISUPPZ) = 2*max(1,M). The support of the eigenvectors in A, i.e., the indices indicating the nonzero elements. The i-th eigenvector is nonzero only in elements ISUPPZ(2i-1) through ISUPPZ(2i) . Note: ISUPPZ must be absent if JOBZ = 'N'. ABSTOL Optional (input) REAL. The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a, b] of width less than or equal to ABSTOL + EPSILON(1.0_) * max(|a|,|b|), where is the working precision. If ABSTOL <= 0, then EPSILON(1.0_)* ||T||1 will be used in its place, where ||T||1 is the l1 norm of the tridiagonal matrix obtained by reducing A to tridiagonal form. Default value: 0.0_. Note: Eigenvalues are computed most accurately if ABSTOL is set to LA_LAMCH(1.0_,'Safe minimum'), not zero. INFO Optional (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. If INFO is not present and an error occurs, then the program is terminated with an error message.