SUBROUTINE CLAED7( N, CUTPNT, QSIZ, TLVLS, CURLVL, CURPBM, D, Q, $ LDQ, RHO, INDXQ, QSTORE, QPTR, PRMPTR, PERM, $ GIVPTR, GIVCOL, GIVNUM, WORK, RWORK, IWORK, $ INFO ) * * -- LAPACK routine (instrumented to count operations, version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * September 30, 1994 * * .. Scalar Arguments .. INTEGER CURLVL, CURPBM, CUTPNT, INFO, LDQ, N, QSIZ, $ TLVLS REAL RHO * .. * .. Array Arguments .. INTEGER GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ), $ IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * ) REAL D( * ), GIVNUM( 2, * ), QSTORE( * ), RWORK( * ) COMPLEX Q( LDQ, * ), WORK( * ) * .. * Common block to return operation count and iteration count * ITCNT is unchanged, OPS is only incremented * .. Common blocks .. COMMON / LATIME / OPS, ITCNT * .. * .. Scalars in Common .. REAL ITCNT, OPS * .. * * Purpose * ======= * * CLAED7 computes the updated eigensystem of a diagonal * matrix after modification by a rank-one symmetric matrix. This * routine is used only for the eigenproblem which requires all * eigenvalues and optionally eigenvectors of a dense or banded * Hermitian matrix that has been reduced to tridiagonal form. * * T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) * * where Z = Q'u, u is a vector of length N with ones in the * CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. * * The eigenvectors of the original matrix are stored in Q, and the * eigenvalues are in D. The algorithm consists of three stages: * * The first stage consists of deflating the size of the problem * when there are multiple eigenvalues or if there is a zero in * the Z vector. For each such occurence the dimension of the * secular equation problem is reduced by one. This stage is * performed by the routine SLAED2. * * The second stage consists of calculating the updated * eigenvalues. This is done by finding the roots of the secular * equation via the routine SLAED4 (as called by SLAED3). * This routine also calculates the eigenvectors of the current * problem. * * The final stage consists of computing the updated eigenvectors * directly using the updated eigenvalues. The eigenvectors for * the current problem are multiplied with the eigenvectors from * the overall problem. * * Arguments * ========= * * N (input) INTEGER * The dimension of the symmetric tridiagonal matrix. N >= 0. * * CUTPNT (input) INTEGER * Contains the location of the last eigenvalue in the leading * sub-matrix. min(1,N) <= CUTPNT <= N. * * QSIZ (input) INTEGER * The dimension of the unitary matrix used to reduce * the full matrix to tridiagonal form. QSIZ >= N. * * TLVLS (input) INTEGER * The total number of merging levels in the overall divide and * conquer tree. * * CURLVL (input) INTEGER * The current level in the overall merge routine, * 0 <= curlvl <= tlvls. * * CURPBM (input) INTEGER * The current problem in the current level in the overall * merge routine (counting from upper left to lower right). * * D (input/output) REAL array, dimension (N) * On entry, the eigenvalues of the rank-1-perturbed matrix. * On exit, the eigenvalues of the repaired matrix. * * Q (input/output) COMPLEX array, dimension (LDQ,N) * On entry, the eigenvectors of the rank-1-perturbed matrix. * On exit, the eigenvectors of the repaired tridiagonal matrix. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= max(1,N). * * RHO (input) REAL * Contains the subdiagonal element used to create the rank-1 * modification. * * INDXQ (output) INTEGER array, dimension (N) * This contains the permutation which will reintegrate the * subproblem just solved back into sorted order, * ie. D( INDXQ( I = 1, N ) ) will be in ascending order. * * IWORK (workspace) INTEGER array, dimension (4*N) * * RWORK (workspace) REAL array, * dimension (3*N+2*QSIZ*N) * * WORK (workspace) COMPLEX array, dimension (QSIZ*N) * * QSTORE (input/output) REAL array, dimension (N**2+1) * Stores eigenvectors of submatrices encountered during * divide and conquer, packed together. QPTR points to * beginning of the submatrices. * * QPTR (input/output) INTEGER array, dimension (N+2) * List of indices pointing to beginning of submatrices stored * in QSTORE. The submatrices are numbered starting at the * bottom left of the divide and conquer tree, from left to * right and bottom to top. * * PRMPTR (input) INTEGER array, dimension (N lg N) * Contains a list of pointers which indicate where in PERM a * level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) * indicates the size of the permutation and also the size of * the full, non-deflated problem. * * PERM (input) INTEGER array, dimension (N lg N) * Contains the permutations (from deflation and sorting) to be * applied to each eigenblock. * * GIVPTR (input) INTEGER array, dimension (N lg N) * Contains a list of pointers which indicate where in GIVCOL a * level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) * indicates the number of Givens rotations. * * GIVCOL (input) INTEGER array, dimension (2, N lg N) * Each pair of numbers indicates a pair of columns to take place * in a Givens rotation. * * GIVNUM (input) REAL array, dimension (2, N lg N) * Each number indicates the S value to be used in the * corresponding Givens rotation. * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: if INFO = 1, an eigenvalue did not converge * * ===================================================================== * * .. Local Scalars .. INTEGER COLTYP, CURR, I, IDLMDA, IND1, IND2, INDX, $ INDXC, INDXP, IQ, IW, IZ, K, N1, N2, PTR * .. * .. External Subroutines .. EXTERNAL CLACRM, CLAED8, SLAED9, SLAEDA, SLAMRG, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * * IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN * INFO = -1 * ELSE IF( N.LT.0 ) THEN IF( N.LT.0 ) THEN INFO = -1 ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN INFO = -2 ELSE IF( QSIZ.LT.N ) THEN INFO = -3 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -9 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CLAED7', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * The following values are for bookkeeping purposes only. They are * integer pointers which indicate the portion of the workspace * used by a particular array in SLAED2 and SLAED3. * IZ = 1 IDLMDA = IZ + N IW = IDLMDA + N IQ = IW + N * INDX = 1 INDXC = INDX + N COLTYP = INDXC + N INDXP = COLTYP + N * * Form the z-vector which consists of the last row of Q_1 and the * first row of Q_2. * PTR = 1 + 2**TLVLS DO 10 I = 1, CURLVL - 1 PTR = PTR + 2**( TLVLS-I ) 10 CONTINUE CURR = PTR + CURPBM CALL SLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR, $ GIVCOL, GIVNUM, QSTORE, QPTR, RWORK( IZ ), $ RWORK( IZ+N ), INFO ) * * When solving the final problem, we no longer need the stored data, * so we will overwrite the data from this level onto the previously * used storage space. * IF( CURLVL.EQ.TLVLS ) THEN QPTR( CURR ) = 1 PRMPTR( CURR ) = 1 GIVPTR( CURR ) = 1 END IF * * Sort and Deflate eigenvalues. * CALL CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, RWORK( IZ ), $ RWORK( IDLMDA ), WORK, QSIZ, RWORK( IW ), $ IWORK( INDXP ), IWORK( INDX ), INDXQ, $ PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ), $ GIVCOL( 1, GIVPTR( CURR ) ), $ GIVNUM( 1, GIVPTR( CURR ) ), INFO ) PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR ) * * Solve Secular Equation. * IF( K.NE.0 ) THEN CALL SLAED9( K, 1, K, N, D, RWORK( IQ ), K, RHO, $ RWORK( IDLMDA ), RWORK( IW ), $ QSTORE( QPTR( CURR ) ), K, INFO ) OPS = OPS + 4*REAL( QSIZ )*K*K CALL CLACRM( QSIZ, K, WORK, QSIZ, QSTORE( QPTR( CURR ) ), K, Q, $ LDQ, RWORK( IQ ) ) QPTR( CURR+1 ) = QPTR( CURR ) + K**2 IF( INFO.NE.0 ) THEN RETURN END IF * * Prepare the INDXQ sorting premutation. * N1 = K N2 = N - K IND1 = 1 IND2 = N CALL SLAMRG( N1, N2, D, 1, -1, INDXQ ) ELSE QPTR( CURR+1 ) = QPTR( CURR ) DO 20 I = 1, N INDXQ( I ) = I 20 CONTINUE END IF * RETURN * * End of CLAED7 * END