SUBROUTINE DCHKQP( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, A, $ COPYA, S, COPYS, TAU, WORK, IWORK, NOUT ) * * -- LAPACK test routine (version 3.1.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * January 2007 * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NM, NN, NOUT DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), MVAL( * ), NVAL( * ) DOUBLE PRECISION A( * ), COPYA( * ), COPYS( * ), S( * ), $ TAU( * ), WORK( * ) * .. * * Purpose * ======= * * DCHKQP tests DGEQPF. * * Arguments * ========= * * DOTYPE (input) LOGICAL array, dimension (NTYPES) * The matrix types to be used for testing. Matrices of type j * (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = * .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. * * NM (input) INTEGER * The number of values of M contained in the vector MVAL. * * MVAL (input) INTEGER array, dimension (NM) * The values of the matrix row dimension M. * * NN (input) INTEGER * The number of values of N contained in the vector NVAL. * * NVAL (input) INTEGER array, dimension (NN) * The values of the matrix column dimension N. * * THRESH (input) DOUBLE PRECISION * The threshold value for the test ratios. A result is * included in the output file if RESULT >= THRESH. To have * every test ratio printed, use THRESH = 0. * * TSTERR (input) LOGICAL * Flag that indicates whether error exits are to be tested. * * A (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX) * where MMAX is the maximum value of M in MVAL and NMAX is the * maximum value of N in NVAL. * * COPYA (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX) * * S (workspace) DOUBLE PRECISION array, dimension * (min(MMAX,NMAX)) * * COPYS (workspace) DOUBLE PRECISION array, dimension * (min(MMAX,NMAX)) * * TAU (workspace) DOUBLE PRECISION array, dimension (MMAX) * * WORK (workspace) DOUBLE PRECISION array, dimension * (MMAX*NMAX + 4*NMAX + MMAX) * * IWORK (workspace) INTEGER array, dimension (NMAX) * * NOUT (input) INTEGER * The unit number for output. * * ===================================================================== * * .. Parameters .. INTEGER NTYPES PARAMETER ( NTYPES = 6 ) INTEGER NTESTS PARAMETER ( NTESTS = 3 ) DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 ) * .. * .. Local Scalars .. CHARACTER*3 PATH INTEGER I, IHIGH, ILOW, IM, IMODE, IN, INFO, ISTEP, K, $ LDA, LWORK, M, MNMIN, MODE, N, NERRS, NFAIL, $ NRUN DOUBLE PRECISION EPS * .. * .. Local Arrays .. INTEGER ISEED( 4 ), ISEEDY( 4 ) DOUBLE PRECISION RESULT( NTESTS ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, DQPT01, DQRT11, DQRT12 EXTERNAL DLAMCH, DQPT01, DQRT11, DQRT12 * .. * .. External Subroutines .. EXTERNAL ALAHD, ALASUM, DERRQP, DGEQPF, DLACPY, DLAORD, $ DLASET, DLATMS * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, IOUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, IOUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Double precision' PATH( 2: 3 ) = 'QP' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE EPS = DLAMCH( 'Epsilon' ) * * Test the error exits * IF( TSTERR ) $ CALL DERRQP( PATH, NOUT ) INFOT = 0 * DO 80 IM = 1, NM * * Do for each value of M in MVAL. * M = MVAL( IM ) LDA = MAX( 1, M ) * DO 70 IN = 1, NN * * Do for each value of N in NVAL. * N = NVAL( IN ) MNMIN = MIN( M, N ) LWORK = MAX( 1, M*MAX( M, N ) + 4*MNMIN + MAX( M, N ), $ M*N + 2*MNMIN + 4*N ) * DO 60 IMODE = 1, NTYPES IF( .NOT.DOTYPE( IMODE ) ) $ GO TO 60 * * Do for each type of matrix * 1: zero matrix * 2: one small singular value * 3: geometric distribution of singular values * 4: first n/2 columns fixed * 5: last n/2 columns fixed * 6: every second column fixed * MODE = IMODE IF( IMODE.GT.3 ) $ MODE = 1 * * Generate test matrix of size m by n using * singular value distribution indicated by `mode'. * DO 20 I = 1, N IWORK( I ) = 0 20 CONTINUE IF( IMODE.EQ.1 ) THEN CALL DLASET( 'Full', M, N, ZERO, ZERO, COPYA, LDA ) DO 30 I = 1, MNMIN COPYS( I ) = ZERO 30 CONTINUE ELSE CALL DLATMS( M, N, 'Uniform', ISEED, 'Nonsymm', COPYS, $ MODE, ONE / EPS, ONE, M, N, 'No packing', $ COPYA, LDA, WORK, INFO ) IF( IMODE.GE.4 ) THEN IF( IMODE.EQ.4 ) THEN ILOW = 1 ISTEP = 1 IHIGH = MAX( 1, N / 2 ) ELSE IF( IMODE.EQ.5 ) THEN ILOW = MAX( 1, N / 2 ) ISTEP = 1 IHIGH = N ELSE IF( IMODE.EQ.6 ) THEN ILOW = 1 ISTEP = 2 IHIGH = N END IF DO 40 I = ILOW, IHIGH, ISTEP IWORK( I ) = 1 40 CONTINUE END IF CALL DLAORD( 'Decreasing', MNMIN, COPYS, 1 ) END IF * * Save A and its singular values * CALL DLACPY( 'All', M, N, COPYA, LDA, A, LDA ) * * Compute the QR factorization with pivoting of A * SRNAMT = 'DGEQPF' CALL DGEQPF( M, N, A, LDA, IWORK, TAU, WORK, INFO ) * * Compute norm(svd(a) - svd(r)) * RESULT( 1 ) = DQRT12( M, N, A, LDA, COPYS, WORK, LWORK ) * * Compute norm( A*P - Q*R ) * RESULT( 2 ) = DQPT01( M, N, MNMIN, COPYA, A, LDA, TAU, $ IWORK, WORK, LWORK ) * * Compute Q'*Q * RESULT( 3 ) = DQRT11( M, MNMIN, A, LDA, TAU, WORK, $ LWORK ) * * Print information about the tests that did not pass * the threshold. * DO 50 K = 1, 3 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )M, N, IMODE, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 50 CONTINUE NRUN = NRUN + 3 60 CONTINUE 70 CONTINUE 80 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' M =', I5, ', N =', I5, ', type ', I2, ', test ', I2, $ ', ratio =', G12.5 ) * * End of DCHKQP * END