SUBROUTINE SSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
$ ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
$ LIWORK, INFO )
IMPLICIT NONE
*
*
* -- LAPACK computational routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE
INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
REAL ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER ISUPPZ( * ), IWORK( * )
REAL D( * ), E( * ), W( * ), WORK( * )
REAL Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* SSTEGR computes selected eigenvalues and, optionally, eigenvectors
* of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
* a well defined set of pairwise different real eigenvalues, the corresponding
* real eigenvectors are pairwise orthogonal.
*
* The spectrum may be computed either completely or partially by specifying
* either an interval (VL,VU] or a range of indices IL:IU for the desired
* eigenvalues.
*
* SSTEGR is a compatability wrapper around the improved SSTEMR routine.
* See SSTEMR for further details.
*
* One important change is that the ABSTOL parameter no longer provides any
* benefit and hence is no longer used.
*
* Note : SSTEGR and SSTEMR work only on machines which follow
* IEEE-754 floating-point standard in their handling of infinities and
* NaNs. Normal execution may create these exceptiona values and hence
* may abort due to a floating point exception in environments which
* do not conform to the IEEE-754 standard.
*
* Arguments
* =========
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* RANGE (input) CHARACTER*1
* = 'A': all eigenvalues will be found.
* = 'V': all eigenvalues in the half-open interval (VL,VU]
* will be found.
* = 'I': the IL-th through IU-th eigenvalues will be found.
*
* N (input) INTEGER
* The order of the matrix. N >= 0.
*
* D (input/output) REAL array, dimension (N)
* On entry, the N diagonal elements of the tridiagonal matrix
* T. On exit, D is overwritten.
*
* E (input/output) REAL array, dimension (N)
* On entry, the (N-1) subdiagonal elements of the tridiagonal
* matrix T in elements 1 to N-1 of E. E(N) need not be set on
* input, but is used internally as workspace.
* On exit, E is overwritten.
*
* VL (input) REAL
* VU (input) REAL
* If RANGE='V', the lower and upper bounds of the interval to
* be searched for eigenvalues. VL < VU.
* Not referenced if RANGE = 'A' or 'I'.
*
* IL (input) INTEGER
* IU (input) INTEGER
* If RANGE='I', the indices (in ascending order) of the
* smallest and largest eigenvalues to be returned.
* 1 <= IL <= IU <= N, if N > 0.
* Not referenced if RANGE = 'A' or 'V'.
*
* ABSTOL (input) REAL
* Unused. Was the absolute error tolerance for the
* eigenvalues/eigenvectors in previous versions.
*
* M (output) INTEGER
* The total number of eigenvalues found. 0 <= M <= N.
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*
* W (output) REAL array, dimension (N)
* The first M elements contain the selected eigenvalues in
* ascending order.
*
* Z (output) REAL array, dimension (LDZ, max(1,M) )
* If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
* contain the orthonormal eigenvectors of the matrix T
* corresponding to the selected eigenvalues, with the i-th
* column of Z holding the eigenvector associated with W(i).
* If JOBZ = 'N', then Z is not referenced.
* Note: the user must ensure that at least max(1,M) columns are
* supplied in the array Z; if RANGE = 'V', the exact value of M
* is not known in advance and an upper bound must be used.
* Supplying N columns is always safe.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', then LDZ >= max(1,N).
*
* ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
* The support of the eigenvectors in Z, i.e., the indices
* indicating the nonzero elements in Z. The i-th computed eigenvector
* is nonzero only in elements ISUPPZ( 2*i-1 ) through
* ISUPPZ( 2*i ). This is relevant in the case when the matrix
* is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
*
* WORK (workspace/output) REAL array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal
* (and minimal) LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,18*N)
* if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* IWORK (workspace/output) INTEGER array, dimension (LIWORK)
* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*
* LIWORK (input) INTEGER
* The dimension of the array IWORK. LIWORK >= max(1,10*N)
* if the eigenvectors are desired, and LIWORK >= max(1,8*N)
* if only the eigenvalues are to be computed.
* If LIWORK = -1, then a workspace query is assumed; the
* routine only calculates the optimal size of the IWORK array,
* returns this value as the first entry of the IWORK array, and
* no error message related to LIWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* On exit, INFO
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = 1X, internal error in SLARRE,
* if INFO = 2X, internal error in SLARRV.
* Here, the digit X = ABS( IINFO ) < 10, where IINFO is
* the nonzero error code returned by SLARRE or
* SLARRV, respectively.
*
* Further Details
* ===============
*
* Based on contributions by
* Inderjit Dhillon, IBM Almaden, USA
* Osni Marques, LBNL/NERSC, USA
* Christof Voemel, LBNL/NERSC, USA
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL TRYRAC
* ..
* .. External Subroutines ..
EXTERNAL SSTEMR
* ..
* .. Executable Statements ..
INFO = 0
TRYRAC = .FALSE.
CALL SSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
$ M, W, Z, LDZ, N, ISUPPZ, TRYRAC, WORK, LWORK,
$ IWORK, LIWORK, INFO )
*
* End of SSTEGR
*
END