
LAPACK++ V. 1.0

High Performance Linear Algebra

Users' Guide

April 1994

Jack Dongarra

Roldan Pozo

David Walker

Oak Ridge National Laboratory

University of Tennessee, Knoxville

Contents

1 Introduction 3

2 Overview 5

2.1 Contents of LAPACK++ : 5

2.2 A simple code example : 6

2.3 Basic Linear Algebra Subroutines (BLAS++) : 6

2.4 Performance : 7

3 LAPACK++ Matrix Objects 9

3.1 Fundamental Matrix Operations : 9

3.2 General Rectangular Matrices : 10

3.2.1 Declarations : 10

3.3 Triangular Matrices : 12

3.3.1 Symmetric, Hermitian and SPD Matrices : 12

3.4 Banded Matrices : 12

3.4.1 Triangular Banded Matrices : 13

3.4.2 Symmetric and Hermitian Banded Matrices : 14

3.5 Tridiagonal Matrices : 14

4 Driver Routines 15

4.1 Linear Equations : 15

4.2 Eigenvalue Problems : 18

4.3 Memory Optimizations: Factorizing in place : 18

5 Factorization Classes 19

5.1 Optimizations: Factoring in Place : 19

A Programming Examples 21

A.1 Polynomial data �tting : 21

B Release Notes for v. 1.0 23

B.1 How to report bugs : 23

B.2 Tips and Suggestions : 23

B.3 Reducing Compilation time : 23

B.3.1 Minimize the number of included header �les : 23

B.3.2 Header �le madness : 23

B.4 Performance Considerations : 23

B.4.1 Array Bounds Checking : 23

B.4.2 Improving A(i; j) e�ciency : 24

B.5 Exception Handling : 24

1

2 CONTENTS

B.6 Frequently asked questions : 24

B.6.1 What is the performance of LAPACK++? : 24

B.6.2 Do I need a Fortran compiler to use LAPACK++? : 24

B.6.3 Why are the LAPACK++ matrix classes not templated? : : : : : : : : : : : : : : : : 24

B.6.4 Can LAPACK++ work with built-in C/C++ arrays and other matrix classes? : : : : 25

B.6.5 Can the matrix and vector objects be used independently of BLAS++ and LAPACK++? 25

B.6.6 Is there an existing standard for C++ matrix classes? : : : : : : : : : : : : : : : : : : 25

C Direct Interfaces to LAPACK and BLAS Routines 27

Chapter 1

Introduction

LAPACK++ is an object-oriented C++ extension to the LAPACK [1] library for numerical linear algebra.

This package includes state-of-the-art numerical algorithms for the more common linear algebra problems

encountered in scienti�c and engineering applications: solving linear equations, linear least squares, and

eigenvalue problems for dense and banded systems.

Traditionally, such libraries have been available only in Fortran; however, with an increasing number of

programmers using C and C++ for scienti�c software development, there is a need to have high-quality

numerical libraries to support these platforms as well. LAPACK++ provides the speed and e�ciency

competitive with native Fortran codes (see section 2.4), while allowing programmers to capitalize on the

software engineering bene�ts of object oriented programming.

The overall design of LAPACK++ includes support for distributed and shared memory architectures [6]

. Version 1.0 includes support only for uniprocessor and shared memory platforms. Distributed memory

architectures will be supported in Version 2.0.

Replacing the Fortran 77 interface of LAPACK with an object-oriented framework simpli�es the coding

style and allows for a more exible and extendible software platform. The design goals of LAPACK++

include

� Maintain performance competitive with Fortran.

� Provide a simple interface that hides implementation details of various matrix storage schemes and

their corresponding factorization structures.

� Provide a universal interface and open system design for integration into user-de�ned data structures

and third-party matrix packages.

� Replace static work array limitations of Fortran with more exible and type-safe dynamic memory

allocation schemes.

� Provide an e�cient indexing scheme for matrix elements that has minimal overhead and can be opti-

mized for in most application code loops.

� Utilize function and operator overloading in C++ to simplify and reduce the number of interface entry

points to LAPACK.

� Utilize exception error handling in C++ for intelligent managing of error situations without cluttering

up application codes.

� Provide the capability to access submatrices by reference, rather than by value, and perform factor-

izations \in place". This is vital for implementing blocked algorithms e�ciently.

3

4 CHAPTER 1. INTRODUCTION

� Provide more meaningful naming conventions for variables and function names. (Names no longer

limited to six alphanumeric characters.)

LAPACK++ also provides an object-oriented interface to the Basic Linear Algebra Subprograms (BLAS)

[4], [8] (see section 2.3), allowing programmers to utilize these optimized computational kernels in their own

C++ applications.

Chapter 2

Overview

The underlying philosophy of the LAPACK++ is to provide an interface which is relatively simple, yet

powerful enough to express all complex and subtle tasks within LAPACK, including those which optimize

performance and/or storage. Following the framework of LAPACK, the C++ extension contains driver

routines for solving standard types of problems, computational routines to perform a distinct computa-

tional task, and auxiliary routines to perform a certain subtask or common low-level computation. Each

driver routine typically calls a sequence of computational routines. Taken as a whole, the computational

routines can perform a wider range of tasks than are covered by the driver routines. Currently, dense and

band matrices are supported. General sparse matrices are handled in [7].

2.1 Contents of LAPACK++

With over 1,000 subroutines in the original f77 LAPACK, not every routine is implemented in LAPACK++.

Instead, source code examples in the various major areas are provided, allowing users to easily extend the

package for their particular needs. LAPACK++ provides source code for

� Algorithms

{ LU Factorization

{ Cholesky (LLT) Factorization

{ QR Factorization

{ Eigenvalue problems

� Storage Classes

{ rectangular matrices

{ symmetric and symmetric positive de�nite (SPD)

{ banded matrices

{ tri/bidiagonal matrices

� Element Data Types

{ int, long int, oat, double, (double precision) complex,

{ arbitrary Vector data types via templates (section B.6.3)

5

6 CHAPTER 2. OVERVIEW

2.2 A simple code example

To provide a �rst glimpse at how LAPACK++ simpli�es the user interface, this section presents a few simple

code fragments. The examples are incomplete and are meant to merely illustrate the interface style. The

next few sections will further discuss the details of matrix classes and their operations.

The �rst example illustrates a code fragment to solve a linear system Ax = b using LU factorization:

#include <lapack++.h> // 1

LaGenMatDouble A(N,N); // 2

LaVectorDouble x(N), b(N); // 3

...

LaLinSolve(A,x,b); // 4

Line (1) includes all of the LAPACK++ object and function declarations. Line (2) declares A to be a

square N �N coe�cient matrix, while line (3) declares the right-hand-side and solution vectors. Finally, the

LaLinSolve() function in line (4) calls the underlying LAPACK driver routine SGESV() for solving linear

equations.

Consider now solving a similar system with a tridiagonal coe�cient matrix:

#include <lapack++.h>

LaSPDMatDouble A(N,N);

LaVectorDouble x(N), b(N);

...

LaLinSolve(A,x,b);

The only code mod�cation is in the declaration of A. In this case LaLinSolve() calls the Cholesky driver

routine for solving symmetric, positive-de�nite linear systems. The LaLinSolve() function has been over-

loaded to perform di�erent tasks depending on the type of the input matrix A. If the matrix types are

known at compile time, as in this example, then there is no runtime overhead associated with this.

2.3 Basic Linear Algebra Subroutines (BLAS++)

The Basic Linear Algebra Subprograms (BLAS) [4] has been the key to obtaining good performance on

a wide variety of computer architectures. The BLAS de�ne a common interface for low-level operations

often found in computational kernels. These operations, such as matrix/matrix multiply and triangular

solves, typically comprise of most of the computatioal workload found in dense and banded linear algebra

algorithms. The Level 3 BLAS obtains good performance on a wide variety of architectures by keeping data

used most often in the closest level of memory hierarhcy (registers, cache, etc.).

The BLAS++ interface simpli�es many of the calling sequences to the traditional f77 BLAS interface,

by using the LAPACK++ matrix classes. These routines are called within the LAPACK++ algorithms, or

can be called directly at the user-level within applications.

There are two levels of the BLAS++ interface. The �rst is a direct interface, as shown in Table C, are

essentially inlined to call BLAS directly in eliminating any overhead. The other, more elegant interface,

overloads the binary opertors * and + for simple expressions such as C=A*B. Having these two interfaces

gives the users the choice between simplicity and performance in their application codes. See Appendix B

for a list of BLAS++ interface routines.

2.4. PERFORMANCE 7

0 50 100 150 200 250 300 350 400 450 500
10

20

30

40

50

60

70

80

Order of Matrix

Sp
ee

d
in

 M
eg

af
lo

ps

Matrix Multiply (C = A*B) on IBM RS/6000-550

Figure 2.1: Performance of matrix multiply in LAPACK++ on the IBM RS/6000 Model 550 workstation.

GNU g++ v. 2.3.1 was used together with the ESSL BLAS-3 routine dgemm.

2.4 Performance

The performance of LAPACK++ is almost indistinguishable from optimized Fortran. Figure 2.1, for exam-

ple, illustrates the performance (Megaop) rating of the simple code

C = A*B;

for square matrices of various sizes on the IBM RS/6000 Model 550 workstation. This particular imple-

mentation used GNU g++ v. 2.3.1 and utlized the BLAS-3 routines from the native ESSL library. The

performance results are nearly identical with those of optimized Fortran calling the same library. This is

accomplished by inlining the LAPACK++ BLAS kernels directly into the unerlying function call. This

occurs at compile time, without any runtime overhead. The performance numbers are very near the machine

peak and illustrate that using C++ with optimized computational kernels provides an elegant high-level

interface without sacri�cing performance.

The performance di�erence between optimized BLAS called from Fortran and the BLAS++ called from

C++ is barely measureable. Figure 2.2 illustrates performance characteristics of the LU factorization of for

square matrices of various sizes on the IBM RS/6000 Model 550 workstation. This particular implementation

used GNU g++ v. 2.3.1 and utlized the BLAS-3 routines from the native ESSL library. The performance

results are nearly identical with those of optimized Fortran calling the same library. This is accomplished

by inlining the LAPACK++ BLAS kernels directly into the unerlying function call.

8 CHAPTER 2. OVERVIEW

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

50

Size of Matrix (NxN)

P
er

fo
rm

an
ce

 (
M

flo
ps

)

Lapack F77 (solid)

Lapack++ shell (dotted)

Lapack++ LU (dashed)

Figure 2.2: Performance of LAPACK++ LU factorization on a IBM RS/6000 Model 550 workstation, using

GNU g++ v. 2.3.1 and BLAS routines from the IBM ESSL library. The results are nearly identical to the

Fortran LAPACK performance. The LAPACK++ shell is call the Fortan dgetrf(), the LAPACK++ LU

implements the right-looking LU algorithm in C++.

Chapter 3

LAPACK++ Matrix Objects

The fundamental objects in LAPACK++ are numerical vectors and matrices; however, LAPACK++ is not

a general-purpose array package. Rather, LAPACK++ is a self-contained interface consistsing of only the

minimal number of classes to support the functionality of the LAPACK algorithms and data strucutres.

LAPACK++ matrices can be referenced, assigned, and used in mathematical expressions as naturally

as if they were an integral part of C++; the matrix element aij , for example, is referenced as A(i,j). In

keeping with the indexing convention of C++, matrix subscripts begin at zero. Thus, A(0,0) denotes the

�rst element of A. Internally, LAPACK++ matrices are typically stored in column-order for compatibility

with Fortran subroutines and libraries.

Various types of matrix structures are supported: banded, symmetric, Hermitian, packed, triangular,

tridiagonal, bidiagonal, and nonsymmetric. The following sections describe these in more detail.

Matrix classes andother related data types speci�c to LAPACK++ begin with the pre�x \La" to avoid

naming conicts with user-de�ned or third-party matrix packages. The list of valid names is a subset of the

nomenclature shown in Figure 3.1.

3.1 Fundamental Matrix Operations

In its most general formulation, a matrix is a data structure representing an ordered collection of elements

that can be accessed by an integer pair. In addition to their most common representation as rectangular

arrays, matrices can also be represented as linked lists (unstructured sparse), in packed formats (triangular),

as a series of Householder transformations (orthogonal), or stored by diagonals. Nevertheless, these various

representations exhibit some commonality. The following operations are available for all matrix types:

� Declarations. Matrices can be constructed dynamically by specifying their size as a pair of non-

negative integers, as in

LaGenMatDouble A(M,N)

La

8>>>>>><
>>>>>>:

Gen�
Symm

SPD

�8<
:

Band

Tridiag

Bidiag

9=
;

[Unit]

�
Upper

Lower

�
fTriangg

9>>>>>>=
>>>>>>;

Mat

8>><
>>:

Complex Double

Float

Int

LongInt

9>>=
>>;

Figure 3.1: LAPACK++ matrix nomenclature. Items in square brackets are optional.

9

10 CHAPTER 3. LAPACK++ MATRIX OBJECTS

� Indexing. Individual elements of the matrix can be accessed by an integer pair (i; j) where 0 � i < M

and 0 � j < N . The indexing syntax for a matrix A is the natural

A(i,j)

notation, and can also be used as a destination for an assignment, as in A(0,3) = 3.14. A runtime

error is generated if the index is out of the matrix bounds or outside of speci�ed storage scheme (for

example, accessing outside the non-zero portion of a banded matrix). This index range checking can

be turned o� by de�ning LA NO BOUNDS CHECK.

� Assignment. The basic matrix assignment is by copying, and is denoted by the = operator, as in

A = B

The sizes of A and B must conform.

� Referencing. The unnecessary copying of matrix data elements has been avoided by employing the

reference() method, as in

A.ref(B)

to assign the data space of B to the matrix A. The matrix elements are shared by both A and B, and

changes to the data elements of one matrix will e�ect the other.

In addition to these basic operations, all matrix objects employ a destructor to free their memory when

leaving their scope of visibility. By utilizing a reference counting scheme that keeps track of the number of

aliases utilizing all or part of its data space, a matrix object can safely recycle unused data space.

3.2 General Rectangular Matrices

One of the fundamental matrix types in LAPACK++ is a general dense rectangular matrix. This cor-

ressponds to the most common notion of a matrix as a two-dimensional array. The corresponding LA-

PACK++ names are given as LaGenMatType for Lapack General Matrix. The Type can be Int, LongInt,

Float, Double, or Complex. Matrices in this category have the added property that submatrices can be

e�ciently accessed and referenced in matrix expressions. This is a necessity for describing block-structured

algorithms.

3.2.1 Declarations

General LAPACK++ matrices may be declared (constructed) in various ways:

#include <lapack++.h>

float d[4] = {1.0, 2.0, 3.0, 4.0};

LaGenMatDouble A(200,100) // 1

LaGenMatComplex B; // 2

LaGenMatDouble D(A); // 3

LaGenMatFloat E(d, 2, 2) // 4

Line (1) declares A to be a rectangular 200x100 matrix. The elements are uninitialized. Line (2) declares

B to be an empty (uninitialized) matrix of complex numbers. Until B becomes initialized, any attempt to

reference its elements will result in a run time error. Line (3) illustrates the copy constructor; D is a copy

of A. Finally, line (4) demonstrates how one can initialize a 2x2 matrix with the data from a standard C++

vector. The values are initalized in column-major form, so that the �rst column of E contains f1:0; 2:0g, and

the second column contains f3:0; 4:0g.

3.2. GENERAL RECTANGULAR MATRICES 11

Submatrices

Blocked linear algebra algorithms utilize submatrices as their basic unit of computation. It is crucial that

submatrix operations be highly optimized. Because of this, LAPACK++ provides mechanisms for accessing

rectangular subregions of a general matrix. These regions are accessed by reference, that is, without copying

data, and can be used in any matrix expression.

Submatrices in LAPACK++ are denoted by specifying a subscript range through the LaIndex() function.

For example, the 3x3 matrix in the upper left corner of A is denoted as

A(LaIndex(0,2), LaIndex(0,2))

This references Aij; i = 0; 1; 2 j = 0; 1; 2, and is equivalent to the A(0:2,0:2) colon notation used in Fortran

90 and MatlabTM . Submatrix expressions may be also be used as a destination for assignment, as in

A(LaIndex(0,2), LaIndex(0,2)) = 0.0;

which sets the 3x3 submatrix of A to zero. The index notation has an optional third argument denoting the

stride value,

LaIndex(start, end, increment)

If the increment value is not speci�ed it is assumed to be one. The expression LaIndex(s, e, i) is

equivalent to the index sequence

s; s + i; s + 2i; : : : s+ b
e � s

i
ci

Of course, the internal representation of an index is not expanded to a full vector, but kept in its compact

(start,increment,end) format. The increment values may be negative and allow one to traverse a subscript

range in the opposite direction, such as in (10,7,-1) which denotes the sequence f10; 9; 8; 7g. Indices can

be named and used in expressions, as in the following submatrix assignments,

LaGenMatDouble A(10,10), B, C; // 1

LaIndex I(1,9,2), // 2

LaIndex J(1,3,2); // 3

B = A(I,I); // 4

B(2,3) = 3.1; // 5

C = B(LaIndex(2,2,4), J); // 6

In lines (2) and (3) we declare indices I = f1; 3; 5; 7;9g, and J =f1; 3g. Line (4) sets B to the speci�ed

5x5 submatrix of A. The submatrix B can used in any matrix expression, including accessing its individual

elements, in line (5). Note that B(2,3) is the memory location as A(5,7). Line (6) assigns the 2x2 submatrix

of B to C. Note that C can also be thought of as A(LaIndex(5,2,9), LaIndex(3,2,7)).

Although LAPACK++ submatrix expressions allow one to access non-contiguous row or columns, many

of the LAPACK routines only allow submatrices with unit stride in the column direction. Calling an

LAPACK++ routine with a non-contiguous submatrix columns will cause data to be copied into a contiguous

submatrix, if necessary. (The alternative, as done in the Fortran LAPACK, is not to allow this type of call

at all.)

12 CHAPTER 3. LAPACK++ MATRIX OBJECTS

Storage Triangular matrix A Storage in array A

Upper

0
BB@

a00 a01 a02 a03
a11 a12 a13

a22 a23
a33

1
CCA

a00 a01 a02 a03
� a11 a12 a13
� � a22 a23
� � � a33

Lower

0
BB@

a00
a10 a11
a20 a21 a22
a30 a31 a32 a33

1
CCA

a00 � � �

a10 a11 � �

a20 a21 a22 �

a30 a31 a32 a33

Figure 3.2: Internal storage pattern for an example 5x5 triangular matrix.

3.3 Triangular Matrices

Triangular matrices are denoted having only zero-valued entires below (lower triangular), or above (upper

triangular) the main diagonal. (See Figure 3.2.) The triangular matrix types in LAPACK++ consist of

La

8<
:

Upper

Lower

Unit

9=
; Triang

�
Float

Double

�

3.3.1 Symmetric, Hermitian and SPD Matrices

Symmetric matrices are square and have aij = aji; Hermitian matrices have aij = a�ji, where
� denotes

complex conjugation; a symmetric positive de�nite matrix A has the added property that xTAx > 0 for any

nonzero x.

Matrix types in each class of this group consists of two components: the mathematical characteristic (e.g.

symmetric, Hermitian), and the underlying matrix element type (e.g., oat, complex). The possible matrix

types include

La

Symm

�
Double

Complex

�

SPD Double

HPD Complex

Internally, symmetric and Hermitian matrices may be stored in an Upper or Lower format as shown in �gure

3.3.

3.4 Banded Matrices

Square matrices whose sparsity pattern has nonzeros close to the diagonal can often be e�ciently represented

as banded matrices. An N �N banded matrix is speci�ed by its size N , the number of subdiagonals kl, and

the number of superdiagonals ku. In practice, this storage scheme should be used only when kl, and ku are

much smaller than N . These matrices can be declared as

LaBandedMatDouble B(N, kl, ku);

LaBandedMatDouble A;

A reference to element Bij is expressed as B(i,j), and if the macro LA NO BOUNDS CHECK is unde�ned, an

error is generated if (i,j) lies outside the bands. Banded matrices may be copied and assigned as

3.4. BANDED MATRICES 13

Storage Hermitian matrix A Storage in array A

Upper

0
BB@

a00 a01 a02 a03
�a01 a11 a12 a13
�a02 �a12 a22 a23
�a03 �a13 �a23 a33

1
CCA

a00 a01 a02 a03
� a11 a12 a13
� � a22 a23
� � � a33

Lower

0
BB@

a00 �a10 �a20 �a30
a10 a11 �a21 �a31
a20 a21 a22 �a32
a30 a31 a32 a33

1
CCA

a00 � � �

a10 a11 � �

a20 a21 a22 �

a30 a31 a32 a33

Figure 3.3: Storage pattern for Symmetric and Hermitian matrices.

Band matrix A Band storage in array AB0
BBBB@

a00 a01
a10 a11 a12
a20 a21 a22 a23

a31 a32 a33 a34
a42 a43 a44

1
CCCCA

� a01 a12 a23 a34
a00 a11 a22 a33 a44
a10 a21 a32 a43 �

a20 a31 a42 � �

Figure 3.4: Storage pattern for banded 5x5 matrix with 2 superdiagonals and 1 subdiagonal.

A.ref(B); // shallow assignment

A = B; // copy

similar to the LaGenMat classes. The ith diagonal of B is accessed as B(i), and B(-i) is the ith subdiagonal

(i > 0). Thus B(0) is the main diagonal, The result is a vector (with possible non-unit stride),

LaVectorDouble d = B(-2); // 2nd subdiagonal of B

whose size is the length of the particular diagonal, not the matrix size N . Note that this diagonal indexing

expression can be used as any LaVector. For example, it is perfectly legal to write

B(-2)(LaIndex(0,3)) = 3.1;

to set the �rst four elements of the second subdiagonal of B to the value of 3.1.

Accessing out of the matrix band generates a run-time error, unless LA NO BOUNDS CHECK is set.

3.4.1 Triangular Banded Matrices

Triangular banded matrices are declared, stored, and accessed in a similar format, except that kl = 0 for

upper triangular, and ku = 0 for lower triangular matrices:

LaUpperTriangBandedMatDouble U(N, kl);

LaLowerTriangBandedMatDouble L(N, ku);

Diagonals and individual elements are accessed the same way as general banded matrices. Triangular

banded matrices can also be aliases for the upper or lower region of general banded matrices in the following

example

LaBandedMatDouble B(N, kl, ku) = 0.0;

LaUpperTriangBandedMatDouble U;

14 CHAPTER 3. LAPACK++ MATRIX OBJECTS

LaLowerTriangBandedMatDouble L;

U.ref(B);

L.ref(B);

U(0,0) = 1.0; // B(0,0) and L(0,0) also set to 1.0

// (diagonal is shared by L and U.)

3.4.2 Symmetric and Hermitian Banded Matrices

Symmetric and Hermitian banded matrices with kd subdiagonals and superdiagonals are speci�ed as

LaSymmBandedMatDouble S(N, kd);

LaHermBandedMatComplex C(N, kd);

Diagonals and individual elements are accessed the same way as general baned matrices. If LA NO BOUNDS CHECK

is unde�ned, accessing out of the range of diagonal bands generates a run-time error.

3.5 Tridiagonal Matrices

Although bidiagonal and tridiagonal matrices are special cases of the more general banded matrix structure,

their occurrence is so common in numerical codes that it is advantageous to treat them as a special case.

Unlike general banded matrices, tridiagonal matrices are stored by diagonals rather than columns. A tridi-

agonal matrix of order N is stored in three one-dimensional arrays, one of length N containing the diagonal

elements and two of length N � 1 containing the subdiagonal and superdiagonal elements in elements 0

through N � 2. This ensures that diagonal elements are in consecutive memory locations.

Tridiagonal N �N matrices are constructed as

LaTridiagMatDouble B(N,N);

LaTridiagMatDouble A;

reserving a space of 3N (see [1]) elements, or from user data as

LaTridiagMatDouble T(N, d, dl, du)

where *d, *dl, and *du are contiguous vectors that point to the diagonal, subdiagonal, and superdiagonals,

respectively. Note that *d must point to N elements, but *du and *dl can point to only N-1.

Matrix elements can be accessed as T(i,j), where j(i � j)j � 2, (i.e. elements on the diagonal, sub or

superdiagonal) otherwise there is a bounds-check error generated at run time.

Since the largest dense submatrix of a tridiagonal matrix has only four elements (2 � 2), index ranges

are of limited use and are therefore not implemented with tridiagonal matrices.

Chapter 4

Driver Routines

4.1 Linear Equations

This section provides LAPACK++ routines for solving linear systems of the form

Ax = b: (4.1)

where A is the coe�cient matrix, b is the right hand side, and x is the solution. A is assumed to be

square matrix of order n, although underlying computational routines allow for A to be rectangular. For

several right hand sides, we write

AX = B; (4.2)

where the columns ofB are individual right hand sides, and the columns ofX are the corresponding solutions.

The task is to �nd X, given A and B. The coe�cient matrix A can be one of the types show in Figure 3.1.

Note that for real (non-complex) matrices, symmetric and Hermitian are equivalent.

The basic syntax for a linear equation driver in LAPACK++ is given by

LaLinSolve(A, X, B);

The matrices A and B are input, and X is the output. A is an M � N matrix of one of the above types.

Letting nrhs denote the number of right hand sides in eq. 4.2, X and B are both rectangular matrices of size

N � nrhs.

This version requires intermediate storage of �M � (N + nrhs elements. Section 5 describes how to use

factorization classes to reduce this storage requirement at the expense of overwriting A and B.

In cases where no additional information is supplied, the LAPACK++ routines will attempt to follow an

intelligent course of action. For example, if LaLinSolve(A,X,B) is called with a non-square MxN matrix,

the solution returned will be the linear least square that minimizes jjAx� bjj2 using QR factorization. Or,

if A is SPD, then the Cholesky factorization will be used. Alternatively, one can directly specify the exact

factorization method, such as LU factor(F, A). In this case, if A is non-square, only the factors return

represent only a partial factorization of the upper square portion of A.

Error conditions in performing the LaLinSolve() operations can be retrieved via the LaLinSolveInfo()

function, which returns information about the last called LaLinSolve(). A zero value denotes a successful

completion. A negative value of �i denotes that the ith argument was somehow invalid or inappropriate. A

positive value of i denotes that in the LU decomposition, U (i; i) = 0; the factorization has been completed

but the factor U is exactly singular, so the solution could not be computed. In this case, the value returned

by LaLinSolve() is a null (0x0) matrix.

15

16 CHAPTER 4. DRIVER ROUTINES

Table 4.1: LAPACK++ Drivers for Linear Equations: Rectangular Matrices.

General LaGenMat<t> A(M,N);

LaGenMat<t> B(M,nrhs), X(M,nrhs);

LaGenFact<t> F;

LaLinSolve(A, X, B);

LaLinSolveIP(A, X, B);

LaLinSolve(F, X, B);

Symmetric LaUpperSymmMat<t> A(N,N);

LaLowerSymmMat<t> A(N,N);

LaGenMat<t> B(N, nrhs), X(N, nrhs);

LaSymmFact<t> F;

LaLinSolve(A, X, B);

LaLinSolveIP(A, X, B);

LaLinSolve(F, X, B);

Symmetric LaUpperSPDMat<t> A(N,N);

Positive LaLowerSPDMat<t> A(N,N);

De�nite LaGenMat<t> B(N, nrhs), X(N, nrhs);

LaSPDFact<t> F;

LaLinSolve(A, X, B);

LaLinSolveIP(A, X, B);

LaLinSolve(F, X, B);

Complex LaUpperSymmMat<t> A(N,N);

Symmetric LaLowerSymmMat<t> A(N,N);

LaGenMat<t> B(N, nrhs), X(N, nrhs);

LaSymmFact<t> F;

LaLinSolve(A, X, B);

LaLinSolveIP(A, X, B);

LaLinSolve(F, X, B);

4.1. LINEAR EQUATIONS 17

Table 4.2: LAPACK++ Drivers for Linear Equations: Tridiagonal Matrices.

General LaTriadMat<t> A(N,N);

LaGenMat<t> B(N,nrhs), X(N,nrhs);

LaGenFact<t> F;

LaLinSolve(A, X, B);

LaLinSolveIP(A, X, B);

LaLinSolve(F, X, B);

Symmetric LaUpperTriadSPDMat<t> A(N,N);

Positive LaLowerTriadSPDMat<t> A(N,N);

De�nite LaGenMat<t> B(N, nrhs), X(N, nrhs);

LaSPDFact<t> F;

LaLinSolve(A, X, B);

LaLinSolveIP(A, X, B);

LaLinSolve(F, X, B);

Table 4.3: LAPACK++ Drivers for Linear Equations: Banded Matrices.

General LaBandedMat<t> A(N,N);

LaGenMat<t> B(N,nrhs), X(N,nrhs);

LaBandedFact<t> F;

LaLinSolve(A, X, B);

LaLinSolve(F, X, B);

Symmetric LaUpperBandedSPDMat<t> A(N,N);

Positive LaLowerBandedSPDMat<t> A(N,N);

De�nite LaGenMat<t> B(N, nrhs), X(N, nrhs);

LaSPDFact<t> F;

LaLinSolve(A, X, B);

LaLinSolve(F, X, B);

18 CHAPTER 4. DRIVER ROUTINES

4.2 Eigenvalue Problems

Example routines are provided in LAPACK++/SRC/eigslv.cc for the solution of symmetric eigenvalue prob-

lems. The function

LaEigSolve(A, v);

for computing the eigenvalues v of symmetric matrix A, and

LaEigSolve(A, v, V);

for computing the eigenvectors V. Similarly,

LaEigSolveIP(A, v);

overwrites A with the eigenvectors.

4.3 Memory Optimizations: Factorizing in place

When using large matrices that consume a signi�cant portion of available memory, it may be bene�cial to

remove the requirement of separately storing intermediate factorizaton representations at the expense of

destroying the contents of the input matrix A. For most matrix factorizations we require temporary data

structures roughly equal to the size of the original input matrix. (For general banded matrices, one may

need even slight more, see section 3.4.) For example, for a square N �N dense nonsymmetric factorization,

the temporary memory requirement can be reduced from N � (N + nrhs + 1) elements to N � 1 Such

memory-e�cient factorizations are accomplished with the LaLinSolveIP() routine:

LaLinSolveIP(A, X, B);

Here the contents of A are overwritten (with the respective factorization), and B is overwritten by the

soultion. It is also explicitly returned by the function so that it matches the return type of LaLinSolve().

In the line above, both X and B refer to the same memory locations.

Chapter 5

Factorization Classes

Factorization classes are used to describe the various types of matrix decompositions: LU, Cholesky (LLT),

QR, and singular-value decompositions (SVD). The driver routines of LAPACK++ typically choose an ap-

propriate factorization, but the advanced user can express speci�c factorization algorithms and their variants

for �ner control of their application or for meeting strict memory storage and performance requirements.

In an object-oriented paradigm it is natural to encapsulate the factored representation of a matrix in

a single object. An LU factorization, for example, returns the upper and unit-lower triangular factors, L

and U , as well the pivoting information that describes how the rows were permuted during the factorization

process. The representation of the L and U factors is incomplete without this information. Rather than

store and manage these components separately, a factorization class is used as follows,

LaGenMatDouble A, B, X;

LaGenFactDouble F;

LaLUFactor(F, A);

LaLinSolve(F, X, B);

More importantly, the various factorization components can be extracted from F, as in,

LaUnitLowerTriangMatDouble L;

LaUpperTriangMatDouble U;

LaGenMatDouble Y;

L = F.L();

U = F.U();

Y = LaLinSolve(L, B);

X = LaLinSolve(U, Y);

Here we solve AX = B by �rst solving the lower triangular system, LY = B, and then the upper triangular

system, UX = Y . (The pivot information is stored in both L and U.) The LaGenFact object can also be

used directly to solve (LU)X = B by calling

LaLinSolve(F, X, B);

5.1 Optimizations: Factoring in Place

By default, the matrix factorization does not alter the contents of the original matrix or overwrite it.

Nevertheless, the ability to \factor in place" is crucial when dealing with realistic memory constraints on

large matrices, and is a necessity to implement blocked linear algebra algorithms e�ciently.

19

20 CHAPTER 5. FACTORIZATION CLASSES

Here we utilize the \in place" versions of computational routines (see section 4.3), which overwrite the

matrix A to conserve space:

LaGenMatDouble A;

LaGenFactDouble F;

LaLUFactorIP(F, A);

Appendix A

Programming Examples

To illustrate what programming with LAPACK++ looks like to scienti�c and engineering code developers,

this section provides a few code examples. These examples are presented here for illustrative purposes, yet we

have tried to use realistic examples that accurately display a level of sophistication encountered in realistic

applications.

A.1 Polynomial data �tting

This code example solves the liner least squares problem of �tting N data points (xi; yi) to a dth degree

polynomial equation

p(x) = a0 + a1x+ a2x
2 + : : :+ adx

d

using QR factorization. Given the two vectors x and y it returns the vector of coe�cients a= fa0; a1; a2; : : :ad�1g.

It is assumed that N � d. The solution arises from solving the overdetermined Vandermonde systemXa = y:

2
6664

1 x1
0

x2
0

: : : xd
0

1 x1
1

x2
1

: : : xd
1

...
...

1 x1N�1 x2N�1 : : : xdN�1

3
7775

2
6664

a0
a1
...

ad

3
7775 =

2
6664

y0
y1
...

yN�1

3
7775

in the least squares sense, i.e., minimizing jjXa� yjj2. The resulting code is shown in �gure A.1.

21

22 APPENDIX A. PROGRAMMING EXAMPLES

LaVectorDouble poly_fit(LaVectorDouble x, LaVectorDouble y, int d)

{

int N = min(x.size(), y.size());

LaGenMatDouble P(N,d);

LaVectorDouble a(d);

for (i=0; i<N; i++) // construct Vandermonde matrix

{

x_to_the_j = 1;

for (j=0; j<d; j++)

{

P(i,j) = x_to_the_j;

x_to_the_j *= x(i);

}

}

a = LaQRLinSolveIP(P, y); // solve Pa = y using linear least squares

return a;

}

Figure A.1: Code Example: polynomial data �tting.

Appendix B

Release Notes for v. 1.0

B.1 How to report bugs

Report bugs, comments, questions and suggestions to lapackpp@cs.utk.edu.

B.2 Tips and Suggestions

B.3 Reducing Compilation time

B.3.1 Minimize the number of included header �les

LAPACK++ header �les can be quite large, particularly when one takes into the various data types (e.g.

double precision, complex) and di�erent matrix types (e.g. symmetric, upper triangular, tridiagonal).

If your compiler does not support the ability pre-compile header �les, it could be spending a signi�cant

portion of its time processing LAPACK++ object and function declarations.

The main header lapack++.h is a \catch-all" �le containing complete declarations for over �fty matrix

classes and several hundred inlined matrix functions. While this �le is most general, it is unlikely that one

will need all of its declarations. It is much more e�cient to include a speci�c header �le for a matrix storage

class or matrix data type.

B.3.2 Header �le madness

The LAPACK++ header �les will typical only include those function declarations for the matrix types cur-

rently de�ned. For example, if LaSpdMatDoublematrices are used, then the compiler macro LA SPD MAT DOUBLE H

is de�ned. Thus, the LAPACK++ can select to include only those header �les which are relevant.

The alternative is to include every possible matrix type and LAPACK++ function, for every program,

even a tiny program which uses a small portion of the LAPACK++ / MATRIX++ classes.

Therefore, one should declare all of their matrix and vector types before including BLAS++ and LA-

PACK++ header �les.

B.4 Performance Considerations

B.4.1 Array Bounds Checking

LAPACK++ allows the application developer to determine the level of run-time index range checking per-

formed when accessing individual A(i; j) elements. It is strongly recommend for developers to use the

23

24 APPENDIX B. RELEASE NOTES FOR V. 1.0

LA BOUNDS CHECK whenever possible, thus guarding against out-of-bounds references. This is typically used

in the design and debugging phases of the program development, and can be turned o� in production runs.

B.4.2 Improving A(i; j) e�ciency

The LAPACK++ matrix classes were optimized for use with BLAS and LAPACK routines. These routines

require matrices to be column-ordered and adhere to Fortran-like accessibility.

The code for A(i,j) inlines integer multiplications to compute the address o�set; however, most C++

compilers cannot optimize this out of a loop. (See note below.) An alternate implementation uses an

indirect-addressing scheme similar to A[i][j] to access individual elements. Tests have shown this to be more

successful on various C++ compilers: Sun, Borland.

B.5 Exception Handling

Although exception handling has been o�cially accepted into the language by the ANSI committee (Novem-

ber 1990) it is not yet supported by all C++ compilers. LAPACK++ will use C++ exception handling

as soon as it becomes widely available. Currently, Version 0.9 uses a macro mechanism to simulate throw

expressions so that the library code will work correctly when exception handling becomes supported:

#define throw throw_

inline void throw(const char *message)

{

cerr << "Exception: " << message << endl;

exit(1);

}

Transfer of control does not correspond to a \try" block, but rather exits the program with the proper

diagnostic message. This is a similar behavior to the real exception handling if there was no explicit user-

supplied try block.

B.6 Frequently asked questions

B.6.1 What is the performance of LAPACK++?

For medium-to-large large matrices (say n > 100) where performance is a consideration, LAPACK++

performance is identical to the native Fortran LAPACK codes. For example, a recent test on IBM RS/6000

workstation showed both packages obtaining speeds of 50 Mops for matrices of size 300x300 and larger.

This is not surprising, since the both utilize the same optimized Level 3 BLAS routines for the computation-

intensive sections. See [6] for more performance details.

B.6.2 Do I need a Fortran compiler to use LAPACK++?

No, you can use the C version of LAPACK available from netlib.

B.6.3 Why are the LAPACK++ matrix classes not templated?

There is a templated vector example template v.h in the LAPACK++/INCLUDE subdirectory. This should

provide provide an example for those who wish to create vectors and matrices of arbitrary types.

LAPACK++ does not support generic matrix types, since the underlying BLAS code supports only

support real and complex oating point numbers.

B.6. FREQUENTLY ASKED QUESTIONS 25

B.6.4 Can LAPACK++ work with built-in C/C++ arrays and other matrix
classes?

Yes. LAPACK++ routines utilize contiguous storage for optimum data reuse (Level 3 BLAS) and C++

arrays must be explicitly transformed into this data storage before integrating with LAPACK++. This is

easily accomplished with the various matrix constructors, e.g. LaGenMatDouble::LaGenMatDouble(double

**, int, int).

For integrating with external C++ matrix classes, all that is required of a user-speci�c matrix class is

the ability to access individual elements, i.e. something similar to A(i,j). Any C++ matrix library should

support this. If your matrix class uses column-major ordering, then the conversion can be as simple as a

copying a pointer to the �rst element. Consult the LAPACK++ Users' Manual for more details.

B.6.5 Can the matrix and vector objects be used independently of BLAS++
and LAPACK++?

Yes, the MATRIX++ subdirectory LAPACK++/MATRIX++ subdirectory (see �gure ??) can be used as an

independent package. This may be useful if to develop matrices and vectors of user-de�ned types. The

codes in this subdirectory de�ne only access functions, assignments, construction, and basic non-arithmetic

relationship between matrices.

B.6.6 Is there an existing standard for C++ matrix classes?

As of early 1994, no. Researchers in the LAPACK++ project have been working with various groups in

C++ numerics to establish such a standard. Some e�orts are being made to bring an multi-dimensional

array class proposal to the ANSI C++ committee, but as far as matrix classes (e.g. banded, symmetric,

sparse, orthogonal) are concerned, a formal standard has not been presented. Some of this will rely on user

experiences and feeback with matrix packages.

26 APPENDIX B. RELEASE NOTES FOR V. 1.0

Appendix C

Direct Interfaces to LAPACK and

BLAS Routines

27

28 APPENDIX C. DIRECT INTERFACES TO LAPACK AND BLAS ROUTINES

Filename Function Description

blas++.h Vec * Vec Vector * Vector

Vec + Vec Vector + Vector

Vec - Vec Vector - Vector

Mat * Vec General Matrix * Vector

Mat * Vec Banded Matrix * Vector

Mat * Vec Symmetric Matrix * Vector

Mat * Vec Symmetric Banded Matrix * Vector

Mat * Vec SPD Matrix * Vector

Mat * Vec Lower Triang Matrix * Vector

Mat * Vec Upper Triang Matrix * Vector

Mat * Vec Unit Lower Triang Matrix * Vector

Mat * Vec Unit Upper Triang Matrix * Vector

Mat + Mat General Matrix + General Matrix

Mat - Mat General Matrix - General Matrix

Mat * Mat General Matrix * General Matrix

Mat * Mat Symmetric Matrix * General Matrix

Mat * Mat Lower Triang Matrix * General Matrix

Mat * Mat Upper Triang Matrix * General Matrix

Mat * Mat Unit Lower Triang Matrix * General Matrix

Mat * Mat Unit Upper Triang Matrix * General Matrix

Norm Inf(Vec) In�nity Norm of a Vector

Norm Inf(Mat) In�nity Norm of a Matrix

Mach eps oat() Returns Machine Epsilon - oat

Mach eps double() Returns Machine Epsilon - double

29

Filename Function Description

blas1++.h Blas Norm1(Vec) One Norm of a Vector

Blas Norm2(Vec) nrm2 kxk2
Blas Add Mult(double,Vec,Vec) y �x+ y

Blas Add Mult IP(double,Vec,Vec) y �y+ = x

Blas Copy(Vec,Vec) y x

Blas Dot Prod(Vec,Vec) dot �+ xTy

Blas Apply Plane Rot(Vec,Vec) Apply Plane Rotation

Blas Gen Plane Rot(double x 4) Generate Plane Rotation

Blas Scale(double,Vec) x �x

Blas Swap(Vec,Vec) x$ y

Blas Index Max(Vec) Returns Maximum Vector Element

blas2++.h Blas Mat Vec Mult(GenMat,Vec) Gen Mat * Vec

Blas Mat Vec Mult(BandMat,Vec) Band Mat * Vec

Blas Mat Vec Mult(SymmMat,Vec) Symm Mat * Vec

Blas Mat Vec Mult(SymmBandMat,Vec) Symm Band Mat * Vec

Blas Mat Vec Mult(SpdMat,Vec) SPD Mat * Vec

Blas Mat Vec Mult(LowerTriangMat,Vec) Lower Triang Mat * Vec

Blas Mat Vec Mult(UpperTriangMat,Vec) Upper Triang Mat * Vec

Blas Mat Vec Mult(UnitLowerTriangMat,Vec) Unit Lower Triang Mat * Vec

Blas Mat Vec Mult(UnitUpperTriangMat,Vec) Unit Upper Triang Mat * Vec

Blas Mat Vec Solve(LowerTriangMat,Vec) Lower Triang Mat/Vec Solve

Blas Mat Vec Solve(UpperTriangMat,Vec) Upper Triang Mat/Vec Solve

Blas Mat Vec Solve(UnitLowerTriangMat,Vec) Unit Lower Triang Mat/Vec Solve

Blas Mat Vec Solve(UnitUpperTriangMat,Vec) Unit Upper Triang Mat/Vec Solve

Blas R1 Update(GenMat,Vec,Vec) A �xyT +A

Blas R1 Update(SymmMat,Vec,Vec) A �xxT +A

Blas R1 Update(SpdMat,Vec,Vec) A �xxT +A

Blas R2 Update(SymmMat,Vec,Vec) A �xyT + �yxT +A

Blas R2 Update(SpdMat,Vec,Vec) A �xyT + �yxT +A

blas3++.h Blas Mat Mat Mult(GenMat,GenMat) Gen Mat * Gen Mat

Blas Mat Trans Mat Mult(GenMatT,GenMat) Gen Mat Transpose * Gen Mat

Blas Mat Mat Trans Mult(GenMat,GenMatT) Gen Mat * Gen Mat Transpose

Blas Mat Mat Mult(LowerTriangMat,GenMat) Lower Triang Mat * Gen Mat

Blas Mat Mat Mult(UpperTriangMat,GenMat) Upper Triang Mat * Gen Mat

Blas Mat Mat Mult(UnitLowerTriangMat,GenMat) Unit Lower Triang Mat * Gen Mat

Blas Mat Mat Mult(UnitUpperTriangMat,GenMat) Unit Upper Triang Mat * Gen Mat

Blas Mat Mat Mult(SymmMat,GenMat,GenMat) Symm Mat * Gen Mat

Blas Mat Mat Solve(LowerTriangMat,GenMat) Lower Triang Mat/Gen Mat Solve

Blas Mat Mat Solve(UpperTriangMat,GenMat) Upper Triang Mat/Gen Mat Solve

Blas Mat Mat Solve(UnitLowerTriangMat,GenMat) Unit Lower Triang Mat/Gen Mat Solve

Blas Mat Mat Solve(UnitUpperTriangMat,GenMat) Unit Upper Triang Mat/Gen Mat Solve

Blas R1 Update(SymmMat,GenMat) C �AAT + �C

Blas R2 Update(SymmMat,GenMat,GenMat) C �ABT + �BAT + �C

30 APPENDIX C. DIRECT INTERFACES TO LAPACK AND BLAS ROUTINES

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, J. W. Demmel, J. J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK: A portable linear algebra

library for high-performance computers, Computer Science Dept. Technical Report CS-90-105, Univer-

sity of Tennessee, Knoxville, 1990. (LAPACK Working Note 20).

[2] E. Anderson, J. J. Dongarra, S. Ostrouchov, Installation Guide for LAPACK, LAPACK Work-

ing Note 41, University of Tennessee, Computer Science Technical Report CS-92-151, Feb., 1992.

[3] J. Choi and J. J. Dongarra and D. W. Walker, PB-BLAS : Parallel Block Basic Linear Algebra

Subroutines on Distributed Memory Concurrent Computers, Oak Ridge National Laboratory, Mathe-

matical Sciences Section, in preparation, 1993.

[4] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of Level 3 Basic Linear

Algebra Subprograms, ACM Trans. Math. Soft., 16 (1990), pp. 1{17.

[5] J. J. Dongarra, R. Pozo, D. W. Walker, An Object Oriented Design for High Performance

Linear Algebra on Distributed Memory Architectures, Object Oriented Numerics Conference (OONSKI),

Sunriver, Oregon, May 26-27, 1993.

[6] J. J. Dongarra, R. Pozo, D. W. Walker, LAPACK++: A Design Overview of Object-Oriented

Extensions for High Performance Linear Algebra, Computer Science Technical Report, University of

Tennessee, 1993.

[7] J. J. Dongarra, A. Lumsdaine, Xinhiu Niu, Roldan Pozo, Karin Remington, A Sparse Matrix

Library in C++ for High Performance Architectures, Proceedings of the Object Oriented Numerics

Conference, Sunriver, Oregon, April 1994.

[8] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, Basic Linear Algebra Subprograms

for FORTRAN usage, ACM Trans. Math. Soft ., 5 (1979), pp. 308{323.

[9] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B.

Moler, Matrix Eigensystem Routines { EISPACK Guide, vol. 6 of Lecture Notes in Computer Science,

Springer-Verlag, Berlin, 2 ed., 1976.

Addison-Wesley, 1986.

31

