
LAPACK Working Note 94

A User's Guide to the BLACS v1.1 �

Jack J. Dongarra, y R. Clint Whaley z

May 5, 1997

Abstract

The BLACS (Basic Linear Algebra Communication Subprograms) project is an on-

going investigation whose purpose is to create a linear algebra oriented message passing

interface that is implemented e�ciently and uniformly across a large range of distributed

memory platforms.

The length of time required to implement e�cient distributed memory algorithms

makes it impractical to rewrite programs for every new parallel machine. The BLACS

exist in order to make linear algebra applications both easier to program and more

portable.

It is for this reason that the BLACS are used as the communication layer for the

ScaLAPACK project, which involves implementing the LAPACK library on distributed

memory MIMD machines.

This report describes the library which has arisen from this project.

�This work was supported in part by DARPA and ARO under contract number DAAL03-91-C-0047,

and in part by the National Science Foundation Science and Technology Center Cooperative Agreement No.

CCR-8809615.
yDept. of Computer Sciences, Univ. of TN, Knoxville, TN 37996, and Mathematical Sciences Section,

ORNL, Oak Ridge, TN 37831, dongarra@cs.utk.edu
zDept. of Computer Sciences, Univ. of TN, Knoxville, TN 37996, rwhaley@cs.utk.edu

i

Contents

1 Introduction 1

2 Availability of the BLACS Software 2

3 What's new for this release 3

4 BLACS Concepts and Features 3

4.1 Array-based Communication : 3

4.2 Process Grid and Scoped Operations : 4

4.3 Contexts : 5

4.4 ID-less Communication : 6

4.5 Blocking Levels : 7

5 Naming Conventions 8

6 Point To Point Communication 8

6.1 Semantics : 8

6.2 Syntax : 11

6.2.1 Point to Point Sends : 11

6.2.2 Point to Point Receives : 12

6.3 Example : 13

7 Broadcasts 13

7.1 Semantics : 13

7.2 Syntax : 13

7.2.1 Broadcast/send : 14

7.2.2 Broadcast/receive : 15

7.3 Example : 16

7.4 Topologies : 16

8 Combines 17

8.1 Semantics : 17

8.2 Syntax : 18

8.3 Example : 19

8.4 Topologies : 20

9 Support Routines 20

9.1 Initialization : 20

9.1.1 BLACS PINFO : 20

9.1.2 BLACS SETUP : 21

9.1.3 BLACS GRIDINIT : 21

9.1.4 BLACS GRIDMAP : 22

9.2 Destruction : 24

9.2.1 BLACS FREEBUFF : 24

9.2.2 BLACS GRIDEXIT : 24

ii

9.2.3 BLACS ABORT : 25

9.2.4 BLACS EXIT : 25

9.3 Informational and Miscellaneous : 25

9.3.1 BLACS GRIDINFO : 25

9.3.2 BLACS PNUM : 26

9.3.3 BLACS PCOORD : 26

9.3.4 BLACS BARRIER : 27

9.4 General purpose : 27

9.4.1 BLACS GET : 27

9.4.2 BLACS SET : 28

9.5 Uno�cial routines : 30

9.5.1 SETPVMTIDS : 31

9.5.2 DCPUTIME : 31

9.5.3 DWALLTIME : 31

9.5.4 KSENDID : 32

9.5.5 KRECVID : 32

9.5.6 KBSID : 32

9.5.7 KBRID : 32

REFERENCES 34

A C Interface to the BLACS 36

A.1 Support Routines : 36

A.1.1 Initialization : 36

A.1.2 Destruction : 36

A.1.3 Informational and Miscellaneous : 36

A.1.4 Uno�cial : 37

A.2 Point to Point : 37

A.3 Broadcasts : 37

A.4 Combines : 37

B Degrees of Blocking 38

B.1 Non-blocking communication : 38

B.2 Locally-blocking : 39

B.3 Globally-blocking : 40

C BLACS Error Handling 41

C.1 BLACS Warning and Error Messages : 42

C.1.1 Examples : 42

C.2 System Error Messages : 43

C.2.1 Examples : 43

D Repeatability and coherence 44

D.1 Repeatability : 44

D.2 Coherence : 45

D.2.1 Example of Incoherence : 45

iii

D.2.2 Example of Homogeneous Coherence : : : : : : : : : : : : : : : : : : 46

D.2.3 Example of Heterogeneous Coherence : : : : : : : : : : : : : : : : : 46

D.3 Summing it up : 46

E Broadcast Topologies 48

E.1 Broadcast Ring Topologies : 49

E.2 Broadcast Tree Topologies : 52

F Combine Topologies 56

F.1 General Tree Gather : 56

F.2 Bidirectional Exchange : 56

G Multiring Combine 58

H Example Program 60

List of Tables

1 Presently supported message passing layers : : : : : : : : : : : : : : : : : : 2

2 Scopes provided by a 2D process grid : 5

3 Values and meanings of the communication routines' name positions : : : : 9

4 Values and meanings of combine routines' name positions : : : : : : : : : : 9

5 Pre�x to type declaration mapping : 11

6 Pre�x to C type declaration mapping : 36

7 Broadcast topology highlights : 49

List of Figures

1 8 processes mapped to a 2 x 4 process grid. : : : : : : : : : : : : : : : : : : 4

2 After �rst step of LU factorization : 5

3 Increasing ring broadcast : 50

4 Decreasing ring broadcast : 50

5 Split ring broadcast : 50

6 Multiring broadcast with Nr = 3 : 51

7 Hypercube broadcast, nearest node �rst. : 53

8 General tree broadcast with Nb = 1 : 54

9 General tree broadcast with Nb = 2 : 54

10 General tree broadcast with Nb = 3 : 55

11 General tree gather with Nb = 1 : 57

12 General tree gather with Nb = 4 : 57

13 Bidirectional exchange : 58

iv

1 Introduction

The BLACS (Basic Linear Algebra Communication Subprograms) [8, 10, 16] is a package

that attempts to provide the same ease of use and portability for distributed memory linear

algebra communication that the BLAS [5, 6, 15] provide for linear algebra computation.

The concept of concentrating the most used computation into a kernel of highly opti-

mized routines, such as the BLAS, has proven itself in work on LAPACK [2, 1]. LAPACK

(Linear Algebra PACKage) provides linear algebra routines for sequential and shared mem-

ory machines.

When the ScaLAPACK [9, 4] project (which involves porting LAPACK to distributed

memory parallel machines) was begun, it rapidly became evident that a similar kernel for

communication would be required. Out of this need the BLACS arose.

With these two kernels in place, software for dense linear algebra on MIMD platforms

can consist of calls to the BLAS for computation and calls to the BLACS for communication.

Since both packages will have been optimized for that particular platform, good performance

should be achieved with relatively little e�ort. Also, since both packages will be available

on a wide variety of machines, code modi�cations required to change platforms should be

minimal.

There are various packages designed to provide a message passing interface that remains

unchanged across multiple platforms, including PICL [13], PVM [12] and more recently,

MPI [11]. These packages are general libraries, however, and thus their interfaces are not

as easily usable for linear algebra applications as we would like.

In contrast, since the audience of the BLACS is known, the interface and methods

of using the routines can be specialized (and thus simpli�ed). For example, the BLACS

are written at a level where the manipulation of the matrices involved in linear algebra

computations is both natural and convenient.

The goals of the BLACS project include:

� Ease of programming Wherever possible, the BLACS will simplify message passing in

order to reduce programming errors.

� Ease of use The interface to the BLACS will be at such a level as to be easily usable

by linear algebra programmers.

� Portability The BLACS must supply an interface which can be supported across a

wide range of parallel computers, including parallel machines built from heterogeneous

processors.

The �rst section of this report discusses downloading and availability issues. The follow-

ing section familiarizes the reader with some of the more important concepts and features

of the BLACS. We then discuss the four main categories of BLACS routines. The �rst cate-

gory consists of point to point message passing. Next, broadcasts, which take data from one

process and send it to many processes, are examined. Then, combines are discussed. Com-

bines take data distributed over processes, and combine the data in some way to produce

a result (at present, data can be combined by summation or absolute value maximization

or minimization). Finally, we discuss the support routines, which perform many diverse

1

functions, often not directly related to communication (for example, returning a process

ID).

The appendices discuss the C interface to the BLACS, error handling, the issues of

repeatability and coherence, broadcast and combine topologies, as well as providing further

description of the blocking levels outlined in Section 4.5.

This user's guide is supplemented by the BLACS web page. The URL is

http://www.netlib.org/blacs/Blacs.html. This on-line document gives detailed ex-

amples, as well as providing reference, downloading options, installation instructions, and

troubleshooting. If problems still remain after reading this guide and consulting the mosaic

page, questions should be mailed to blacs@cs.utk.edu.

2 Availability of the BLACS Software

The BLACS source code and documentation is available through netlib. Netlib is a software

distribution service set up on the Internet that contains a wide range of computer software.

Software can be retrieved from netlib by http, ftp, or email.

At present, four di�erent BLACS implementations are available from netlib. Each of

these four BLACS implementations is based on a di�erent message passing layer. These

message passing layers and the machines they are normally supported on are shown in

Table 1.

In addition to the BLACS versions available on netlib [7], several vendors (e.g. Cray,

IBM and Meiko) are presently producing optimized versions for their machines.

MESSAGE

PASSING MACHINES

LAYER

MPI Most systems.

MPL IBM's SP series (SP1 and SP2)

NX Intel's supercomputer series (iPSC2, iPSC/860, DELTA and PARAGON).

PVM Most systems.

Table 1: Presently supported message passing layers

NOTE: In the past we have also supported a CMMD version of the BLACS, designed

for Thinking Machine's CM-5. It appears that there are no longer users for this package. If

you need the CMMDBLACS, send mail to blacs@cs.utk.edu, and we will examine making

this version available again.

The BLACS homepage can be accessed at URL http://www.netlib.org/blacs/Blacs.html.

The BLACS homepage contains reference to the routines, examples, installation instruc-

tions, troubleshooting, and downloading options.

The BLACS �les may be obtained via anonymous ftp to netlib.org. Look in the

directory blacs. The �le index describes the �les available in this directory.

Finally, the BLACS may be obtained by email. To receive downloading instructions and

a list of available �les, send email to netlib@netlib.org with the message send index

from blacs.

2

3 What's new for this release

This release is really just a minor update from the 1.0 release. The most important change

is that there are now ags which control whether the combine operations are coherent and

repeatable. See section 9.4 and appendix D for details.

Also worth noting is that the setting of the number of branches (rings) for tree (multir-

ing) broadcast has been seperated from the number of branches (rings) for tree (multiring)

combine. See section 9.4 for further details.

4 BLACS Concepts and Features

In general, this paper refers to the basic unit of execution as a process. A process is a thread

of execution which minimally includes a stack, registers, and memory. Multiple processes

may share a processor. The term processor refers to the actual hardware.

In the BLACS, each process is treated as if it were a processor: the process must exist for

the lifetime of the BLACS run, and its execution should only e�ect other processes' execution

through the use of message passing calls. With this in mind, we use the term process in

all sections of this paper except those dealing with timings. When discussing timings, we

specify processors as our unit of execution, since speedup will be largely determined by

actual hardware resources.

4.1 Array-based Communication

Many communication packages can be classi�ed as having operations based on one dimen-

sional arrays, which are the machine representation for linear algebra's vector class. In

programming linear algebra problems, however, it is more natural to express all operations

in terms of two dimensional matrices. Vectors and scalars are, of course, simply subclasses

of matrices. On computers, a linear algebra matrix is represented by a two dimensional

array (2D array), and therefore the BLACS operate on 2D arrays.

The BLACS recognize the two most common classes of matrices for dense linear algebra.

The �rst of these classes consists of general rectangular matrices, which in machine storage

are 2D arrays consisting of M rows and N columns, with a leading dimension, LDA, that

determines the distance between two successive elements of a matrix row in memory (the

BLACS assume column-major storage of arrays).

The second class of matrices recognized by the BLACS are trapezoidal matrices. Trape-

zoidal arrays are de�ned by M, N, and LDA, as above, but they also have the parameters

UPLO, which indicates whether the matrix is upper or lower trapezoidal, and DIAG, which

determines if the diagonal of the matrix need be communicated. Triangular matrices are a

subclass of trapezoidal, so these matrices are also handled by the BLACS.

The shape of the trapezoid to be sent is determined by M, N, and UPLO:

3

UPLO M � N M > N

`U'

n

m

n�m + 1

@
@

n

m

m � n + 1

@
@

`L'
m

n

n�m + 1

@
@

m

n

m � n + 1

@
@

The packing of arrays (if required) so that they may be sent e�ciently is handled in-

ternally by the BLACS, allowing the user to concentrate on the logical matrix, rather than

how the data is organized in the machine's memory.

4.2 Process Grid and Scoped Operations

The Np processes involved in a parallel task or group are often presented to the user as

a linear array of process IDs, labeled 0; 1; : : : ; Np � 1. For reasons described below, it is

often more convenient to map this 1-D array of Np processes into a logical two dimensional

process mesh, or grid. This grid will have P process rows and Q process columns, where

P � Q = Ng � Np. A process can now be referenced by its coordinates within the grid

(indicated by the notation fp; qg, where 0 � p < P , and 0 � q < Q), rather than a single

number. An example of such a mapping is shown in Figure 1.

0 1 2 3

0

1

0 1 2 3

4 5 6 7

Figure 1: 8 processes mapped to a 2 x 4 process grid.

An operation which involves more than just a sender and a receiver is called a scoped

operation. All processes that participate in a scoped operation are said to be within the

operation's scope.

On a system using a linear array of processes, the only natural scope is all processes.

Using a 2D grid, we have 3 natural scopes, as shown in Table 2.

These groupings of processes are of particular interest to the linear algebra programmer,

since distributed data decompositions of a 2D array (a linear algebra matrix) tend to follow

this process mapping. For instance, all of a distributed matrix row can be found on a

process row, etc.

Viewing the rows/columns of the process grid as essentially autonomous subsystems

provides the programmer with additional levels of parallelism. Of course, how independent

4

SCOPE MEANING

Row All processes in a process row participate.

Column All processes in a process column participate.

All All processes in the process grid participate.

Table 2: Scopes provided by a 2D process grid

these rows and columns actually are will depend upon the underlying hardware. For in-

stance, if the grid's processors are connected via ethernet, we can see that the only gain

will be in ease of programming. Speed is unlikely to increase, since if one processor is com-

municating, no others can. If this is the case, process rows or columns will not be able to

perform di�erent distributed tasks at the same time, and therefore a 1D process grid usually

yields the best performance. Fortunately, most modern parallel interconnection networks

are at least as rich as a 2D grid, so that the additional levels of parallelism inherent in a

2D process grid can be successfully exploited.

The LU factorization (used to solve a systems of linear equations) can be used to illus-

trate the usefulness of the process grid. Figure 2 shows the basic steps of a right-looking

LU factorization as they a�ect the matrix's elements. The �rst action in the algorithm is

to form the panel of L as shown. A process column will cooperate to do this. This process

column will then broadcast its portion of L along process rows. A process row will use this

information and cooperate to form U . U is then broadcast within process columns, and all

processes will use the values of L and U to �nd ~A.

@@

L

U

~A

Figure 2: After �rst step of LU factorization

This very sketchy description of LU is analyzed much more completely in [9], which

includes an examination of scalability and the advantages of using 2D process grids.

A more detailed understanding of the logical process grid will be obtained as we discuss

the various BLACS routines later in the paper.

4.3 Contexts

In the BLACS, each logical process grid (hereafter referred to simply as the grid) is en-

closed in a context. A context may be thought of as a message passing universe. This

means that a grid can safely communicate even if other (possibly overlapping) grids are

also communicating.

In most respects, we can use the terms `grid' and `context' interchangeably. For example,

5

we may say \perform operation in context X" or \in grid X". The slight di�erence here is

that the user may de�ne two exactly identical grids (say, two 1x3 process grids, both of

which use processes 0, 1, and 2), but each will be wrapped in its own context, so that

they are distinct in operation, even though they are indistinguishable from a process grid

standpoint.

Contexts are used so that individual routines using the BLACS can, when required,

safely operate without worrying if the user is running other distributed codes on the same

machine.

Another example of the use of context might be to de�ne a normal 2D process grid

within which most computation takes place. However, in certain portions of the code it

may be more convenient to access the processes as a 1D grid, and at certain other times we

may wish, for instance, to share information among nearest neighbors. We will therefore

want each process to have access to three contexts: the 2D grid, the 1D grid, and a small

grid which contains the process and its nearest neighbors.

Therefore, we see that context allows us to:

� Create arbitrary groups of processes,

� Create an indeterminate number of overlapping and/or disjoint grids,

� Isolate each process grid so that grids do not interfere with each other.

In the BLACS, there are two grid creation routines (BLACS GRIDINIT and BLACS GRIDMAP)

which create a process grid and its enclosing context. These routines return context han-

dles, which are simple integers, assigned by the BLACS to identify the context. Subsequent

BLACS routines will be passed these handles, which allow the BLACS to determine from

which context/grid a routine is being called. The user should never actually manipulate

these handles; they are opaque data objects which are only meaningful for the BLACS

routines.

A de�ned context consumes resources. It is therefore advisable to release contexts

when they are no longer needed. This is done via the routine BLACS GRIDEXIT. When the

entire BLACS system is shut down (via a call to BLACS EXIT), all outstanding contexts are

automatically freed.

4.4 ID-less Communication

One of the features that sets the BLACS apart from other message passing layers is that the

user does not need to specify message IDs, (abbreviated msgid). A msgid (also referred to as

a message type or tag) is usually an integer which allows a receiving process to distinguish

between incoming messages. The generation of these IDs can become problematic. A

common mistake is to use a constant msgid within a loop, so that if one process takes

longer than others to �nish the loop, it may wind up receiving data from the next iteration

as this iteration's data. This is just the most obvious way such msgid problems can happen.

The same result can occur whenever non-unique IDs are used in any two sections of code

not separated by an explicit barrier. These kinds of programming mistakes can lead to

non-deterministic code which will �nish correctly some of the time, give wrong results some

of the time, and at other times simply crash.

6

Many parallel projects are too large for one person/team to write. This means that

msgids must be coordinated between all routines and all writers of the package. If another

routine is added at a later date, care must be taken to ensure that the new routine's IDs

do not conict with any other routine's.

Therefore, to add to the programmability of the BLACS, it was decided that the BLACS

would internally generate the required msgids. These generated IDs had to have certain

properties. First, it must never be the case that unrelated messages with the same destina-

tion would get the same ID. Second, in order to maintain performance, the ID generating

algorithm had to use only local information: o�-processor memory access could not be al-

lowed. Further, it is necessary to allow the BLACS to be used in conjunction with other

communication platforms. An example that occurs regularly is linking a BLACS package

(for example, ScaLAPACK) with a machine speci�c package.

These goals were achieved by placing two restrictions on communication, and allowing

the user to optionally specify the BLACS msgid range. The �rst restriction on communi-

cation is that a receiving process must know the process grid coordinates of the sending

process. Second, communication between two processes is strictly ordered. This means that

if f0, 0g sends two messages to f0, 1g, then f0, 1g must receive them in the same order that

they were sent.

Finally, in order for the BLACS to coexist with other communication packages, the

BLACS allow the user the option of specifying what range of msgids the BLACS can use.

In this case, it is the user's responsibility to ensure that the BLACS msgid range is not

used in the code which utilizes the other communication package. If the user wishes to

set the BLACS msgid range, he may do so by a call to the support routine BLACS SET.

Note that if the BLACS in use are written on top of a message passing system which

natively supports the context concept (for instance, MPI), passing a unique system context

for the BLACS to use will ensure BLACS communication will not interfere with other

communication packages. In this case, setting msgid range will not be required.

4.5 Blocking Levels

An understanding of the level of blocking is required in order to safely use any communication

package. A communication operation has various resources tied to it, the main such resource

being the user's bu�er. Since the bu�er is the main resource BLACS users will be concerned

with, in the following discussion we will refer only to the user's bu�er, instead of using the

more general term \resources".

The blocking level of a routine tells the user what correspondence, if any, there is between

the return from a routine, and the availability of the bu�er. For example, if the user posts

a receive, he needs to know when the data he is receiving has actually been stored in the

bu�er.

In this paper, we de�ne three levels of blocking: non-blocking, locally-blocking, and

globally-blocking. These levels are briey previewed below. Appendix B provides a short

section explaining each of these levels in greater detail.

� Non-blocking communication: the return from the communication routine implies only

that the message request has been posted. It is then the user's responsibility to probe

and thus determine when the operation has completed.

7

� Locally-blocking communication: May be applied only to send operations, not receives.

The return from the send implies that the bu�er is available for re-use. It is further

speci�ed that the send will complete regardless of whether the corresponding receive

is posted.

� Globally-blocking communication: The return from the operation implies that the

bu�er is available for re-use. The operation may not complete unless the complement

of the operation is called (e.g., a send may not complete if the corresponding receive

is not posted).

The BLACS provide globally-blocking point to point receive, broadcasts, and combines.

The BLACS point to point send is locally-blocking. Appendix B provides the reasoning

behind these choices for the BLACS blocking levels.

5 Naming Conventions

This section gives the naming conventions for each of the four BLACS routine classi�cations

(point to point communication, broadcast, combine and support). Point to point, broadcast

and combine are all typed routines, i.e., there is a separate routine for each data type.

Point to Point and Broadcast Routines The names of the communication routines

follow the template vXXYY2D, where the letter in the v position indicates the data type being

sent, XX is replaced to indicate the shape of the matrix, and the YY positions are used to

indicate the type of communication to perform. This is shown in Table 3.

Combines The general form of the names for combines is vGZZZ2D, where v is the same as

shown in Table 3. The position ZZZ indicates what type of operation should be performed

when sending the data. The operations presently supported are shown on Table 4.

Support Routines The support routines serve many diverse functions, and thus they do

not have a great degree of standardization. All o�cial BLACS support routines (i.e., those

that are guaranteed by the standard to exist) have the form BLACS <name>.

6 Point To Point Communication

6.1 Semantics

Point to point communication requires two complementary operations. The send operation

produces a message, which is then consumed by the receive operation. The BLACS send

is de�ned to be locally-blocking, and the receive is globally-blocking (see appendix B for

details on blocking).

In addition, the BLACS specify that point to point messages between two given processes

will be strictly ordered. Therefore, if process 0 sends three messages (label them A, B, and

C) to process 1, process 1 must receive A before it can receive B, and message C can be

8

vXXYY2D

v MEANING

I Integer data is to be communicated.

S Single precision real data is to be communicated.

D Double precision real data is to be communicated.

C Single precision complex data is to be communicated.

Z Double precision complex data is to be communicated.

XX MEANING

GE The data to be communicated is stored in a general

rectangular matrix.

TR The data to be communicated is stored in a

trapezoidal matrix.

YY MEANING

SD Send. One process sends to another.

RV Receive. One process receives from another.

BS Broadcast/send. A process begins the broadcast of

data within a scope.

BR Broadcast/recv. A process receives and participates

in the broadcast of data within a scope.

Table 3: Values and meanings of the communication routines' name positions

vGZZZ2D

ZZZ MEANING

AMX Entries of result matrix will have the value of the greatest

absolute value found in that position.

AMN Entries of result matrix will have the value of the smallest

absolute value found in that position.

SUM Entries of result matrix will have the summation of that position.

Table 4: Values and meanings of combine routines' name positions

9

received only after both A and B. The main reason for this restriction is that it allows for

the computation of message identi�ers, as is discussed in Section 4.4.

It should be noted, however, that messages from di�erent processes are not ordered.

Therefore, if processes 0; : : : ; 3 send messages A; : : : ; D, respectively, to process 4, process

4 may receive these messages in any order that is convenient.

10

6.2 Syntax

As mentioned in Section 5, these routines are type dependent, indicated here by the pre�x

v. The matrix type operated on by these routines will therefore vary with v, as shown in

Table 5.

v Data operated on is TYPE declaration

I integer INTEGER

S single precision real REAL

D double precision real DOUBLE PRECISION

C single precision complex COMPLEX

Z double precision complex DOUBLE COMPLEX

Table 5: Pre�x to type declaration mapping

With this in mind, the calling sequences and parameter declarations for these routines

are given in the following sections. Note that output parameters are underlined. All other

parameters will be input, and thus unchanged on exit from the routine.

6.2.1 Point to Point Sends

vGESD2D(ICONTXT, M, N, A, LDA, RDEST, CDEST)

vTRSD2D(ICONTXT, UPLO, DIAG, M, N, A, LDA, RDEST, CDEST)

Parameters:

ICONTXT (input) INTEGER

The BLACS context handle.

UPLO (input) CHARACTER*1

Indicates whether the matrix is upper (UPLO = 'U') or lower (UPLO =

'L') trapezoidal.

DIAG (input) CHARACTER*1

Indicates whether the diagonal of the matrix is unit diagonal (DIAG

= 'U'), and thus need not be communicated, or otherwise (DIAG =

'N').

M (input) INTEGER

The number of matrix rows to be sent.

N (input) INTEGER

The number of matrix columns to be sent.

A (input) TYPE array of dimension (LDA, N)

A pointer to the beginning of the (sub)array to be sent.

11

LDA (input) INTEGER

The leading dimension of the matrix A, i.e., the distance between two

successive elements in a matrix row.

RDEST (input) INTEGER

Process row coordinate of the destination process.

CDEST (input) INTEGER

Process column coordinate of the destination process.

6.2.2 Point to Point Receives

vGERV2D(ICONTXT, M, N, A, LDA, RSRC, CSRC)

vTRRV2D(ICONTXT, UPLO, DIAG, M, N, A, LDA, RSRC, CSRC)

Parameters:

ICONTXT (input) INTEGER

The BLACS context handle.

UPLO (input) CHARACTER*1

Indicates whether the matrix is upper (UPLO = 'U') or lower (UPLO =

'L') trapezoidal.

DIAG (input) CHARACTER*1

Indicates whether the diagonal of the matrix is unit diagonal (DIAG

= 'U'), and thus need not be communicated, or otherwise (DIAG =

'N').

M (input) INTEGER

The number of matrix rows to be received.

N (input) INTEGER

The number of matrix columns to be received.

A (output) TYPE array (LDA, N)

A pointer to the beginning of the (sub)array to be received.

LDA (input) INTEGER

The leading dimension of the matrix A, i.e., the distance between two

successive elements in a matrix row.

RSRC (input) INTEGER

Process row coordinate of the source of the message.

CSRC (input) INTEGER

Process column coordinate of the source of the message.

12

6.3 Example

For a simple example of using BLACS point to point message passing, we show code which

has two processes swap their copies of a 5 element double precision vector X.

CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)

IF (MYPROW.EQ.0 .AND. MYPCOL.EQ.0) THEN

CALL DGESD2D(ICONTXT, 5, 1, X, 5, 1, 0)

CALL DGERV2D(ICONTXT, 5, 1, X, 5, 1, 0)

ELSE IF (MYPROW.EQ.1 .AND. MYPCOL.EQ.0) THEN

CALL DGESD2D(ICONTXT, 5, 1, X, 5, 0, 0)

CALL DGERV2D(ICONTXT, 5, 1, X, 5, 0, 0)

END IF

7 Broadcasts

7.1 Semantics

A broadcast sends data possessed by one process to all processes within a scope. Broadcast,

much like point to point communication, has two complementary operations. The process

that owns the data to be broadcast issues a broadcast/send. All processes within the same

scope must then issue the complementary broadcast/receive.

The BLACS de�ne that both broadcast/send and broadcast/receive are globally-blocking

(see appendix B for details). This has several important implications. The �rst is that

scoped operations (broadcasts or combines) must be strictly ordered, i.e., all processes

within a scope must agree on the order of calls to separate scoped operations. This con-

straint falls in line with that already in place for the computation of message IDs, and is

present in point to point communication as well.

A less obvious result is that scoped operations with SCOPE = 'ALL' must be ordered

with respect to any other scoped operation. This means that if there are two broadcasts to

be done, one along a column, and one involving the entire process grid, all processes within

the process column issuing the column broadcast must agree on which broadcast will be

performed �rst.

7.2 Syntax

As with point to point communication, these routines vary with the data type, and Table 5

shows the mapping between the type pre�x (indicated below by v) and the data type

declaration. As before, output parameters are underlined. All other parameters will be

input, and thus unchanged on exit from the routine. With these points in mind, the calling

sequences and parameter declarations for these routines are given in the following sections.

13

7.2.1 Broadcast/send

vGEBS2D(ICONTXT, SCOPE, TOP, M, N, A, LDA)

vTRBS2D(ICONTXT, SCOPE, TOP, UPLO, DIAG, M, N, A, LDA)

Parameters:

ICONTXT (input) INTEGER

The BLACS context handle.

SCOPE (input) CHARACTER*1

Scope of processes to participate in operation. Limited to 'ROW',

'COLUMN', or 'ALL'. See Section 4.2 for additional details.

TOP (input) CHARACTER*1

Network topology to be emulated during communication. Topologies

presently supported are discussed in Section 7.4.

UPLO (input) CHARACTER*1

Indicates whether the matrix is upper (UPLO = 'U') or lower (UPLO =

'L') trapezoidal.

DIAG (input) CHARACTER*1

Indicates whether the diagonal of the matrix is unit diagonal (DIAG

= 'U'), and thus need not be communicated, or otherwise (DIAG =

'N').

M (input) INTEGER

The number of matrix rows to be broadcast.

N (input) INTEGER

The number of matrix columns to be broadcast.

A (input) TYPE array (LDA, N)

A pointer to the beginning of the (sub)array to be broadcast.

LDA (input) INTEGER

The leading dimension of the matrix A, i.e., the distance between two

successive elements in a matrix row.

14

7.2.2 Broadcast/receive

vGEBR2D(ICONTXT, SCOPE, TOP, M, N, A, LDA,

RSRC, CSRC)

vTRBR2D(ICONTXT, SCOPE, TOP, UPLO, DIAG, M, N, A, LDA,

RSRC, CSRC)

Parameters:

ICONTXT (input) INTEGER

The BLACS context handle.

SCOPE (input) CHARACTER*1

Scope of processes to participate in operation. Limited to 'ROW',

'COLUMN', or 'ALL'. See Section 4.2 for additional details.

TOP (input) CHARACTER*1

Network topology to be emulated during communication. Topologies

presently supported are discussed in Section 7.4.

UPLO (input) CHARACTER*1

Indicates whether the matrix is upper (UPLO = 'U') or lower (UPLO =

'L') trapezoidal.

DIAG (input) CHARACTER*1

Indicates whether the diagonal of the matrix is unit diagonal (DIAG

= 'U'), and thus need not be communicated, or otherwise (DIAG =

'N').

M (input) INTEGER

The number of matrix rows to be broadcast.

N (input) INTEGER

The number of matrix columns to be broadcast.

A (output) TYPE array (LDA, N)

A pointer to the beginning of the (sub)array to be received/broadcast.

LDA (input) INTEGER

The leading dimension of the matrix A, i.e., the distance between two

successive elements in a matrix row.

RSRC (input) INTEGER

Process row coordinate of the source of the broadcast.

CSRC (input) INTEGER

Process column coordinate of the source of the broadcast.

15

7.3 Example

As described above, the parameters M, N, and LDA dictate the shape of the array being com-

municated. All processes participating in a given send operation or its receive complement

must have the same amount of array space available (i.e. M * N must be the same). How-

ever, it is not necessary that they all receive the data in the same way (this holds true for

point to point communication, as well). An example should help illustrate this principle:

Process f0,2g has a double precision matrix B, with a total size of 500 x 200. All the

other processes in its process column require �ve rows and seven columns of this matrix

starting at the matrix position (9,4). It is not necessary for all participating processes to

receive the matrix in the same way. For instance, process f1,2g might want to receive

the information into a work vector, WORK, while the other processes in the process column

receive the the broadcast into their copy of B. This could be accomplished as follows:

CALL BLACS_GRIDINIT(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)

*

* If I participate in the broadcast

*

IF (MYPCOL .EQ. 2) THEN

*

* If I'm the source of the broadcast

*

IF (MYPROW .EQ. 0) THEN

CALL DGEBS2D(ICONTXT, 'COLUMN', ' ', 5, 7, B(9,4), 500)

*

* If I want to receive into work

*

ELSE IF (MYPROW .EQ. 1) THEN

CALL DGEBR2D(ICONTXT, 'COLUMN, ' ', 5, 7, WORK, 5, 0, 2)

*

* If I want to receive into B

*

ELSE

CALL DGEBR2D(ICONTXT, 'COLUMN', ' ', 5, 7, B(9,4), 500, 0, 2)

END IF

NOTE: All versions of the BLACS except PVM allow the user to vary M and N, as long

as M * N is the same across all processes. However, in PVM the data must be unpacked in

the same manner that it is packed. Therefore, the shape of the matrix being communicated

should be changed only by varying LDA.

7.4 Topologies

The topology parameter determines how the messages involved in a distributed operation

are sent. The use of the topology concept allows the user to exploit the following fact: even

if the time to perform a distributed operation cannot be reduced, which processors bear the

16

brunt of the cost of the operation can be varied. Topology also allows for the building of

communication pipelines, as discussed below.

There are two main classes of topologies within the BLACS:

� Pipelining topologies (ring-based)

� Non-pipelining topologies (tree-based)

In a pipelining topology, the �rst operation synchronizes the processors so that subse-

quent operations will be cheap. Therefore, if the user is aware that several broadcasts will

be performed with no interleaved synchronization, pipelining topologies should be consid-

ered. Further, the BLACS pipelining topologies are all based on rings, which means that

pipelines can be maintained if the algorithm ows across processors in an orderly way. For

example, if the sender of row broadcasts starts out as the �rst process column, and then is

the second, etc., an increasing ring pipeline will be maintained. If the program ow is in

the opposite direction, it may be possible to set up a decreasing ring pipeline. A pipeline

for increasing direction can be obtained by setting TOP = 'INCREASING RING'; a pipeline

for codes owing across the processors in the opposite way can be obtained by setting TOP

= 'DECREASING RING'.

The BLACS' pipelining topologies are usually much slower than non-pipelining topolo-

gies if only one operation is performed. Pipelining topologies are used to minimize the cost

of several related operations. Therefore, if the broadcast does not pipeline, the user will

probably wish to utilize the topology which minimizes the time spent in only one broad-

cast. The BLACS provide a default topology which attempts to do this, which is invoked

by setting TOP = ' '.

One of the three topologies above will probably satisfy most users. However, there are

many other BLACS topologies within the two main classes. In the pipelining category, the

user may use a split ring (TOP = 'SPLIT RING') or a multiring (TOP = 'Multiring'), for

instance. There are also several types of tree-based topologies. Appendix E provides full

details on the available topologies.

8 Combines

8.1 Semantics

In a combine operation, each participating process contributes data which is combined with

other processes' data to produce a result. This result can be left on a particular process

(called the destination process), or on all participating processes. If the result is left on

only one process, we refer to the operation as a leave-on-one combine, and if the result is

given to all participating processes we reference it as a leave-on-all combine.

At present, three kinds of combines are supported. They are element-wise summation,

element-wise absolute value maximization, and element-wise absolute value minimization of

general rectangular arrays. Note that a combine operation combines data between processes.

By de�nition, then, a combine performed across a scope of only one process does not change

the input data. This is why we specify that the operations are element-wise. Element-wise

indicates that each element of the input array will be combined with the corresponding

17

element from all other processes' arrays to produce the result. Thus, a 4� 2 array of inputs

produces a 4 � 2 answer array. If the element-wise operation concept is still unclear, the

examples section should provide further clari�cation.

The maximization and minimization operations may require further explanation. When

the max/min comparison is being performed, absolute value is used. Therefore, �5 and

5 are equivalent. However, the returned value is unchanged; i.e. it is not the absolute

value, but instead is the signed value. Therefore, if we performed a BLACS absolute value

maximum combine on the numbers �5; 3; 1;�8, the result would be �8.
The BLACS combines are globally-blocking (see appendix B for details).

8.2 Syntax

As with point to point communication, these routines vary with the data type, and Table 5

shows the mapping between the type pre�x (indicated below by v) and the data type

declaration. As before, output parameters are underlined. All other parameters will be

input, and thus unchanged on exit from the routine. With these points in mind, the calling

sequences and parameter declarations for these routines are given in the following sections.

vGSUM2D(ICONTXT, SCOPE, TOP, M, N, A, LDA, RDEST, CDEST)

vGAMX2D(ICONTXT, SCOPE, TOP, M, N, A, LDA, RA, CA,

RCFLAG, RDEST, CDEST)

vGAMN2D(ICONTXT, SCOPE, TOP, M, N, A, LDA, RA, CA,

RCFLAG, RDEST, CDEST)

Parameters:

ICONTXT (input) INTEGER

The BLACS context handle.

SCOPE (input) CHARACTER*1

Scope of processes to participate in operation. Limited to 'ROW',

'COLUMN', or 'ALL'. See Section 4.2 for additional details.

TOP (input) CHARACTER*1

Network topology to be emulated during communication. Topologies

presently supported are discussed in Section 8.4.

M (input) INTEGER

The number of matrix rows to be combined.

N (input) INTEGER

The number of matrix columns to be combined.

A (input/output) TYPE array (LDA, N)

A pointer to the beginning of the (sub)array to be combined.

LDA (input) INTEGER

The leading dimension of the matrix A, i.e., the distance between two

successive elements in a matrix row.

18

RA (output) INTEGER array (RCFLAG, N)

If RCFLAG = -1, this array will not be referenced, and need not

exist. Otherwise it is an integer array (of size at least RCFLAG x

N) indicating the row index of the process that provided the maxi-

mum/minimum. If the calling process is not selected to receive the

result, this array will contain intermediate (useless) results.

CA (output) INTEGER array (RCFLAG, N)

If RCFLAG = -1, this array will not be referenced, and need not ex-

ist. Otherwise it is an integer array (of size at least RCFLAG x N)

indicating the column index of the process that provided the maxi-

mum/minimum. If the calling process is not selected to receive the

result, this array will contain intermediate (useless) results.

RCFLAG (input) INTEGER

If RCFLAG = -1, then the arrays RA and CA are not referenced and

need not exist. Otherwise, RCFLAG indicates the leading dimension

of these arrays, and so must be � M.

RDEST (input) INTEGER

The process row coordinate of the process who should receive the re-

sult. If RDEST or CDEST = -1, all processes within the indicated

scope receive the answer.

CDEST (input) INTEGER

The process column coordinate of the process who should receive the

result. If RDEST or CDEST = -1, all processes within the indicated

scope receive the answer.

8.3 Example

An example should demonstrate how these routines are used. Assume we have a 2 x 4

process grid (as shown in Figure 1). Process f1,3g needs the maximum of the matrix B (of

size 4 x 4) over all processes. All processes would make the following call:

CALL DGMAX2D(ICONTXT, 'ALL', ' ', 4, 4, B, 4, RA, CA, 4, 1, 3)

Upon completion, process f1,3g would have three matrices that contain information on the

maximize function. The matrix B is still of size 4 x 4. Element (1,2) of B would contain

the element with the largest absolute value found on any process at matrix location (1,2).

RA(1,2) would indicate what process row that maximum was found on, while CA(1,2) would

tell which process column it was found on.

As another example, assume that process row 1 requires the minimum of the double

precision scalar DMIN, and there is no need to know what process possessed the min. The

code would then be:

IF (MYPROW .EQ. 1) THEN

19

CALL DGAMN2D(ICONTXT, 'ROW', ' ', 1, 1, DMIN, 1, I, I, -1, -1, -1)

END IF

8.4 Topologies

In broadcasts, the BLACS provide both pipelining and non-pipelining topologies. At the

moment, the BLACS provide pipelining combine topologies only in the MPI version. There-

fore, the user is encouraged to use the default topology (TOP = ' ') when calling a combine

operation. The default TOP option will attempt to use the topology which will minimize the

cost of one call to a combine operation.

Appendix F provides detailed descriptions of presently supported topologies.

9 Support Routines

There are a number of routines which do not deal directly with communication that are

nonetheless required for programming in a parallel environment. The BLACS label these

routines as support routines. We break these support routines into rough categories, and

these are discussed in turn below.

9.1 Initialization

These routines deal with grid/context creation, and processing before the grid/context has

been de�ned.

9.1.1 BLACS PINFO

BLACS PINFO(MYPNUM, NPROCS)

MYPNUM (output) INTEGER

An integer between 0 and (NPROCS - 1) which uniquely identi�es

each process.

NPROCS (output) INTEGER

The number of processes available for BLACS use.

This routine is used when some initial system information is required before the BLACS are

set up. On all platforms except PVM, NPROCS is the actual number of processes available

for use (i.e. NPROWS * NPCOLS � NPROCS). In PVM, the virtual machine may not have

been set up before this call, and therefore no parallel machine exists. In this case, NPROCS

will be returned as less than one. If a process has been spawned via the keyboard, it will

receive MYPNUM of 0, and all other processes will get MYPNUM of -1. This allows the

user to distinguish between processes, so that only one reads in data, etc. Only after the

virtual machine has been set up (via a call to BLACS SETUP or SETPVMTIDS) will this

routine return the correct values for MYPNUM and NPROCS.

20

9.1.2 BLACS SETUP

BLACS SETUP(MYPNUM, NPROCS)

MYPNUM (output) INTEGER

An integer between 0 and (NPROCS - 1) which uniquely identi�es

each process.

NPROCS (input/output) INTEGER

On the process spawned from the keyboard (rather than from pvmspawn),

this parameter is input, and indicates the number of processes to cre-

ate when building the virtual machine. For all other processes, it will

be output.

This routine only accomplishes meaningful work in the PVM BLACS. On all other plat-

forms, it is functionally equivalent to BLACS PINFO. The BLACS assume a static system:

you start with a given number of processes, and that is all you will ever have. PVM supplies

a dynamic system, allowing processes to be added to the system on the y. BLACS SETUP

is used to actually allocate the virtual machine and spawn processes. It reads in a �le called

blacs setup.dat, whose �rst line must be the name of your executable. The second line

is optional, but if it exists, it should be a PVM spawn ag. Legal values at this time are

0 (PvmTaskDefault), 4 (PvmTaskDebug), 8 (PvmTaskTrace), and 12 (PvmTaskDebug +

PvmTaskTrace). The primary reason for this line is to allow the user to easily turn on and

o� PVM debugging. Additional lines, if any, specify what machines should be added to

the current con�guration before spawning NPROCS-1 processes to the machines in a round

robin fashion. NPROCS is input on the process which has no PVM parent (i.e. MYP-

NUM=0), and both parameters are output for all processes. Therefore, on PVM systems,

the call to BLACS PINFO informs you that the virtual machine has not been set up, and

a call to BLACS SETUP then sets up the machine and returns the real values for MYP-

NUM and NPROCS. Note that if the �le blacs setup.dat does not exist, the BLACS will

prompt the user for the executable name, and processes will be spawned to the current

PVM con�guration.

9.1.3 BLACS GRIDINIT

BLACS GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)

ICONTXT (input/output) INTEGER

On input, an integer handle indicating the system context to be used

in creating the BLACS context. The user may obtain a default system

context via a call to BLACS GET. On output, the integer handle to

the created BLACS context.

ORDER (input) CHARACTER*1

Indicates how to map processes to BLACS grid. Choices are:

`R' : Use row-major natural ordering.

21

`C' : Use column-major natural ordering.

ELSE : Use row-major natural ordering.

NPROW (input) INTEGER

Indicates how many process rows the process grid should contain.

NPCOL (input) INTEGER

Indicates how many process columns the process grid should contain.

All BLACS codes must call this routine, or its companion routine BLACS GRIDMAP. These

routines take the available processes, and assign, or map, them into a BLACS process grid.

In other words, they establish how the BLACS coordinate system will map into the native

machine's process numbering system. Each BLACS grid is contained in a context (its own

message passing universe), so that it does not interfere with distributed operations which

occur within other grids/contexts. These grid creation routines may be called repeatedly

in order to de�ne additional contexts/grids.

The creation of a grid requires input from all processes which are de�ned to be in it.

It is therefore a globally-blocking (sometimes called syncronous) operation (see appendix B

for details on blocking) which means that processes belonging to more than one grid will

have to agree on which grid formation will be serviced �rst.

These grid creation routines set up various internals for the BLACS, and so one of them

must be called before any calls are made to the non-initialization BLACS.

Note that these routines map already-existing processes to a grid: the processes are not

created dynamically. On most parallel machines, the processes will be actual processors

(hardware), and they are \created" when the user runs his executable. When using the

PVM BLACS, if the virtual machine has not been set up yet, the routine BLACS SETUP

should be used to create the virtual machine. If the PVM user wishes to use a virtual

machine already set up using explicit PVM calls, the routine SETPVMTIDS should be

used instead of BLACS SETUP.

This routine creates a simple NPROW x NPCOL process grid. This process grid

will use the �rst NPROW * NPCOL processes, and assign them to the grid in a row-

or column-major natural ordering. If these process-to-grid mappings are unacceptable,

BLACS GRIDINIT's more complex companion routine BLACS GRIDMAP must be called

instead.

9.1.4 BLACS GRIDMAP

BLACS GRIDMAP(ICONTXT, USERMAP, LDUMAP, NPROW,

NPCOL)

ICONTXT (input/output) INTEGER

On input, an integer handle indicating the system context to be used

in creating the BLACS context. The user may obtain a default system

context via a call to BLACS GET. On output, the integer handle to

the created BLACS context.

22

USERMAP (input) INTEGER array, dimension (LDUMAP, NPCOL)

Input array indicating the process-to-grid mapping.

LDUMAP (input) INTEGER

The leading dimension of the 2D array USERMAP.

NPROW (input) INTEGER

Indicates how many process rows the process grid should contain.

NPCOL (input) INTEGER

Indicates how many process columns the process grid should contain.

All BLACS codes must call this routine, or its companion routine BLACS GRIDMAP. These

routines take the available processes, and assign, or map, them into a BLACS process grid.

In other words, they establish how the BLACS coordinate system will map into the native

machine's process numbering system. Each BLACS grid is contained in a context (its own

message passing universe), so that it does not interfere with distributed operations which

occur within other grids/contexts. These grid creation routines may be called repeatedly

in order to de�ne additional contexts/grids.

The creation of a grid requires input from all processes which are de�ned to be in it.

It is therefore a globally-blocking operation (see appendix B for details on blocking) which

means that processes belonging to more than one grid will have to agree on which grid

formation will be serviced �rst.

These grid creation routines set up various internals for the BLACS, and so one of them

must be called before any calls are made to the non-initialization BLACS.

Note that these routines map already-existing processes to a grid: the processes are not

created dynamically. On most parallel machines, the processes will be actual processors

(hardware), and they are \created" when the user runs his executable. When using the

PVM BLACS, if the virtual machine has not been set up yet, the routine BLACS SETUP

should be used to create the virtual machine. If the PVM user wishes to use a virtual

machine already set up using explicit PVM calls, the routine SETPVMTIDS should be

used instead of BLACS SETUP.

This routine allows the user to map processes to the process grid in an arbitrary manner.

USERMAP(i,j) holds the process number of the process to be placed in fi, jg of the process
grid. On most distributed systems, this process number will simply by a machine de�ned

number between 0 : : : NPROCS-1. For PVM these node numbers will be the PVM TIDS

(Task IDs). BLACS GRIDMAP is not for the inexperienced user { BLACS GRIDINIT is

much simpler. BLACS GRIDINIT simply performs a GRIDMAP where the �rst NPROW

* NPCOL processes are mapped into the current grid in a row- or column-major natural

ordering. BLACS GRIDMAP allows the experienced user to take advantage of the proces-

sors' actual network (i.e. he can map nodes that are physically connected to be neighbors

in the BLACS grid, etc.). BLACS GRIDMAP also opens the way for multigridding: the

user can separate his nodes into arbitrary grids, join them together at some later date, and

then re-split them into new grids. BLACS GRIDMAP also provides the ability to make

arbitrary grids or subgrids (e.g., a \nearest neighbor" grid), which can greatly facilitate

23

operations among groups of processes which do not fall on a row or column of the main

process grid.

9.2 Destruction

These routines destroy grids, free resources, etc.

9.2.1 BLACS FREEBUFF

BLACS FREEBUFF(ICONTXT, WAIT)

ICONTXT (input) INTEGER

Integer handle indicating the BLACS context.

WAIT (input) INTEGER

Whether to wait on non-blocking operations:

IF (WAIT .EQ. 0) THEN

Do not wait on operations, free only unused bu�ers.

ELSE

If necessary, wait in order to free all bu�ers.

END IF

The BLACS have at least one internal bu�er that is used for packing messages (the number

of internal bu�ers varies, depending on which BLACS you are using). On systems where

memory is tight, keeping this bu�er(s) around may become expensive. Calling this routine

will release the BLACS bu�er(s). However, the next call to a communication routine which

requires packing will cause the bu�er to be reallocated.

The parameter WAIT determines whether the BLACS should wait for any non-blocking

operations to complete or not. If WAIT = 0, the BLACS will free any bu�ers that can

be freed without waiting. If WAIT is not 0, the BLACS will free all internal bu�ers,

possibly causing the call to block while the BLACS wait for internal non-blocking operations

complete.

9.2.2 BLACS GRIDEXIT

BLACS GRIDEXIT(ICONTXT)

ICONTXT (input) INTEGER

Integer handle indicating the BLACS context to be freed.

Contexts consume resources, and therefore the user should release them when they are no

longer needed. BLACS GRIDEXIT frees a context. After the freeing of a context, the

context no longer exists, and its handle may be re-issued by the BLACS if a new context is

de�ned.

24

9.2.3 BLACS ABORT

BLACS ABORT(ICONTXT, ERRORNUM)

ICONTXT (input) INTEGER

Integer handle indicating the BLACS context which is aborting the

run.

ERRORNUM (input) INTEGER

User de�ned integer error number.

When a catastrophic error occurs, the user may need to abort all processes. BLACS ABORT

exists for this reason. Note that both parameters are input, but that BLACS ABORT uses

them only in printing out the error message. The context handle passed in may be anything

(i.e., it need not be a valid context handle). This routine kills all BLACS processes, not

just those con�ned to a particular context.

9.2.4 BLACS EXIT

BLACS EXIT(CONTINUE)

CONTINUE (input) INTEGER

If CONTINUE is non-zero, it is assumed that the user will continue

using the machine after the BLACS are done. Otherwise, it is assumed

that no message passing will be done after the BLACS EXIT call.

This routine should be called when a process has �nished all use of the BLACS. It frees all

BLACS contexts and releases all memory the BLACS have allocated. CONTINUE indicates

whether the user will be using the underlying communication platform after the BLACS

are �nished. This information is most important for the PVM BLACS. If CONTINUE is

set to 0, then pvm exit will be called; otherwise, it will not. If the user sets CONTINUE

not equal to 0, he is indicating that he will be calling explicit PVM send/recvs after the

BLACS are done, so that the process cannot tell the virtual machine that it is done. It then

becomes the user's responsibility to make sure his code calls pvm exit. PVM users should

either call BLACS EXIT or explicitly call pvm exit to avoid PVM problems.

9.3 Informational and Miscellaneous

These routines return information involving the process grid. Also included here is the

barrier routine.

9.3.1 BLACS GRIDINFO

BLACS GRIDINFO(ICONTXT, NPROW, NPCOL MYPROW,

MYPCOL)

25

ICONTXT (input) INTEGER

Integer handle indicating the BLACS context to be queried.

NPROW (output) INTEGER

On output, the number of process rows in ICONTXT's process grid.

NPCOL (output) INTEGER

On output, the number of process columns in ICONTXT's process

grid.

MYPROW (output) INTEGER

On output, the calling process's row coordinate in the process grid.

MYPCOL (output) INTEGER

On output, the calling process's column coordinate in the process grid.

Returns information about the process grid contained in the context whose handle is ICON-

TXT. If the context handle is invalid, all quantities are returned as -1.

9.3.2 BLACS PNUM

INTEGER FUNCTION BLACS PNUM(ICONTXT, PROW, PCOL)

ICONTXT (input) Integer handle indicating the BLACS context to be queried.

PROW (input) INTEGER

The row coordinate of the process whose system process number is to

be determined.

PCOL (input) INTEGER

The column coordinate of the process whose system process number

is to be determined.

This function returns the system process number (i.e., a task ID for PVM users) of the

process at fPROW, PCOLg in the process grid.

9.3.3 BLACS PCOORD

BLACS PCOORD(ICONTXT, PNUM, PROW, PCOL)

ICONTXT (input) INTEGER

Integer handle indicating the BLACS context.

PNUM (input) INTEGER

The process number whose coordinates are to be determined. This is

the process number of the underlying machine (e.g., it will be a TID

for PVM).

26

PROW (output) INTEGER

On output, the row coordinate of process PNUM in the BLACS grid.

PCOL (output) INTEGER

On output, the column coordinate of process PNUM in the BLACS

grid.

Given the system process number (i.e., a task ID for PVM users), returns the row and

column coordinates in the BLACS' process grid.

9.3.4 BLACS BARRIER

BLACS BARRIER(ICONTXT, SCOPE)

ICONTXT (input) INTEGER

Integer handle indicating the BLACS context.

SCOPE (input) CHARACTER*1

Indicates whether a process row (SCOPE='R'), column ('C'), or entire

grid ('A') will participate in barrier.

This routines holds up execution of all processes within the indicated scope until they have

all called the routine.

9.4 General purpose

The BLACS have two general purpose routines. They are BLACS SET and BLACS GET. Be-

cause they may be called before a grid is created, they are often lumped in with the ini-

tialization routines. These routines are used to set and obtain information about various

BLACS internals. Some of these internals control general BLACS behavior, and are thus

not linked to a particular context. These internals will ignore the parameter ICONTXT, which

exists so that internals which are tied to a particular context may be operated on.

9.4.1 BLACS GET

BLACS GET(ICONTXT, WHAT, VAL)

ICONTXT (input) INTEGER

On WHATs that are tied to a particular context, this is the integer

handle indicating the BLACS context to query. Otherwise, it is ig-

nored.

WHAT (input) INTEGER

What BLACS internal information should be returned in VAL. Present

options are:

27

WHAT Returned in VAL

0 Handle indicating default system context

1 The BLACS message ID range

2 The BLACS debug level

10 Handle indicating the system context used to de�ne the

BLACS context whose handle is ICONTXT

11 Number of rings multiring broadcast topology is presently using

12 Number of branches general tree broadcast topology is presently using

13 Number of rings multiring combine topology is presently using

14 Number of branches general tree combine topology is presently using

15 If topologies are being forced to be repeatable, a non-zero is

returned. If repeatability is not being enforced, zero is returned

(see appendix D for details on repeatability).

16 If topologies are being forced to be heterogeneous coherent, a

non-zero is returned. If heterogeneous coherence is not being

enforced, zero is returned (see appendix D for details on coherence).

VAL (output) INTEGER ARRAY of variable dimension

The value to which the BLACS internal is presently set. The dimension

of VAL is (2) if the message ID range is being returned. For all other

queries it is (1).

This routine returns the values the BLACS are using for internal defaults. Some values are

tied to a BLACS context, and some are more general. The most common use is in retrieving

a default system context for input into BLACS GRIDINIT or BLACS GRIDMAP. Some

systems, such as MPI, supply their own version of context (in MPI, this corresponds to

a communicator). For those users who mix system code with BLACS code, we therefore

need to be able to form a BLACS context in reference to a system context. Thus, the

grid creation routines take a system context as input. If you wish to have strictly portable

code, you may use BLACS GET to retrieve a default system context which will include all

available processes.

Also not tied to a particular BLACS context are the message ID range and the debug

level the BLACS were compiled with. For these three values of WHAT, the parameter

ICONTXT is not referenced.

The other choices of WHAT are all tied to a particular BLACS context, so the parameter

ICONTXT must be a valid BLACS context handle.

9.4.2 BLACS SET

BLACS SET(ICONTXT, WHAT, VAL)

ICONTXT (input) INTEGER

On WHATs that are tied to a particular context, this is the integer

handle indicating the BLACS context. Otherwise, it is ignored.

28

WHAT (input) INTEGER

What BLACS internal(s) should be set to VAL. Present options are:

WHAT VAL determines

1 The BLACS message ID range

11 Number of rings for multiring broadcast topology to use

12 Number of branches for general tree broadcast topology to use

13 Number of rings for multiring combine topology to use

14 Number of branches for general tree combine topology to use

15 Whether topologies should be forced to be repeatable.

If this value is 0 (the default) topologies are not required to be

repeatable. Any other value requires all used topologies to be

repeatable. (see appendix D for details on repeatability).

16 Whether topologies should be forced to be heterogeneous coherent

or not. If this value is 0 (the default) topologies are not required

to be heterogeneous coherent. Any other value requires all used

topologies to be heterogeneous coherent

(see appendix D for details on coherence).

VAL (input) INTEGER ARRAY of variable dimension

The value(s) to set internals to. Its speci�c meaning is dependent on

WHAT, as discussed below. Note that for WHAT = 1, the dimension

of VAL is (2). Otherwise, it is (1).

Sets BLACS internal defaults. The action taken is dependent upon WHAT, as follows:

1. Setting the BLACS message ID range

If the user wishes to mix the BLACS with other message-passing packages, he may

restrict the BLACS to a certain message ID range, which he ensures is not used by

the non-BLACS routines. The message ID range must be set before the �rst call

to BLACS GRIDMAP or BLACS GRIDINIT. Subsequent calls will have no e�ect.

Because the message ID range is not tied to a particular context, the parameter

ICONTXT is ignored, and VAL is de�ned as:

VAL (input) INTEGER array of dimension (2)

VAL(1): The smallest message ID (also called message type or

message tag) the BLACS should use.

VAL(2): The largest message ID (also called message type or

message tag) the BLACS should use.

12. Set number of rings for TOP = 'M' (multiring broadcast)

This quantity is tied to a context, thus ICONTXT is used, and VAL is de�ned as:

VAL(1): The number of rings for multiring topology to use. Valid values are are

all nonzero numbers, where negative numbers correspond to decreasing rings, and

positive numbers indicate increasing rings. Note that you cannot have more rings

29

than there are processes in the operation, so if Np is the number of processes in the

operation, then jVAL(1)j > Np � 1, results in a fully connected topology (i.e., the

number of rings will be set to Np � 1).

13. Set number of branches for TOP = 'T' (general tree broadcast)

This quantity is tied to a context, thus ICONTXT is used, and VAL is de�ned as:

VAL(1): The number of branches for general tree topology to use. Valid values are:

VAL(1) > 0. Note that you cannot have more branches than there are processes in the

operation, so ifNp is the number of processes in the operation, then jVAL(1)j > Np�1,
results in a fully connected topology (i.e., the number of branches will be set toNp�1).

14. Set number of rings for TOP = 'M' (multiring combine)

This quantity is tied to a context, thus ICONTXT is used, and VAL is de�ned as:

VAL(1): The number of rings for multiring combine topology to use. Valid values

are are all nonzero numbers, where negative numbers correspond to decreasing rings,

and positive numbers indicate increasing rings. Note that you cannot have more rings

than there are processes in the operation, so if Np is the number of processes in the

operation, then jVAL(1)j > Np � 1, results in a fully connected topology (i.e., the

number of rings will be set to Np � 1).

15. Set number of branches for TOP = 'T' (general tree gather)

This quantity is tied to a context, thus ICONTXT is used, and VAL is de�ned as:

VAL(1): The number of branches for general tree topology to use. Valid values are:

VAL(1) > 0. Note that you cannot have more branches than there are processes in the

operation, so ifNp is the number of processes in the operation, then jVAL(1)j > Np�1,
results in a fully connected topology (i.e., the number of branches will be set toNp�1).

16. Set whether topologies must be repeatable or not

If this value is set to 0 (the default), topologies are not required to be repeatable. If

it is set to any value besides 0, all topologies will be forced to be repeatable (and thus

possibly take a performance hit). See Appendix D for details on repeatability.

17. Set whether topologies must be heterogeneous coherent or not

If this value is set to 0 (the default), topologies are not required to be heterogeneous

coherent. If it is set to any value besides 0, all topologies will be forced to be het-

erogeneous coherent (and thus possibly take a performance hit). See Appendix D for

details on coherence.

9.5 Uno�cial routines

These routines are not part of the BLACS standard, and thus not guaranteed to be in

every BLACS implementation. Most of these routines have valid uses, but it is di�cult

to defend adding them to a message-passing standard. SETPVMTIDS is system speci�c,

and so obviously would not �t into the standard. The timing routines are quite useful,

as they allow for system-independent timing, but timing does not have a great deal to do

with message passing. Finally, as a service to the user, we allow him to access the BLACS'

message ID computation routines. For the user mixing primitive (i.e. system-speci�c)

30

message passing with the BLACS, these routines may be convenient. None of these things

�t into a message passing standard, and so they are provided by the present BLACS as

uno�cial service routines.

9.5.1 SETPVMTIDS

SETPVMTIDS(NTASKS, TIDS)

NTASKS (input) INTEGER

The number of PVM tasks the user has spawned.

TIDS (input) INTEGER array of dimension (NTASKS)

This array contains the list of the NTASKS PVM task IDS which will

participate in the BLACS.

SETPVMTIDS, as its name implies, is a PVM speci�c routine. SETPVMTIDS is the

advanced PVM user's BLACS SETUP. BLACS SETUP may be too restrictive for someone

who is using PVM outside the BLACS. For example, they may want to start the main

process (process 0,0) via a call to pvm spawn, rather than starting it from the keyboard as

BLACS SETUP requires. SETPVMTIDS requires two parameters from the user. The �rst

is the total number of processes (or tasks) that any BLACS grid will use. Remember that

the BLACS is a static system: if you have P processes at the beginning of its execution,

you must have those same P processes when the BLACS �nish execution. Therefore, the

user must set NTASKS to be the largest number of processes he will ever use.

The second argument required by SETPVMTIDS is a list of TIDS in an integer array

of at least length NTASKS. All processes require these inputs. This means that in order to

use SETPVMTIDS, the PVM user should spawn all of his processes, keeping their TIDS

in an integer array, then send that array to all participating processes, and �nally have

them all call SETPVMTIDS. At this point, he has performed the actions inherent in a

BLACS SETUP call, and he may then proceed to use the BLACS as usual (can make

calls to BLACS PINFO, and then to BLACS GRIDINIT or BLACS GRIDMAP, and then

proceed with the normal BLACS code).

9.5.2 DCPUTIME

DOUBLE PRECISION FUNCTION DCPUTIME()
This routine returns time (in seconds) elapsed since an arbitrary starting point. We roughly

de�ne CPU time to be the time the processor spends actually executing user code. If CPU

time is not available on a given system, -1.0 is returned.

9.5.3 DWALLTIME

DOUBLE PRECISION FUNCTION DWALLTIME()
This routine returns time (in seconds) elapsed since an arbitrary starting point. Here we

loosely de�ne WALL time to be the time you would �gure if you looked at the clock on your

wall, began the operation, and then subtracted it from the time your clock showed at the

end of the operation. If WALL time is not available on a given system, -1.0 is returned.

31

9.5.4 KSENDID

INTEGER FUNCTION KSENDID(ICONTXT, RDEST, CDEST)

ICONTXT (input) INTEGER

Integer handle indicating the BLACS context.

RDEST (input) INTEGER

The row destination of the message that needs an ID.

CDEST (input) INTEGER

The column destination of the message that needs an ID.

Returns a BLACS message ID the user may safely use in primitive send calls.

9.5.5 KRECVID

INTEGER FUNCTION KRECVID(ICONTXT, RSRC, CSRC)

ICONTXT (input) INTEGER

Integer handle indicating the BLACS context.

RSRC (input) INTEGER

The row source of the message that needs an ID.

CSRC (input) INTEGER

The column source of the message that needs an ID.

Returns a BLACS message ID the user may safely use in primitive receive calls.

9.5.6 KBSID

INTEGER FUNCTION KBSID(ICONTXT, SCOPE)

ICONTXT (input) INTEGER

Integer handle indicating the BLACS context.

SCOPE (input) CHARACTER*1

Indicates whether a process row (SCOPE='R'), column ('C'), or entire

grid ('A') will participate broadcast.

Returns a BLACS message ID the user may safely use in for the source (destination) of a

primitive broadcast (combine).

9.5.7 KBRID

INTEGER FUNCTION KBRID(ICONTXT, SCOPE, RSRC, CSRC)

32

ICONTXT (input) INTEGER

Integer handle indicating the BLACS context.

SCOPE (input) CHARACTER*1

Indicates whether a process row (SCOPE='R'), column ('C'), or entire

grid ('A') will participate broadcast.

RSRC (input) INTEGER

The row source of the broadcast message that needs an ID.

CSRC (input) INTEGER

The column source of the broadcast message that needs an ID.

Returns a BLACS message ID the user may safely use for the destination (contributor) of

a primitive broadcast (combine).

33

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. \LAPACK Users'

Guide, Second Edition". SIAM, Philadelphia, PA, 1995.

[2] E. Anderson, Z. Bai, C. Bischof, J.W. Demmel, J. J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, and A. McKenney. LAPACK: A portable linear

algebra library for high-performance computers. Technical Report UT CS-90-105, LA-

PACK Working Note #20, University of Tennessee, 1990.

[3] M. Barnett, R. Little�eld, D. Payne, and R. A. van de Geijn. Global combine on

mesh architectures with wormhole routing. In 7th International Parallel Processing

Symposium, 1993.

[4] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley.

The Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Factoriza-

tion Routines. To appear in Scienti�c Programming, 1994. Also available as University

of Tennessee LAPACK Working Note #80, UT CS-94-246, 1994.

[5] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. \A Set of Level 3 Basic Linear

Algebra Subprograms". ACM Transactions on Mathematical Software, 16(1):1{17,

1990.

[6] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. \Algorithm 656: An extended

Set of Basic Linear Algebra Subprograms: Model Implementation and Test Programs".

ACM Transactions on Mathematical Software, 14(1):18{32, 1988.

[7] J. Dongarra and E. Grosse. \Distribution of mathematical software via electronic

mail". Communications of the ACM, 30:403{407, 1987.

[8] J. Dongarra and R. van de Geijn. \Two dimensional Basic Linear Algebra Communi-

cation Subprograms". Technical Report UT CS-91-138, LAPACK Working Note #37,

University of Tennessee, 1991.

[9] J. Dongarra, R. van de Geijn, and D. Walker. \A Look at Scalable Dense Linear

Algebra Librairies". Technical Report UT CS-92-155, LAPACK Working Note #43,

University of Tennessee, 1992.

[10] Jack J. Dongarra, Robert A. van de Geijn, and R. Clint Whaley. Two dimensional

basic linear algebra communication subprograms. In Jack J. Dongarra and Bernard

Tourancheau, editors, Environments and Tools for Parallel Scienti�c Computing, pages

31{40. Elsevier Science Publishers B.V., 1993.

[11] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard . In-

ternational Journal of Supercomputer Applications and High Performance Comput-

ing, 8(3/4), 1994. Special issue on MPI. Also available electronically, the url is

ftp://www.netlib.org/mpi/mpi-report.ps.

34

[12] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM: A Users' Guide and Tutorial for Networked Parallel Computing. MIT Press,

1994. The book is available electronically, the url is ftp://www.netlib.org/pvm

3/book/pvm-book.ps.

[13] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. \a users' guide to PICL: a

portable instrumented communication library". Technical Report ORNL/TM-11130,

Oak Ridge National Laboratory, 1990.

[14] Ching-Tien Ho and S. Lennart Johnsson. Distributed routing algorithms for broad-

casting and personalized communication in hypercubes. In Proceedings of the 1986

International Conference on Parallel Processing. IEEE Press, 1986.

[15] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. \Basic Linear Algebra Subprograms

for Fortran Usage". ACM Transactions on Mathematical Software, 5(3):308{323, 1979.

[16] R. Clint Whaley. \Basic Linear Algebra Communication Subprograms: Analysis and

Implementation Across Multiple Parallel Architectures". Technical Report UT CS-94-

234, LAPACK Working Note #73, University of Tennessee, 1994.

35

A C Interface to the BLACS

2is Data operated on is TYPE is

i integer int

s single precision real oat

d double precision real double

c single precision complex oat

z double precision complex double

Table 6: Pre�x to C type declaration mapping

Throughout this guide we have been presenting the Fortran 77 interface to the BLACS. The

BLACS also have a C interface. In order to avoid name-space conicts, all C BLACS have

C prepended to them (thus DGEBS2D becomes Cdgebs2d, for instance). The only other

di�erence is that C allows the user to pass parameters by value or by address, and the C

interface takes advantage of this capability. The names and uses of the parameters remain

the same. In particular, the user should note that the C interface BLACS still require the

arrays passed in to use column-major storage.

The calling sequences and parameter declarations of the C BLACS are presented below.

Here we use the 2 to represent the type pre�x. Table 6 provides the mapping from the type

pre�x to the TYPE declaration. This information, coupled with the routine descriptions

given in the body of this report, should allow the C programmer to use the BLACS.

A.1 Support Routines

A.1.1 Initialization

void Cblacs pinfo (int *mypnum, int *nprocs)

void Cblacs setup (int *mypnum, int *nprocs)

void Cblacs get (int icontxt, int what, int *val)

void Cblacs set (int icontxt, int what, int *val)

void Cblacs gridinit (int *icontxt, char *order, int nprow, int npcol)

void Cblacs gridmap(int *icontxt, int *pmap, int ldpmap, int nprow, int npcol)

A.1.2 Destruction

void Cblacs freebu� (int icontxt, int wait)

void Cblacs gridexit (int icontxt)

void Cblacs abort (int icontxt, int errornum)

void Cblacs exit (int doneag)

A.1.3 Informational and Miscellaneous

void Cblacs gridinfo (int icontxt, int *nprow, int *npcol, int *myprow, int *mypcol)

int Cblacs pnum (int icontxt, int prow, int pcol)

36

void Cblacs pcoord (int icontxt, int pnum, int *prow, int *pcol)

void Cblacs barrier (icontxt, char *scope)

A.1.4 Uno�cial

void Csetpvmtids(int ntasks, int *tids)

double Cdcputime ()

double Cdwalltime ()

int Cksendid (int icontxt, int rdest, int cdest)

int Ckrecvid (int icontxt, int rsrc, int csrc)

int Ckbsid (int icontxt, char *scope)

int Ckbrid (int icontxt, char *scope, int rsrc, int csrc)

A.2 Point to Point

void C2gesd2d(int icontxt, int m, int n, TYPE *A, int lda, int rdest, int cdest)

void C2gerv2d(int icontxt, int m, int n, TYPE *A, int lda, int rsrc, int csrc)

void C2trsd2d(int icontxt, char *uplo, char *diag, int m, int n, TYPE *A, int lda, int rdest,

int cdest)

void C2trrv2d (int icontxt, char *uplo, char *diag, int int n, TYPE *A, int lda, int rsrc,

int csrc)

A.3 Broadcasts

void C2gebs2d(int icontxt, char *scope, char *top, int m, int n, TYPE *A, int lda)

void C2gebr2d(int icontxt, char *scope, char *top, int m, int n, TYPE *A, int lda, int rsrc,

int csrc)

void C2trbs2d(int icontxt, char *scope, char *top, char *uplo, char *diag, int m, int n,

TYPE *A, int lda)

void C2trbr2d(int icontxt, char *uplo, char *diag, int m, int n, TYPE *A, int lda, int rsrc,

int csrc)

A.4 Combines

void C2gsum2d(int icontxt, char *scope, char *top, int m, int n, TYPE *A, int lda,

int rdest, int cdest)

void C2gamx2d(int icontxt, char *scope, char *top, int m, int n, TYPE *A, int lda,

int *RA, int *CA, int RCag, int rdest, int cdest)

void C2gamn2d(int icontxt, char *scope, char *top, int m, int n, TYPE *A, int lda,

int *RA, int *CA, int RCag, int rdest, int cdest)

37

B Degrees of Blocking

This appendix provides further discussion of the blocking levels introduced in Section 4.5,

and the reasons behind the choices for the BLACS blocking levels. The blocking levels of

the BLACS communication routines are:

� vXXSD2D (XX = GE, or TR) : Locally-blocking.

� vXXRV2D (XX = GE, or TR) : Globally-blocking.

� vXXBS2D (XX = GE, or TR) : Globally-blocking.

� vXXBR2D (XX = GE, or TR) : Globally-blocking.

� vGZZZ2D (ZZZ = SUM, AMX or AMN) : Globally-blocking.

B.1 Non-blocking communication

The BLACS do not provide the user with any non-blocking routines. An understanding of

this type of communication should still be helpful to the user, however. Therefore, we shall

briey discuss non-blocking communication, and why the BLACS do not explicitly provide

this capability.

As previously mentioned, after a non-blocking communication has been posted, the user

must probe to determine when the operation has completed. This allows the user to begin

an operation, and then do unrelated work until the operation completes (which is deter-

mined by the aforementioned probing). In some relatively restricted conditions, this can

lead to fairly large performance gains. However, we have found the use of non-blocking

communication to be highly error-prone, often leading to non-deterministic or overly com-

plex code. Because of the di�culty in correctly using non-blocking communication, the

BLACS, which try to provide an easy-to-program interface, do not explicitly support it.

However, whenever it yields increased performance or functionality, the BLACS may use

non-blocking communication internally, where its complexity can be shielded from the user.

To give the reader an idea of how non-blocking communication works we will use the

example of two processes (for convenience labeled process 0 and process 1) exchanging data

(the user bu�er is provided by the variable X). This example will be used in each section

to illustrate how the various levels of blocking work. The following pseudo-code fragment

shows a possible way to perform this swap:

IAM = MYPROCESSID()

IF(IAM.EQ.0) THEN

NON_BLOCKING_SEND FROM VARIABLE X TO PROCESS 1

NON_BLOCKING_RECV INTO VARIABLE TMP FROM PROCESS 1

ELSE IF(IAM .EQ. 1) THEN

NON_BLOCKING_SEND FROM VARIABLE X TO PROCESS 0

NON_BLOCKING_RECV INTO VARIABLE TMP FROM PROCESS 0

END IF

.

.

38

<DO UNRELATED WORK>

.

.

PROBE UNTIL SEND COMPLETES

PROBE UNTIL RECV COMPLETES

X = TMP

Even with this simple example, we can see some opportunities for user error. For

example, say the user forgets to probe for completion of the send. Then, let us say that

process 0's receive completes quickly. Therefore, we overwrite X with process 1's data.

Then, when the send is actually completed, process 1 receives its own data back, instead

of process 0's data. There are many other ways to go wrong here, and it is for this reason

that the BLACS provide no explicit non-blocking operations.

B.2 Locally-blocking

As mentioned before, only send operations may be locally-blocking. Remember that re-

turning from a locally-blocking operation implies the bu�er is available for re-use, and will

complete even if the complement of the routine has not been posted. It is impossible for

a receive to store the send's contents in the bu�er (and thus free it for re-use) before the

message has been sent, and therefore we see that receives may only be non- or globally-

blocking.

We say that a locally-blocking send guarantees completion even if the corresponding

receive has not been called. This is actually too strong an assertion. In reality, we guarantee

completion up to the limit of available bu�er space.

If a locally-blocking send is begun, and the corresponding receive has not been posted,

the data to be sent must be bu�ered so that is not lost when the user's bu�er is returned to

him. This system bu�er may be allocated by the sending process, the destination process,

or by the hardware which transports the send. In any case, the amount of bu�er space

available will always have an upper limit (amount of physical memory free, amount of virtual

memory, etc.). When this space is exhausted, the sends will block until enough system

bu�er space becomes available (i.e., until enough of the outstanding sends are completed

by the posting of the corresponding receive). Therefore, while locally-blocking sends allow

us greater exibility than the more restrictive globally-blocking sends we will soon discuss,

it is not a good idea to post a great number of them without posting any receives.

As in the non-blocking section, we give an example of two processes swapping data, this

time using a locally-blocking send, and a globally-blocking receive.

IAM = MYPROCESSID()

IF(IAM.EQ.0) THEN

LOCALLY_BLOCKING_SEND FROM VARIABLE X TO PROCESS 1

GLOBALLY_BLOCKING_RECV INTO VARIABLE X FROM PROCESS 1

ELSE IF(IAM .EQ. 1) THEN

LOCALLY_BLOCKING_SEND FROM VARIABLE X TO PROCESS 0

GLOBALLY_BLOCKING_RECV INTO VARIABLE X FROM PROCESS 0

END IF

39

B.3 Globally-blocking

Our de�nition of globally-blocking is a little looser than the common de�nition. Usually,

globally-blocking means that return from an operation insures that the complementary

operation has also been called. In other words, return from a globally-blocking send guar-

antees that the complementary receive has been posted. In this document, however, the

term globally-blocking is used to describe any operation that is not guaranteed (see the pre-

vious section for a little hedging on using the word \guaranteed" in this context) to return

without the complementary post. This means, for instance, that while we must program

our code to allow for the possibility that a globally-blocking send does not complete until

the corresponding receive is posted, we cannot assume that returning from the send implies

that the receive has been posted. For example, we can't use one globally-blocking send to

synchronize two processes.

The familiar swapping example, this time using globally-blocking sends and receives, is

given below.

IAM = MYPROCESSID()

IF(IAM.EQ.0) THEN

GLOBALLY_BLOCKING_SEND FROM VARIABLE X TO PROCESS 1

GLOBALLY_BLOCKING_RECV INTO VARIABLE X FROM PROCESS 1

ELSE IF(IAM .EQ. 1) THEN

TMP = X

GLOBALLY_BLOCKING_RECV INTO VARIABLE X FROM PROCESS 0

GLOBALLY_BLOCKING_SEND FROM VARIABLE TMP TO PROCESS 0

END IF

Note that process 0 posts a send, followed by a receive, while process 1 posts the receive

�rst, and then the send. If we attempted to use the same pattern as we did with locally-

blocking sends (i.e., both processes send and then receive), with a globally-blocking send,

we see that process 0 enters the send, and waits for process 1 to start its receive before

continuing. In the meantime, process 1 starts to send to 0, and therefore waits for 0 to

receive before continuing. Both processes are now waiting on each other, and the program

will therefore never continue.

For this simple swap example, having one process reverse the order of its calls is an

obvious �x. However, when the communication is not just between two processes, but

rather involves a hierarchy of processes, determining how to avoid this kind of di�culty can

become problematic. To be precise, on a system with globally-blocking sends, the following

is required in order to show that a code is deadlock free: Let each process be a node in a

graph, and let each globally-blocking send create an arc from the sender to the receiver.

Let the corresponding receive destroy the arc created by the send. We must never achieve

a steady state (all sends/receives which may be reached have been accounted for) where

there is a cycle.

For this reason, it was decided that the BLACS would support locally-blocking point to

point sends. On systems natively supporting globally-blocking sends, non-blocking sends

coupled with bu�ering are used to create locally-blocking sends. The BLACS support

globally-blocking point to point receives.

40

Up till now, we have discussed the blocking levels mainly in terms of point to point mes-

sage passing, where each operation involves at most two processes. The concept naturally

extends to the scoped operations (broadcast and combine), however.

A locally-blocking scoped operation would guarantee to return even if no other processes

in the scope called the routine; a globally-blocking scoped operation must be called by all

processes before any process is guaranteed to return. All scoped operations in the BLACS

are de�ned as globally-blocking.

The only scoped operation which could be programmed as strictly locally-blocking is the

broadcast/send operation. However, since only one process in the scope would be calling it,

and the others would have to be programmed as globally-blocking, it does not add greatly

to the programmability of the code to have locally-blocking broadcast/sends. Further, on

some platforms it is possible to achieve considerably better performance if broadcast/sends

are allowed to be globally-blocking, and we therefore de�ned it to fall in line with the other

scoped operations as globally-blocking.

C BLACS Error Handling

This section describes the BLACS error handling features. The BLACS error handling

behavior may be changed at compile time using the C preprocessor macro BlacsDebugLvl.

If you are unsure what debug level your BLACS are using, this can be ascertained by call

BLACS GET (see Section 9.4.1 for details).

If the BLACS are compiled with a BLACS debug level of 0, very little error checking is

performed. A few critical things will be checked (for instance, BLACS GRIDINIT will still

not allow you to allocate a process grid with more processes than there are available), but

for performance reasons, the BLACS will not check most of the parameters.

It is therefore highly recommended that the user link his code to a BLACS library

compiled with debug level 1 while debugging his code. BLACS debug level 1 mainly does

parameter checking. A few other services are also provided. For instance, the user will be

warned if a process sends a message to itself. Having a process send to itself is legal, but it

displays very poor performance, and requires enough bu�er space that it can occasionally

cause hangs for large messages. The BLACS therefore issue a warning when this behavior

is detected.

Many times the debug level 0 code will simply hang, and the developer is left without

any clue as to what has gone wrong. This may be caused by, for instance, trying to receive

from a process which is not in the current context. The debug level 1 BLACS can detect

this sort of a user error, and issue a (hopefully helpful) message.

The BLACS issue three types of messages:

1. BLACS warning: BLACS detect risky behavior, but attempt to correct or ignore.

Warning message is printed, and execution proceeds.

2. BLACS error: BLACS detects an error, prints an error message, and kills the machine

via a call to BLACS ABORT.

3. System error: The BLACS receive an error message from the underlying system, which

is then passed on to the user, and the BLACS kills the machine.

41

C.1 BLACS Warning and Error Messages

All BLACS warning messages are printed by the internal routine BlacsWarn, and all BLACS

error messages are printed by the internal routine BlacsErr. The only real di�erence

between BlacsWarn and BlacsErr is that BlacsErr calls BLACS ABORT after the message

is printed.

With these central routines handling BLACS error messages, it should be relatively easy

for the programmer to modify error handling if the default routines are not adequate for

his needs. One particularly annoying problem is that on many systems a print to the screen

takes a long time to �nish. BlacsErr may then kill the machine before the print reaches

the screen, and the error message is lost. In this case, the user may wish to make BlacsErr

wait before killing, or not kill at all, for instance.

BLACS warning messages have the following form:

BLACS WARNING '<explanation string>'

from {<p>,<q>}, pnum=<pnum>, Contxt=<ictxt>, on line <#> of file '<fname>'.

BLACS error messages have the form:

BLACS ERROR '<explanation string>'

from {<p>,<q>}, pnum=<pnum>, Contxt=<ictxt>, on line <#> of file '<fname>'.

The meaning of these parameters are:

� explanation string This is the message which should help the user track down what

is wrong. For example, on an incorrect call to BLACS GRIDINIT, the user might get:

Process 0 had 2 x 4 grid; correct is 1 x 4.

� fp, qg: The row and column process grid coordinates of the process issuing the

warning/error.

� pnum: This will be the process number returned in the �rst argument of BLACS PINFO.

� ictxt: The integer context handle. Please note that this value is not the same across

all processes. For instance, process f0, 0g may have ictxt = 0 and process f0, 1g
have ictxt = 1 for the same context. However, the pnum and ictxt together provide

an unambiguous process/context identi�er.

� #: The line number within the �le fname which issued the warning.

� fname: The �le name where the routine which issued the warning/error is located.

Not all of this information may be available at the time an error or warning is issued.

For instance, if the error occurs before the creation of the grid, the process grid coordinates

will be unavailable. For any value which the BLACS cannot �gure out, a -1 is printed to

indicate that the value is unknown.

C.1.1 Examples

A few examples should aid in understanding the BLACS warning and error messages.

42

Example 1

BLACS WARNING 'Failure to call BLACS_GET before grid creation makes code non-portable'

from {-1,-1}, pnum=0, Contxt=-1, on line -1 of file 'BLACS_GRIDINIT/BLACS_GRIDMAP'.

Here we see that the user has failed to get a system context via a call to BLACS GET,

so that the context handle passed to BLACS GRIDINIT or BLACS GRIDMAP is unini-

tialized. In this case, we were able to detect and correct this, so it is a warning and not an

error. If by chance the incoming context had been set to a valid system context, however,

we would not have been able to detect the problem, and the new BLACS context would

probably be incorrectly de�ned.

Since this error occurred before the process grid/context was created, we see that the

process grid coordinates and the context handle are unavailable, and thus printed as -1.

Further, at this point the BLACS do not know which �le the user originally called from

(BLACS GRIDINIT or BLACS GRIDMAP) and thus are also unable to supply the line

number.

Example 2

BLACS ERROR 'CSRC out of range; CSRC=100, NPCOL=2'

from {0,0}, pnum=0, Contxt=0, on line -1 of file 'igerv2d_.c'.

Here we see that process f0, 0g has issued an illegal receive by specifying the the process

column source of the message is 100, when there are in fact only 2 process columns. We see

that the error is in a call to IGERV2D, and that the line number was unavailable.

C.2 System Error Messages

There are times when the BLACS will receive an error message from the underlying system

which is not handled by the BLACS. At this time, the BLACS will print the system error

message, and exit. Since these error messages come from the underlying system, their form

will necessarily vary depending on which BLACS version is being used. The user may need

to obtain a book describing system error messages to understand the message. For example,

if the PVM BLACS are being used, a PVM error number will be returned. The PVM quick

reference guide, for example, could then be consulted to translate the error number into an

understandable error message.

C.2.1 Examples

Example 1

libpvm [t40025]: pvm_upkint(): End of buffer

40025: PVM ERROR #-5 on call to pvm_upkint on line 25 of file iunpack00.c.

Here we see that the pvm library has printed out an error message saying we've tried to

unpack past the end of our bu�er. The BLACS have passed back a PVM error number of

-5, which is shown to be `PvmNoData: read past end of buffer' when looked up on the

PVM quick reference guide. Further, we see that the PVM routine in use when the error

43

occurred was pvm_upkint, and that it was called on line 25 of the BLACS internal routine

iunpack00. This together with some examination of the code in question, revealed that in

this case we were trying to receive more data than was sent.

This example is especially well chosen because it illustrates a weakness in the present

version of the BLACS error messages. The user is informed that the error occurred in the

internal routine iunpack00, but not what interface routine originally called iunpack00.

Because of this lack in the BLACS, the user must examine all possible candidates (in this

case, calls to integer point to point receives, broadcast/receives, or combines), for the error.

This is a problem that, despite its relative simplicity, has not yet been addressed.

Example 2

BLACS ERROR 'MPL error PEMPL17 on call to mpc_recv'

from {0,0}, pnum=0, Contxt=0, on line -1 of file 'Arecv2d00.c'.

Here we see that the BLACS are using BlacsErr to print a system error message. This

particular error might occur when using the MPL BLACS. At this point, the IBM AIX

Parallel Environment Installation and Diagnosis manual should be consulted. This book

indicates that the error PEMPL17 translates to `The bu�er speci�ed for the operation was

too small to hold the received message'.

D Repeatability and coherence

Floating point computations are not exact on almost all modern architectures. This lack

of precision is particularly problematic in parallel operations. The fact the oating point

computations are inexact has led us to classify our algorithms according to whether they

are repeatable and to what degree they guarantee coherence. A routine is repeatable if

it is guaranteed to give the same answer if called multiple times with the same parallel

con�guration and input. A routine is coherent if all processes selected to receive the answer

get identical results.

Please note that repeatability and coherence do not e�ect correctness. A routine may be

both incoherent and non-repeatable, and still give correct output. It is just that inaccuracies

in oating point calculations may cause the routine to return di�ering values, all of which

are equally valid.

In the following sections, we will provide illustrative examples as we examine repeata-

bility and coherence in greater detail.

D.1 Repeatability

Because oating point arithmetic is not exact, it is therefore not truly associative (i.e., (a

+ b) + c may not be the same as a + (b + c)). The lack of exact arithmetic can cause

problems whenever their exists the possibility for reordering of oating point calculations.

This problem becomes prevalent in parallel computing due to race conditions in message

passing. A simple example should help in understanding the problem. Let us say we have

a routine which sums numbers stored on di�erent processes. Let us run this routine on 4

44

processes, with the numbers to be added being the process numbers themselves. Therefore,

process 0 has the value 0:0, process 1 has the value 1:0, etc.

One algorithm for the computation of this result is to have all processes send their

process numbers to process 0; process 0 then adds them up, and sends the result back to

all processes. So, process 0 wants to add a number to 0:0 in the �rst step. If we order

our receives, so that process 0 always receives the message from process 1 �rst, then 2, and

�nally 3, we have a repeatable algorithm, the result of which is ((0:0 + 1:0) + 2:0) + 3:0.

However, to get the best parallel performance, it is better not to force a particular

ordering, and just have process 0 add the �rst available number to its value, and continue

to do so until all numbers have been added in. If we perform this optimization, a race

condition occurs, because the order of the operation is determined by the order in which

the messages arrive on process 0, which can be e�ected by any number of things. This

algorithm is not repeatable, because the answer may vary between invocations, even if the

input is the same. For instance, one run might produce the sequence ((0:0+1:0)+2:0)+3:0,

while a subsequent run could produce ((0:0 + 2:0) + 1:0) + 3:0. Both of these results are

correct summations of the given numbers, but because of oating point roundo�, they may

be di�erent.

Therefore, we see that a routine is repeatable if multiple invocations on the same input

using the same parallel setup are guaranteed to produce the exact same result.

We classify a routine as not repeatable if multiple invocations on the same input using

the same parallel setup may produce di�erent, but equally valid results.

D.2 Coherence

We state that a routine produces coherent output if all processes are guaranteed to have the

exact same solution. Obviously, almost no algorithm involving communication is coherent

if communication can change the values being communicated. Therefore, if the parallel

system being studied cannot guarantee that communication between processes preserves

values, none of our routines are guaranteed to produce coherent results.

If communication is assumed to be coherent, there are still various levels of coherent

algorithms. Some algorithms will guarantee coherence only if oating point operations are

done the exact same on every node. We call this homogeneous coherence: the result will be

coherent of the parallel machine is homogeneous in its handling of oating point operations.

A stronger assertion of coherence is heterogeneous coherence, which does not require all

processes to have the same handling of oating point operations.

In general, a routine that is homogeneous coherent performs computations redundantly

on all nodes, so that all processes get the same answer only if all processes perform arith-

metic in the exact same way, whereas a routine which is heterogeneous coherent is usually

constrained to having one process calculate the �nal result, and broadcast it to all other

processes. Let us go back to our example of summing the process numbers of a 4 process

machine for some insight into these levels of coherence.

D.2.1 Example of Incoherence

An incoherent algorithm is one which does not guarantee that all processes get the same

result even on a homogeneous system with coherent communication. If we go back to our

45

example of summing the process numbers, we can demonstrate this kind of behavior. One

way to perform such a sum is to have every process broadcast its number to all other

processes. Each process then adds these numbers, starting with its own. The results each

process receives would then be:

Process 0 : ((0:0+ 1:0) + 2:0) + 3:0

Process 1 : ((1:0+ 2:0) + 3:0) + 0:0

Process 2 : ((2:0+ 3:0) + 0:0) + 1:0

Process 3 : ((3:0+ 0:0) + 1:0) + 0:0

All of these results are equally valid, and all may be di�erent from each other. This

algorithm is therefore incoherent. As a side note, notice that this algorithm is repeatable:

each process will get the same result if the algorithm is called again on the same data.

D.2.2 Example of Homogeneous Coherence

Another way to perform this summation is to have all processes send their data to all other

processes, and to ensure we don't have the problem of the previous example, we enforce the

natural ordering. Therefore, the answers each node gets is ((0:0 + 1:0) + 2:0) + 3:0. This

answer is the same for all processes only if all processes do the oating point arithmetic in

the same way. Otherwise, each process may make di�erent oating point errors during the

addition, leading to incoherence of the output. Notice that since we have forced an ordering

on the addition, this algorithm is repeatable.

D.2.3 Example of Heterogeneous Coherence

In our �nal example, let us say we have all processes send the result to process 0, which

adds the numbers and broadcasts the result to the rest of the processes. Since one process

does all the computation, it can choose any order it wishes and it will give coherent results

as long as communication is itself coherent. If we do not force a particular order on the way

we do the addition, the algorithm will not be repeatable. If we force a particular order, it

will be repeatable.

D.3 Summing it up

We have seen that repeatability and coherence are separate issues which may occur in

parallel computations. These concepts may be summarized as:

� Repeatability: The routine will yield the exact same result if it run multiple times

on an identical problem. Each process may get a di�erent result than the others (i.e.,

repeatability does not imply coherence), but that value will not change if the routine

is invoked multiple times.

� Homogeneous coherence: All processes selected to possess the result will receive

the exact same answer if:

{ Communication does not change the value of the communicated data.

{ All processes perform oating point arithmetic exactly the same.

46

� Heterogeneous coherence: All processes will receive the exact same answer if

communication does not change the value of the communicated data.

We have seen that in general, lack of the associative property for oating point calcula-

tions may cause both incoherence and/or non-repeatability. We have seen that algorithms

that rely on redundant computations are at best homogeneous coherent, and that algo-

rithms in which one process broadcasts the result are heterogeneous coherent. It has been

shown that repeatability does not imply coherence, nor does coherence imply repeatability.

Since these issues do not e�ect the correctness of the answer, they may be ignored in

most cases. However, in very speci�c situations, these issues may become very important.

One would not want to have a stopping criteria based on incoherent results, for instance.

A user �rst writing and debugging a parallel program may wish to enforce repeatability so

the exact same program sequence occurs on every run, etc.

In the BLACS, we speak of coherence and repeatability only in the context of the

combine operations. As mentioned above, it is possible to have communication which is

incoherent (for instance, two machines which store oating point numbers di�erently may

easily produce incoherent communication, since a number stored on machine A may not

have a representation on machine B). However, the BLACS cannot control this issue. We

make the assumption that communication is coherent, which for communication implies

that it is also repeatable.

For combine operations, the BLACS allow the user to set ags indicating he wishes

combines to be repeatable and/or heterogeneous coherent (see Section 9.4 for details on

setting these ags).

If the BLACS are instructed to guarantee heterogeneous coherency, the BLACS will

restrict the topologies which can be used so that one process �gures the �nal result of the

combine, and if necessary, broadcasts the answer to all other processes.

If the BLACS are instructed to guarantee repeatability, orderings will be enforced in

the topologies which are selected. This may result in loss of performance which can range

from negligable to serious depending on the application.

A couple of additional notes are in order. We have discussed incoherence and non-

repeatability arising as a result of oating point errors. This might lead the reader to

suspect that integer calculations are always repeatable and coherent, since they involve

exact arithmetic. This is true if overow is ignored. With overow taken into consideration,

even integer calculations can display incoherence and non-repeatability. Therefore, if the

repeatability or coherence ags are set, the BLACS will treat integer combines the same as

oating point combines in enforcing repeatability and coherence guards.

By their nature, maximization and minimization should always be repeatable. In the

complex precisions, however, the real and imaginary parts must be combined in order to

obtain a magnitude value used to do the comparison (this is typically jrj+ jij or
p
r2 + i2).

This allows for the possibility of heterogeneous incoherence. The BLACS therefore restrict

which topologies are used for maximization and minimization in the complex routines when

the heterogeneous coherence ag is set.

47

E Broadcast Topologies

This appendix discusses the broadcast topologies o�ered by the present BLACS versions in

greater detail.

Many factors e�ect the choice of which topology to use. First, the user must decide if

any processor is more important than others. For instance, if the source processor's time

is more important than other processors', a ring topology is often optimal. On the other

hand, if everyone needs the information quickly, some type of tree is often best.

Some topologies tie up the sending processor for large amounts of time, and di�erent pro-

cessors get the information at di�erent times depending on topology. Also, some topologies

are \noisy", i.e. many communications are issued simultaneously, while others are \quiet".

Noisy algorithms will cause problems on systems where network conicts are problematic.

Quiet algorithms are likely to force some processors to wait much longer than they would

if a \noisy" topology had been used, since less communication is going on in parallel.

Some topologies are \pipelining", i.e., the �rst such operation synchronizes the proces-

sors so that subsequent operations will be cheap.

In the discussion of the presently supported topologies given below, we use the following

symbols: Np, the number of processors involved in the operation, and Tc, the time for a

complete communication (send and receive). Simpli�ed estimates of the time to perform a

given algorithm are given below. For a more complete handling of this topic, see [16]

All �gures displaying communication patterns are shown with Np = 8, because this size

is adequate to show o� the features of the topologies, and is still small enough to �t into a

reasonable amount of space. Further, the processors are numbered from 0; : : : ; (Np�1). We

do not specify grid coordinates because these broadcasts can operate on rows or columns, or

the entire grid. If we instantiate such a picture as a row broadcast, for instance, these values

are column indices. For ease of reference, we will still refer to a given index as \processor I",

but this should be taken to mean the processor at the I'th position in a row, a column, or in

the grid. Please note as well that the term processor has now replaced process. We present

timing analysis in this section, and they will not be accurate if more than one process is

spawned to a given processor.

To be consistent, processor 0 is always shown as the source (destination) of the broad-

cast (combine). Finally, a label S = I to the left of a �gure indicates that the algorithm

is in the I'th step. For the time analysis discussed in the text, it is assumed the BLACS

are operating in an environment where an arbitrary number of processors may be commu-

nicating simultaneously. This assumption will a�ect the accuracy of our prediction if the

number of actual links is less than those assumed by the algorithm.

At the present time there are two classes of broadcast topology. The �rst class involves

topologies based on rings. The second classi�cation consists of topologies based on trees.

Within these classes, there are several di�erent algorithms. For ring topologies, the main

di�erences involve which direction within the ring messages ow (increasing/decreasing),

and the number of rings the scope is separated into (Nr). For tree topologies, the main

variables involve the number of branches (Nb) at each node of the tree, and which branch

is sent to �rst.

These classes are explained in detail below, and Table 7 provides a quick summation of

some of the more important properties. This Table speci�es the number of steps until the

48

algorithm completes (STEPS), the number of messages sent during step i (SENDS, S = i),

the number of processors who are �nished with the routine after step i is complete (PROCS

DONE, S = i), the time the source processor spends in the algorithm (SRC TIME), and

�nally the maximum time spent by any processor in the operation (MAX TIME). The

analyses shown in Table 7 have been simpli�ed by assuming that Nr is an even multiple of

Np, and Nb = 1, with Np an integer multiple of 2. The speci�c topology section should be

examined for full details.

Nr{RING 1{TREE

Steps Np=Nr log2(Np)

SENDS, S = i Nr (2)i

PROCS DONE, S = i 1 +Nr � i 0

SRC TIME Nr � Tc log2(Np) � Tc
MAX TIME (

(Np�1)

Nr
+Nr � 1) � Tc log2(Np) � Tc

PIPELINING? YES NO

Table 7: Broadcast topology highlights

E.1 Broadcast Ring Topologies

The various ring topologies are discussed below. All of these topologies can experience

pipelining of various degrees. Our timing models assume that processors are roughly syn-

chronized when entering the broadcast. However, when a ring broadcast is performed, it

forces an obvious ordering onto the processors; i.e, the �rst processor in the ring will leave

the operation before the processor which follows it in the ring. This means that once the

cost of the �rst broadcast is paid, the processors are optimally ordered to perform another

ring broadcast. The time each processor incurs for the second broadcast will be roughly

Tc, rather than that given in the text. Therefore, whenever a given processor is to issue

several consecutive broadcasts, use of a ring topology should be considered. It will result

in minimization of the sender's time as usual, but since the ordering cost is incurred only

once, it may result in faster overall transfer rates as well.

Pipelines can be maintained if the algorithm ows across processors in an orderly way.

For example, if the sender of row broadcasts starts out as the �rst process column, and then

is the second, etc, an increasing ring pipeline will be maintained. If the ow is in the opposite

direction, it may be possible to set up a decreasing ring pipeline. The e�ects of pipelining

on broadcast times will be discussed in greater detail after all ring-based topologies have

been explained.

Unidirectional Ring Unidirectional ring topologies require the source processor to issue

one broadcast, and each processor then receives and forwards the message. The two unidi-

rectional ring topologies are increasing ring (TOP = 'I'), and decreasing ring, (TOP = 'D').

These algorithms have the advantage that the originating processor must spend only Tc time

in the broadcast. However, the last processor in the ring will spend (Np � 1) � Tc time in

algorithm. Figures 3 and 4 respectively show increasing and decreasing ring broadcast.

49

Unidirectional rings are the most \quiet" algorithms possible: only one processor is sending

at a time.

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

- - - - - - -0 1 2 3 4 5 6 7

Figure 3: Increasing ring broadcast

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

� � � � � ��
�

��

0 1 2 3 4 5 6 7

Figure 4: Decreasing ring broadcast

Split Ring The split ring attempts to alleviate the long waiting time inherent in unidi-

rectional rings, without tying up the originating node. Examining Figure 5 should convince

the reader that the longest time spent in the algorithm is roughly bP=2c � Tc, and that the

source spends (2 � Tc) time in broadcast. The split ring topology is called by TOP = 'S'.

Although it is unlikely to be important in all but the most critical of optimizations, the user

should know that the split ring sends in the increasing direction �rst. This is a relatively

\quiet" algorithm as only two processors will be sending at any one time.

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

- - - - � ��
�

��

0 1 2 3 4 5 6 7

Figure 5: Split ring broadcast

Multiring The multiring algorithm (also referred to as multipath) provides a scalable

ring algorithm. By de�nition, the graph created by a multiring topology is not a ring at

all, but is instead a special kind of tree. We call it a ring topology despite this, because

it behaves like the true ring topologies: pipelining may occur, and maximum time in the

algorithm scales linearly with the number of processors involved.

In this algorithm, the user provides the number of rings (Nr) upon which the broadcast

is to proceed. The processors participating in the broadcast are then split up into Nr

separate increasing or decreasing rings (increasing rings result if BLACS SET is called with

a positive Nr, decreasing rings are used if Nr is set to a negative number). Figure 6 shows a

multiring with Nr = 3. Note that the source sends to the closest ring �rst, and the farthest

ring last. This may seem counter-productive, in the sense that if we would like to minimize

link contention, sending the to far ring �rst makes more sense. However, ring topologies

are most useful in pipelined codes, where, since the ow of the algorithm proceeds in one

direction across the processors, the time spent by the nearer processors is more important

50

than that of the far processors.

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

- - - - -

� �� �
? ?

0 1 2 3 4 5 6 7

Figure 6: Multiring broadcast with Nr = 3

This algorithm requires dNp=Nre steps, and at each step Nr sends will be initiated. The

source processor is �nished after the �rst step, and Nr processors �nish each step thereafter.

The source processor must send to all rings, and so its time in the algorithm should beNr�Tc.
The longest time spent in this algorithm will be roughly ((Np�1)=Nr +Nr � 1) � Tc.

Most instantiations of the multiring topology will be relatively \quiet", since at worst

Nr processors will be sending at the same time.

Calling the multiring algorithm is more complicated than the less general algorithms

described above. Not only must a topology be selected, but a number of rings must be

passed to the BLACS. The general purpose support routine BLACS_SET may be used to do

this. Multiring is called by setting TOP = 'm'. Here is an example of the recommended

way to call the multiring topology:

call blacs_set(icontxt, 11, 3)

call dgebs2d(icontxt, 'Row', 'm', m, n, A, lda)
...

call dgebs2d(icontxt, 'Column', 'm', 3, 2, work, 5)

Notice that BLACS_SET need only be called when changing Nr, therefore, in the example

above, both the row and column broadcasts will split their processors into 3 increasing

rings.

Pipelining All ring-based topologies can display pipelining. However, as the number of

rings (Nr) increases, the pipeline advantage tends to decrease. After a ring broadcast, each

separate ring is correctly pipelined with respect to the processors within its ring, but not

with the source processor. As the source processor sends more and more messages, this lack

of synchronization becomes worse. An example illustrates this principle. Assume we have

just �nished a Nr-ring broadcast. At this point the maximum cost paid is that given in the

topology description above (call this time T 1). We then repeat this broadcast k times. If

we have a 1-ring, all processors are synchronized so that the total cost is just T 1+k �Tc. If
Nr > 1, however, for each iteration beyond the �rst we pay the Tc cost, plus the cost of the

other sends the source has had to issue before sending to our ring again. Thus, in general,

the cost is T 1 + k �Nr � Tc.

51

E.2 Broadcast Tree Topologies

Hypercube The �rst tree-based topology is called hypercube. This algorithm is a spe-

cialized broadcast which matches the Intel i860's hypercube network. It uses bit level

operations to achieve low overhead in computing source and destination of messages. It

was originally coded by Robert van de Geijn[3, 14], and only slightly modi�ed for inclusion

in the BLACS. This topology requires that Np be an integer power of 2. If it is not, the

general tree algorithm described below is called instead. A �nal detail is that at each node

in the tree, messages are sent to the nearest node �rst. This broadcast strategy is shown in

Figure 7.

Hypercube broadcasts are most useful when getting the information out to all processors

is more important than saving origin node time. It requires all nodes to spend roughly

Tc � log2(Np) time in the broadcast. Hypercube broadcasts are relatively \noisy", since the

number of processors sending at one time grows with Np. In the last step of the broadcast,

Np=2 processors will be sending simultaneously.

General Tree The �nal topology that is supported is the general tree broadcast. It allows

the user to choose the number of branches (Nb) at each step in the broadcast tree. Figures

8, 9 and 10 show general tree broadcasts with Nb = 1; 2; 3. Note that general tree with

Nb = 1 is a hypercube broadcast where at each node in the tree, the node furthest from the

present node is sent to �rst. This tends to minimize link contentions, if the assumption is

made that processors far away from each other tend not to share the same link.

With this algorithm, Np does not have to be an integer power of Nb. The timing analysis

for this algorithm is relatively complex, so we do not reproduce it here (analysis for the

most common use, Nb = 1 is shown in Table 7). See [16] for full details.

General tree broadcasts are obviously \noisy", and the greater Nb and Np are, the more

\noisy" the algorithm becomes. This topology may be called in several ways. If the user

sets TOP = 't', the routine BLACS_SET should be used in the same way as discussed for

multiring. An example should clarify this:

call blacs_set(icontxt, 11, 2)

call dgebs2d(icontxt, 'Row', 't', m, n, A, lda)

This would call the general tree algorithm with Nb = 2. The ways to call the general

tree broadcast are summarized below.

52

��
��

��
��
��
��

��
��
��
��
��
��

��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

S = 0

S = 1

S = 2

S = 3 0

0

0

0

1

1

1

2

2

3

3

4 5 6 7

J
J
J
J
Ĵ

Z
Z
Z
Z
Z
Z
Z~

Z
Z
Z
Z
Z
Z
Z~

PPPPPPPPPPPPPPPPq

PPPPPPPPPPPPPPPPq

PPPPPPPPPPPPPPPPq

PPPPPPPPPPPPPPPPq

Figure 7: Hypercube broadcast, nearest node �rst.

TOP Explanation

'1' tree with Nb = 1.

'2' tree with Nb = 2.

'3' tree with Nb = 3.

'4' tree with Nb = 4.

'5' tree with Nb = 5.

'6' tree with Nb = 6.

'7' tree with Nb = 7.

'8' tree with Nb = 8.

'9' tree with Nb = 9.

't' tree with Nb = I,where I is set by call to BLACS SET.

'f ' perform fully-connected broadcast, i.e. Nb = Np� 1

53

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

S = 0

S = 1

S = 2

S = 3 0

0

0

0

1 2

2

3 4

4

4

5 6

6

7

PPPPPPPPPPPPPPPPq

Z
Z
Z
Z
Z
Z
Z~

Z
Z
Z
Z
Z
Z
Z~

J
J
J
J
Ĵ

J
J
J
J
Ĵ

J
J
J
J
Ĵ

J
J
J
J
Ĵ

Figure 8: General tree broadcast with Nb = 1

��
��

��
��

��
��

��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

S = 0

S = 1

S = 2 0

0

0

1 2 3

3

4 5 6

6

7

XXXXXXXXXXXXXXXXXXXXXXXXz

HHHHHHHHHHHj

Z
Z
Z
Z
Z
Z
Z~

Z
Z
Z
Z
Z
Z
Z~

J
J
J
J
Ĵ

J
J
J
J
Ĵ

J
J
J
J
Ĵ

Figure 9: General tree broadcast with Nb = 2

54

��
��

��
��

��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

S = 0

S = 1

S = 2 0

0

0

1 2 3 4

4

5 6 7

PPPPPPPPPPPPPPPPq

Z
Z
Z
Z
Z
Z
Z~

Z
Z
Z
Z
Z
Z
Z~

HHHHHHHHHHHj

HHHHHHHHHHHj

J
J
J
J
Ĵ

J
J
J
J
Ĵ

Figure 10: General tree broadcast with Nb = 3

55

F Combine Topologies

At the present time, only two topologies are supported for combines. All of the notation

used in the discussion of broadcast topologies is required in this discussion. In addition,

the time To, de�ned to be the time required to perform the given operation (max, min, or

sum) and TD, the time the destination processor spends in the algorithm, are also needed.

F.1 General Tree Gather

The �rst combine topology is the general tree gather, or fan-in, which is basically the same

algorithm as the general tree broadcast (or fan-out) described in appendix E.2, except that

communication ows in the opposite direction. Figures 11 and 12 show the communication

patterns of this algorithm with Nb = 1 and Nb = 4 (as before, Nb refers to the number of

branches at each node of the tree).

If all processors in the scope of the operation need the information, it is rebroadcast

using broadcast's general tree algorithm. This topology can be called in the exact same

way as broadcast's general tree algorithm, i.e. through the use of BLACS_SET and setting

TOP = 't', or by setting TOP ='1' : : :'9'.

Assuming that only one processor needs the answer (the case when all processors require

the answer will be dealt with later) this topology has many desirable features. First, at

each step of the algorithm only 1
Nb

of the processors left in the operation go on to the next

step.

In [16] it is shown that for the presently supported platforms, Nb = 1 will usually be the

best choice to minimize TD. It is further demonstrated that Nb > 1 broadcasts are typically

competitive only for small problem sizes.

With these caveats, we say that Nb = 1 is the interesting choice, and then, TD =

dlog2(Np)e(Tc + To). If all processors require the answer, it is found as above, and then

broadcast to all processors via the general tree algorithm described in Section E.2. The

longest time any processor would then spend in the algorithm would be dlog2(Np)e(2�Tc+To)
This topology is always coherent, and by default is not repeatable. It can be made

repeatable by forcing an ordering on the recieves.

F.2 Bidirectional Exchange

This topology is specialized for leave-on-all combines, and therefore, if a leave-on-one com-

bine has been requested, the general tree algorithm with Nb = 1 is called instead. It is

based on an algorithm presented in [3]. This topology involves having pairs of processors

exchange information, and thus it performs best when Np is an integer power of 2. The

communication pattern inherent in this algorithm is shown in Figure 13. As the user can

see, this an extremely \noisy" algorithm: every processor is sending and receiving at every

step in the algorithm. It is called by setting TOP = 'h'.

Unless the platform supports the overlap of sends and receives, this topology is inferior

to fan-in/fan-out. If sends and receives cannot occur simultaneously, the best speed this al-

gorithm can achieve is TD = log2(Np)�(2�Tc+To), the same as for fan-in/fan-out. However,

fan-in/fan-out in general has less link contention, so this topology is only recommended on

platforms where sends and receives can be overlapped.

56

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

S = 0

S = 1

S = 2

S = 3

0

0

0

0

1 2

2

3 4

4

4

5 6

6

7

�
�
�
��/

�
�
�
��/

�
�
�
��/

�
�
�
��/

�
�

�
�

�
�

��+

�
�

�
�

�
�

��+

����������������)

Figure 11: General tree gather with Nb = 1

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��

��
��

��
��

S = 0

S = 1

S = 2

0

0

0

1 2 3 4 5

5

6 7

�
�
�
��/

�
�
�
��/

�
�

�
�

�
�

��+

�
�

�
�

�
�

��+

������������

����������������)

��������������������9

Figure 12: General tree gather with Nb = 4

57

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

S = 0

S = 1

S = 2 0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

�Qs �Qs �Qs �Qs

Qk� Qk� Qk� Qk�

�
��

�
��

Q
QQs

Q
QQs

Q
QQk

Q
QQk

�
��

�
��

�
��

�
��

Q
QQs

Q
QQs

Q
QQk

Q
QQk

�
��

�
��

��������

��������

��������

��������

HHHHHHHHj

HHHHHHHHj

HHHHHHHHj

HHHHHHHHj

HH
HH

HH
HHY

HH
HH

HH
HHY

HH
HH

HH
HHY

HH
HH

HH
HHY

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

Figure 13: Bidirectional exchange

Assuming simultaneous send and receive, we have two interesting cases. If Np is an

integer power of two, all processors will spend roughly TD = log2(Np) � (Tc + To) in the

algorithm. If Np is not an integer power of two, the �rst step of the algorithm requires

processors beyond the power of two to send their values to processors within an integer

power of two, the normal bidirectional exchange takes place, and then the answers are

sent back out to the non-power of two processors. Then, processors will spend roughly

TD = 2 � Tc + To + blog2(Np)c � (Tc + To) in the algorithm.

In the best case, this algorithm will give all processors the answer in the same amount of

time that it takes to get the answer to one processor using the fan-in algorithm. However, it

will rarely be the case that this speed is realized. Not only must simultaneous send/receive

be allowed, but a twice the bandwidth is required, and a network of at least the richness

of a hypercube is required to avoid link conicts. Therefore, fan-in/fan-out should be used

in the general case, and this topology should be utilized only when timings show that it is

superior.

This topology is homogeneous coherent, and repeatable. If the user asks the BLACS to

enforce heterogeneous coherence, this topology will not be used.

G Multiring Combine

In this release, only the MPI version has a multiring combine. This topology is much like

multiring broadcast: the processes participating in the combine are split up intoNr (number

58

of rings set by the user) seperate increasing or decreasing rings, which send their partial

result to the destination process, where the �nal result is calculated. If the answer is to be

left on all processes, it will be broadcast using the multiring broadcast.

The time to get the answer to one process is TD = (b(Np� 1)=Nrc+Nr � 1) � (Tc+ To)

If the answer is left on all nodes, the longest time any process spend in the algorithm would

be (b(Np � 1)=Nrc +Nr � 1) � (2 � Tc + To).

This algorithm can be used to minimize link contention on systems where that is a major

concern, and it can display pipelining as well.

Combine pipelining is not as straightforward as broadcast. First, if the answer is left on

all processes, the maximal pipe length will be b(Np � 1)=Nrc. After this many combines,

the broadcast message from previous combines will begin to interfere with new combines.

Mixing pipes formed by broadcasts with those made by combines is not straightforward.

In order to use a pipe made by an increasing ring broadcast, for instance, the combine's

destination process must be the left neighbor of the broadcast's source. Similarly, the

combine destination would need to be the right neighber of a decreasing broadcast source.

59

H Example Program

The following routine takes the available processes, forms them into a process grid, and then

has each process check in with the process at f0,0g in the process grid. For more detailed

examples, see the BLACS homepage.

PROGRAM HELLO

* -- BLACS example code --

* Written by Clint Whaley 7/26/94

* Performs a simple check-in type hello world

* ..

* .. External Functions ..

INTEGER BLACS_PNUM

EXTERNAL BLACS_PNUM

* ..

* .. Variable Declaration ..

INTEGER CONTXT, IAM, NPROCS, NPROW, NPCOL, MYPROW, MYPCOL

INTEGER ICALLER, I, J, HISROW, HISCOL

*

* Determine my process number and the number of processes in

* machine

*

CALL BLACS_PINFO(IAM, NPROCS)

*

* If in PVM, create virtual machine if it doesn't exist

*

IF (NPROCS .LT. 1) THEN

IF (IAM .EQ. 0) THEN

WRITE(*, 1000)

READ(*, 2000) NPROCS

END IF

CALL BLACS_SETUP(IAM, NPROCS)

END IF

*

* Set up process grid that is as close to square as possible

*

NPROW = INT(SQRT(REAL(NPROCS)))

NPCOL = NPROCS / NPROW

*

* Get default system context, and define grid

*

CALL BLACS_GET(0, 0, CONTXT)

CALL BLACS_GRIDINIT(CONTXT, 'ROW', NPROW, NPCOL)

CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYPROW, MYPCOL)

*

* If I'm not in grid, go to end of program

60

*

IF ((MYPROW.GE.NPROW) .OR. (MYPCOL.GE.NPCOL)) GOTO 30

*

* Get my process ID from my grid coordinates

*

ICALLER = BLACS_PNUM(CONTXT, MYPROW, MYPCOL)

*

* If I am process {0,0}, receive check-in messages from

* all nodes

*

IF ((MYPROW.EQ.0) .AND. (MYPCOL.EQ.0)) THEN

WRITE(*,*) ' '

DO 20 I = 0, NPROW-1

DO 10 J = 0, NPCOL-1

IF ((I.NE.0) .OR. (J.NE.0)) THEN

CALL IGERV2D(CONTXT, 1, 1, ICALLER, 1, I, J)

ENDIF

*

* Make sure ICALLER is where we think in process grid

*

CALL BLACS_PCOORD(CONTXT, ICALLER, HISROW, HISCOL)

IF ((HISROW.NE.I) .OR. (HISCOL.NE.J)) THEN

WRITE(*,*) 'Grid error! Halting . . .'

STOP

END IF

WRITE(*, 3000) I, J, ICALLER

10 CONTINUE

20 CONTINUE

WRITE(*,*) ' '

WRITE(*,*) 'All processes checked in. Run finished.'

*

* All processes but {0,0} send process ID as a check-in

*

ELSE

CALL IGESD2D(CONTXT, 1, 1, ICALLER, 1, 0, 0)

END IF

30 CONTINUE

CALL BLACS_EXIT(0)

1000 FORMAT('How many processes in machine?')

61

2000 FORMAT(I)

3000 FORMAT('Process {',i2,',',i2,'} (node number =',I,

$ ') has checked in.')

STOP

END

62

