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Abstract

This paper is an exploration of diskless checkpointing for distributed scienti�c com-

putations. With the widespread use of the \Network Of Workstation" (NOW) platform

for distributed computing, long-running scienti�c computations need to tolerate the

changing and often faulty nature of NOW environments. We present high-performance

implementations of several algorithms for distributed scienti�c computing, including

Cholesky factorization, LU factorization, QR factorization, and preconditioned conju-

gate gradient. These implementations are able to run on PVM networks of at least N

processors, and can complete with low overhead as long as any N processors remain

functional. We discuss the details of how the algorithms are tuned for fault-tolerance,

and present the performance results on a PVM network of SUN workstations, and on

the IBM SP2.

1 Introduction

For decades, scienti�c computation has been a driving force behind parallel and distributed
computing. Traditionally such computations have been performed on the largest and most
expensive supercomputers: the Cray C90, Intel Paragon, and Maspar MP-2. Recently the
price and performance of uniprocessor workstations and o�-the-shelf networking has im-
proved to the point that networks of workstations (NOWs) provide a parallel processing plat-
form that is competitive with the supercomputers. In fact, many new supercomputers like
the Thinking Machines CM5, the IBM SP2, and the new SHRIMP multicomputer [BLA+94]
bear a closer resemblance to NOWs than they do to their supercomputer ancestors. The
popularity of NOW programming environments like PVM [GBD+94], and the availability of
high-performance libraries for scienti�c computing on NOWs like ScaLAPACK [CDPW92]
show that networks of workstations are already in heavy use for scienti�c programming.

The major problem with programming on a NOW is the fact that it is prone to change.
Idle workstations may be available for computation at one moment, and gone the next. Thus,
on the wish list of scienti�c programmers is a way to perform computation on a NOW whose
components may change over time due to failure or availability.
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This paper provides a solution to this problem, especially tailored to the needs of scienti�c
programmers. The solution is based on diskless checkpointing, a means of providing fault-
tolerance without any dependence on disk. The end result is that as long as there are N
processors available in the NOW (where N is de�ned by the user), and as long as processor
failures come singly, the computation can progress reliably.

We describe our approach of incorporating diskless checkpointing in four subroutines
from ScaLAPACK: Cholesky factorization, LU decomposition, QR factorization and Pre-
conditioned Conjugate Gradient (PCG). It is subroutines like these that are the heart of
scienti�c computations. We show the performance of these subroutines on two PVM net-
works of seventeen workstations in the absence of failures, and in the face of single processor
failures.

The importance of this work is that it demonstrates a novel technique of executing high-
performance scienti�c computations on a changing pool of resources.

2 Supercomputers vs. NOWs

The two main di�erences between supercomputers and NOWs are non-uniformity and tran-
sience. These mandate a di�erent approach to fault tolerance on each platform. This is
important because fault-tolerance on supercomputers is essentially a solved problem. In this
section, we outline the di�erences between supercomputers and NOWs and their impact on
fault-tolerance.

A supercomputer is a single computing resource. Each processor in a supercomputer is
of the same type, and each runs a special operating system so that every node is a uniform
part of the whole. A supercomputer is usually allocated exclusively for a single user, or, if
it can be partitioned, then each partition is allocated exclusively. The �le system is often
implemented using special disks and processors at the periphery of the supercomputer so
that �les are uniformly available, regardless of which partition is being used. If one processor
or part of the network fails, the whole computational platform is rendered useless until the
faulty part is �xed.

For this reason, fault-tolerance in supercomputers is straightforward. Consistent check-

pointing can be used to save the state of a parallel program. In consistent checkpoint-
ing, all processors cooperate to take a global checkpoint. This checkpoint is composed
of uniprocessor checkpoints for every processor in the system, and a log of messages that
are in transit during checkpointing. Many algorithms exist for taking consistent check-
points [CL85, KT87, LNP92] and implementations have shown that the simplest of these,
a two-phase commit called \Sync-and-stop" yields performance on par with the most com-
plex [PL94b]. Checkpointing performance is dependent on the size of the individual check-
points, the speed of the �le system, and the amount of physical memory available for bu�er-
ing [EJZ92, PL94b]. These conclusions are not likely to change as new supercomputers are
released unless the model of exclusive node partitioning and wholesale partition failures is
changed.

In contrast, a NOW is a distributed resource that is highly shared. Processors can be of
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di�erent architectures, and are usually running a time-sharing operating system like Unix1.
As such, the processors are never allocated exclusively, and more often than not are running
numerous user-level processes, most of which are very short-lived or I/O bound (such as
editors, shells window systems, etc). Thus, the processors have the capacity to execute
CPU-bound programs, but in a less tightly-controlled manner than in supercomputers.

Each processor generally has its own local disk and access to other disks via a network
�le system like NFS. However, �le availability and access speed varies from processor to
processor. If processors are in di�erent domains, then they may share no �les; this requires
binary and data �les to be replicated across domains. In short, the consistent view to �les
provided by supercomputer �le systems is lost.

Programs for NOWs are generally written using some NOW programming environment
that provides process control, message passing, etc. The fault-tolerance of the program de-
pends on the failure model of the programming environment. In early NOW programming
environments, the user had to con�gure a \virtual machine" before running his or her pro-
gram. Once the collection of processors comprising the machine was selected, processors
could not be added or deleted, and individual processor failures rendered the entire system
useless, as in a supercomputer. In recent NOW programming environments, like PVM ver-
sion 3 [GBD+94] and Isis [BM89], the \virtual machine" can tolerate change. Processors can
be added to or removed from the collection and failures are tolerated.

In such systems, consistent checkpointing is overkill. If one processor fails, the whole
collection of processors must restart themselves from disk. Moreover, if the failed processor
cannot be brought back online, then its checkpoint �le will be unavailable unless it has been
saved on a central �le server which will then be a source of contention during checkpoint-
ing [LFS93]. Instead of consistent checkpointing, a more relaxed model of checkpointing is
needed | one that is tailored to the dynamic nature of NOWs. We describe such a model
in the next section.

3 A Model for Scienti�c Programs that Live on a

NOW

Ideally, a scienti�c program executing on a NOW should be able to \live" on whatever pool
of processors is currently available to that NOW. Processors should be able to leave the
NOW whenever they fail or become too heavily loaded, and they should be able to join the
NOW when they become functional and idle. We describe a model of scienti�c computation
that approaches this ideal.

We are running a high-performance scienti�c program, like electromagnetic scattering or
atomic structure calculation. The bulk of the work in such programs is composed of well
known subproblems: solving partial di�erential equations and linear systems. These sub-
problems are typically solved using high-performance libraries, such as ScaLAPACK [CDPW92],
which are designed to get maximum performance out of the computing platform. An im-
portant performance consideration is domain decomposition, which is how the problem is
partitioned among the available processors to achieve optimal locality for minimizing cache

1Unix is a trademark of Unix Systems Laboratories
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misses, and to minimize the e�ects of message transmission. To perform domain decompo-
sition properly, the number of processors is usually �xed at some N , often a perfect square
or power of two.

To retain high-performance, we assume that the program is optimized to run on exactlyN
processors. Our computing platform is assumed to be a NOW, which can contain any number
of processors at any one time. Our model of computation for fault-tolerance is as follows.

Whenever the NOW contains at least N processors, the computation should be running
on N of the processors. Whenever the NOW contains fewer than N processors, the compu-
tation is swapped o� the NOW. This can be done by some sort of consistent checkpointing
scheme that saves a global checkpoint to a central �le server at very coarse intervals (for
example once every hour). Such checkpointing schemes are straightforward and have been
discussed and implemented elsewhere [KT87, EJZ92, LFS93, EZ94, PL94b].

Whenever the NOW contains more than N processors, then the computation should be
running in such a manner that if any processor that is running the computation drops out of
the NOW, due to failure or load, then it can be replaced quickly by another processor in the
NOW. This is the important part of the computing model, because it means that as long
as the pool of processors in the NOW numbers greater than N elements, then even if the
pool itself changes, the computation should be progressing e�ciently, while still maintaining
fault-tolerance to wholesale failures.

4 The Checkpointing Algorithm

The algorithm is based on diskless checkpointing [PL94a]. If the program is executing on N

processors, then there is a N + 1-st processor called the parity processor. At all points in
time, a consistent checkpoint is held in the N processors in memory. Moreover, the bitwise
exclusive-or � of the N checkpoints is held in the parity processor. This is called the parity
checkpoint. If any processor fails, then its state can be reconstructed on the parity processor
as the exclusive-or of the parity checkpoint and the remaining N�1 processors' checkpoints.

Diskless checkpointing has been shown to be e�ective at providing fault-tolerance for
single processor failures as long as there is enough memory to hold single checkpoints in
memory. To reduce the memory requirements, incremental checkpointing can be used, and
compression can be helpful in reducing the load on network bandwidth [PL94a].

To make checkpointing as e�cient as possible, we implement algorithm-based check-
pointing. In other words, rather than implement checkpointing transparently as in Fail-Safe
PVM [LFS93], we hard-wire it into the program. This is bene�cial for several reasons. First,
the checkpointing can be placed at synchronization points in the program, which means that
checkpoint consistency is not a worry. Second, the checkpointed state can be minimized
because the checkpointer knows exactly what to save and how to reconstruct state. This
is as opposed to a transparent checkpointer that must save all program state because it
knows nothing about the program. Third, with transparent checkpointing, checkpoints are
binary memory dumps, which rules out a heterogeneous recovery. With algorithm-based
checkpointing, the recovery routines can plan for recovery by a di�erent processor. In short,
algorithm-based checkpointing is good because it enables the checkpointing to be as e�cient
as possible [LMJ93]. Its major drawback is that it requires the programmer to worry about
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and program for fault-tolerance. However, if the algorithms being checkpointed can be put
into frequently-used library calls, then the extra work is justi�able [SVS94].

5 Checkpointing High-Performance Distributed Ma-

trix Operations

We focus on two classes of matrix operations: direct, dense factorizations and an iterative
equation solver. The matrix factorizations (Cholesky, LU and QR) are operations for solv-
ing systems of simultaneous linear equations and �nding least squares solutions of linear
systems. The iterative equation solver called Preconditioned Conjugate Gradient (PCG)
is used to solve sparse systems of linear equations [Bar94]. All have been implemented in
LAPACK [ABB+92] and ScaLAPACK [CDPW92], which are public-domain libraries pro-
viding high-performance implementations of linear algebra operations for uniprocessors and
all kinds of parallel processing platforms.

We have implemented fault-tolerant versions of Cholesky, LU, QR, and PCG in ScaLA-
PACK. In the sections that follow, we provide an overview of how each operation works, and
how we make it fault-tolerant. Further details on the ScaLAPACK implementations may be
found in [GV89], [DDSv91], and [CDPW92].

5.1 Cholesky Factorization
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Figure 1: Data distribution of a matrix with 6 � 6 blocks over a 2 � 2 mesh of processors

Of the three factorizations implemented here, Cholesky is the simplest, and thus we describe
it �rst. In Cholesky factorization, a dense, symmetric, positive de�nite matrix A is factored
into two matrices L and LT (i.e. A = LLT ) such that L is lower triangular. The algorithm
for performing Cholesky factorization in ScaLAPACK is called \top-looking", and works as
follows.
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First, the matrix A is partitioned into square \blocks" of a user-speci�ed block size b.
Then A is distributed among the processors P0 through PN�1, logically recon�gured as a
p � q mesh, as in Figure 1. For obvious reasons, a row of blocks is called a \row-block"
and a column of blocks is called a \column-block." If there are N processors, and A is an
m � n matrix, then each processor holds m=p row-blocks and n=q column-blocks, where it
is assumed that p and q divide m and n, respectively.

The factorization of A is performed in place. In other words, the matrix A is given as
input to the factoring subroutine, and when the subroutine is �nished, A has been replaced
by L in its lower triangular half, and LT in its upper triangular half.
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Figure 2: A snapshot of step i for Cholesky Factorization

The factorization is performed in steps, one for each column-block of the matrix. At
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the beginning of step i, the leftmost i � 1 column-blocks are assumed to be factored, and
the remaining column-blocks are unchanged. In step i, the i-th column-block gets factored.
Thus, each step looks as in Figure 2. Inherent in this picture is the communication | for
example, to perform A22  A22 � L21 � LT

21, all the involved blocks must be sent to the
processor holding A22. Note also that Figure 2 is also a logical representation of the system.
Since A is symmetric, only half of the matrix needs to be stored.

The key fact to notice from Figure 2 is that at step i, only A22, A32, and AT

32 get modi�ed.
The rest of the blocks in the factorization remain the same. Since AT

32 is not stored by the
system, this means that only column-block i is modi�ed during step i.

To make the Cholesky factorization fault-tolerant, we �rst allocate a processor PN . For
each panel of N blocks in the matrix, there is one block in PN containing the bitwise exclusive-
or of each block in the panel. This is depicted in Figure 3 for the example system of Figure 1.
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Figure 3: Partitioning the matrix for checkpointing

Moreover, each processor Pj (including PN ) allocates room for an extra column-block
called CB j. Now, the algorithm for performing fault-tolerant Cholesky Factorization is as
follows:

� Initialize the global state of the system (including PN ).

� For each step i:

{ Let Pj be a processor with blocks in column-block i. Pj copies these blocks to CBj .

{ PN also copies its blocks corresponding to blocks in column-block i to CBN .

{ The processors perform step i.

{ The processors Pj (0 � j < N) cooperate with PN to update the exclusive-or for

newly-modi�ed blocks in column-block i.

{ The processors synchronize, and go to the next iteration.
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Figure 4: A snapshot of step i for LU Factorization

Thus, at the beginning of each step, the processors hold the state of the factorization as
depicted in Figure 3. If any one processor Pj fails, then it can be replaced by PN , or by a
new processor. This new processor calculates Pj 's state from the bitwise exclusive-or of the
remaining processors. Obviously, PN can be replaced in a similar manner.

If any one processor Pj fails in the middle of a step, then the remaining processors can
roll back to the beginning of the step by copying CB back to column-block i. Then Pj can
be recovered as described in the preceding paragraph.

It is assumed here that failure detection is provided by the computing platform.

5.2 LU Factorization

In LU factorization, a dense matrixA is factored using a sequence of elementary eliminations
with pivoting such that �A = LU , where L is a lower triangular matrix with 1's on the
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diagonal, U is an upper triangular matrix, and � is a permutation matrix. � is necessary
for numerical stability | i.e. permuting rows of A to minimize the growth of roundo� error
during the elimination. LU factorization involves a general non-symmetric matrix; and thus
is computationally more complex than Cholesky factorization.

There are many di�erent algorithm variants for implementing LU factorization on parallel
machines. (See [DDSv91] for details.) These variants can be viewed as di�ering in which
regions of data are being accessed and computed during each step. Below, we describe the
\left-looking" variant and how it is checkpointed.

Like Cholesky factorization, LU factorization is performed in place, replacing A with
L and U . Moreover, there is a permutation matrix � which is included as output to the
subroutine. Since a permutation matrix is simply the identity matrix I with rows permuted,
it may be represented by a one dimensional array, where the ith entry contains the index
of the non-zero element in row i of �. Like A, � is distributed among the processors. Each
processor Pj contains its portion of � in �j .

As before, the matrix is partitioned into blocks and distributed among the processors
and the factorization proceeds in steps, one for each column-block in A. In step i, the i-
th column-block is factored into its L and U components, and � is updated to re
ect the
pivoting. Each step looks as in Figure 4.

The key fact from Figure 4 is that at each step, only column-block i and the permutation
matrix �, represented as a linear array, are modi�ed. Therefore, the fault-tolerant version of
LU factorization is much like that of Cholesky factorization, except there is this additional
array � that must be checkpointed. To be speci�c, PN starts as in Cholesky factorization,
with blocks containing the exclusive-or of panels of blocks of A. Moreover, PN has some
memory �N , which contains the bitwise exclusive-or of each �j. Each processor Pj (including
PN ) allocates room for an extra column-block, CB j , and for a cache of �j called �0

j
. Now,

the algorithm for performing fault-tolerant LU Factorization is as follows:

� Initialize the global state of the system (including PN ).

� For each step i:

{ Let Pj be a processor with blocks in column-block i. Pj copies these blocks to CBj .

{ PN copies its blocks corresponding to blocks in column-block i to CBN .

{ All Pj (0 � j � N) copy �j to �
0
j
.

{ The processors perform step i.

{ The processors Pj (0 � j < N) cooperate with PN to update the exclusive-or for

newly-modi�ed blocks in column-block i, and for the newly modi�ed �.

{ The processors synchronize, and go to the next iteration.

The fault-tolerant operation of the LU factorization is much like the fault-tolerant oper-
ation of Cholesky factorization. The only di�erence is that � must be copied and restored
along with column-block i.
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5.3 QR Factorization

In QR factorization a real m� n matrix A is factored such that

A = Q

 
R

0

!
;

where Q is an m � n orthogonal matrix and R an n � n upper triangular matrix. In
the ScaLAPACK implementation of the QR factorization, the matrix Q is not generated
explicitly since it would require too much extra memory. Instead, Q can be applied or
manipulated through the identity Q = I � V TV T , where V is a lower triangular matrix of
\Householder" vectors, and T is an upper triangular matrix constructed from information
in V . In the ScaLAPACK implementation, when the factorization is complete, the matrix
A is transformed into V , T and R, where V is in the lower triangle of the two-dimensional
array used to hold the original matrix A, R is in the upper triangle of the array used to hold
the original matrix A, and T is stored in a one-dimensional array.

Complete details of the implementation of this algorithm are described in [GV89, DDSv91].
A high-level picture is provided in Figure 5.

It should be clear from Figure 5 that only column-block i of matrix A is changed during
factoring step i. Therefore, the fault-tolerant version of QR works exactly like the fault-
tolerant version of Cholesky | each processor Pj allocates an extra column-block CB j to
hold the initial value of column-block i during step i, so that the computation can be rolled
back to the beginning of step i if there is a failure.

5.4 Iterative equation solver (PCG)

Iterative equation solvers are used for the following problem: Given a large sparse matrix A
and a vector b, �nd the vector x such that Ax = b. Iterative equation solvers work by
providing an initial approximation to x, and then iteratively re�ning this approximation
until Ax = b to within some error tolerance. Unfortunately, no single iterative method is
robust enought to solve all sparse linear systems accurately and e�ciently. Therefore, we
limit our scope to one such method, known as \Preconditioned Conjugate Gradient" (PCG).

If A is positive de�nite symmetric, then PCG can be used to solve the system Ax = b

by projecting A onto a \Krylov subspace" and then solving the system in this subspace.
The details of the algorithm are beyond the scope of this paper [GV89, DDSv91, Bar94].
However its mechanics as they impact fault-tolerance are simple. First, the sparse matrix A
is represented in a dense form, and is then distributed along with b among the processors P0
through PN�1. After this point, A and b are not altered.

Now, the vectors p0, r0, w0 and �0 are calculated fromA and b. These intermediate vectors
are used to calculate the vector x0, which is the �rst approximation to x. The algorithm then
iterates as follows: The values of A, B, xi�1, pi�1, ri�1, wi�1 and �i�1 are used to calculate
pi, ri, wi and �i. These are then used to calculate xi, the i-th approximation to x. The
iterations continue until Axi = b to within a given error tolerance.

Adding fault-tolerance to the PCG algorithm is straightforward. First, the processors
distribute A, b, and allocate memory for xi, pi, ri, wi, and �i. The extra processor PN is
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initialized to contain the bitwise exclusive-or of all these variables. Now, each processor
(including PN ) must include extra vectors for each of x, p, r, w and �. These extra vectors
are maintained like CB in the factorization examples. They hold the values of xi�1, pi�1,
ri�1, wi�1 and �i�1 during step i so that the step can be rolled back following a failure.

Note that in PCG, we can checkpoint every k steps, by copying xi, pi, ri, wi and �i to
the extra vectors and computing the bitwise exclusive-or of x, p, r, w and � only when i is
a multiple of k. The result is that processors may roll back up to k steps upon a failure.
However, since checkpoints are only taken every k steps, the overhead of checkpointing will
be reduced by a factor of k.
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Network of Sparc-2's:

Matrix Size Running With Checkpointing Recovery
Total Time # of Ckp Running Total Overhead Over- Time
Size Check- Interval Time Overhead per ckp head

n (MBytes) (sec) points (sec) (sec) (sec) (sec) (sec)
1000 8 36 40 0.9 40 4 0.10 11.1 9
2000 32 171 80 2.1 188 17 0.21 9.9 33
3000 72 453 120 3.8 487 34 0.28 7.5 72
4000 128 934 160 5.8 994 60 0.38 6.4 130
5000 200 1666 200 8.3 1756 90 0.45 5.4 201

IBM SP2:

Matrix Size Running With Checkpointing Recovery
Total Time # of Ckp Running Total Overhead Over- Time
Size Check- Interval Time Overhead per ckp head

n (MBytes) (sec) points (sec) (sec) (sec) (sec) (sec)
1000 8 4.5 40 0.1 6 1.5 0.04 33.3 1
2000 32 18.0 80 0.2 25 7.0 0.09 38.9 4
3000 72 40.8 120 0.3 56 15.2 0.13 37.3 8
4000 128 70.9 160 0.4 99 28.1 0.18 39.6 14
5000 200 119.6 200 0.6 157 37.4 0.19 31.3 22

Table 1: Results for Cholesky Factorization on a 17 processor system.

6 Implementation Results

We ran these programs on two computing platforms: a network of Sparc-2 workstations, and
the IBM SP2 supercomputer. Both platforms support PVM [GBD+94].

The network of Sparc-2 workstations is a true NOW platform, consisting of 30 work-
stations connected via an ethernet in a terminal room. These workstations are generally
allocated for undergraduate classwork, and thus are usually idle during the evening and
busy executing I/O-bound and short CPU-bound jobs during the day. We ran our exper-
iments on these machines at night when we could allocate them exclusively for our own
use.

The IBM SP2 is a supercomputer that looks like a network of RS6000 processors. It
supports the typical failure model of supercomputers | if one processor fails the supercom-
puter shuts down. However, in the absence of failures, its performance mirrors that of a
high-performance NOW (i.e. a NOW with a faster network than an ethernet).

The results presented here are for a network of 17 processors, where 16 are running the
program and one is calculating the parity. We ran three sets of tests for each instance of
each problem. In the �rst there is no checkpointing. In the second, the program checkpoints,
but there are no failures, and in the third, a processor failure is injected randomly to one of
the processors, and the program completes with 16 processors. In the results that follow, we
present only the time to perform the recovery, since there is no checkpointing after recovery.

6.1 Cholesky Factorization

We ran �ve di�erent instances of the Cholesky Factorization, one for each of �ve matrix
sizes. In each run, the block size was 25. The data for this experiment is in Table 1.
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Network of Sparc-2's:

Matrix Size Running With Checkpointing Recovery
Total Time # of Ckp Running Total Overhead Over- Time
Size Check- Interval Time Overhead per ckp head

n (MBytes) (sec) points (sec) (sec) (sec) (sec) (sec)
1000 8 332 20 16.6 340 8 0.40 2.4 24
2000 32 1085 40 27.1 1112 27 0.68 2.5 72
3000 72 2295 60 38.2 2363 68 1.13 3.0 148
4000 128 3992 80 49.9 4135 143 1.79 3.6 255
5000 200 6672 100 66.7 7209 537 5.37 8.0 420

IBM SP2:

Matrix Size Running With Checkpointing Recovery
Total Time # of Ckp Running Total Overhead Over- Time
Size Check- Interval Time Overhead per ckp head

n (MBytes) (sec) points (sec) (sec) (sec) (sec) (sec)
1000 8 100 20 5.0 102 2.0 0.10 2.0 5
2000 32 291 40 7.3 296 5.0 0.12 1.7 9
3000 72 558 60 9.3 568 10.0 0.17 1.8 15
4000 128 923 80 11.5 941 18.0 0.23 2.0 26
5000 200 1378 100 13.8 1409 31.0 0.31 2.2 43

Table 2: Results for LU Factorization on a 17 processor system.

Cholesky Factorization is an O(n3) algorithm. Since each checkpoint consists of a column-
block's worth of data XOR'd together, checkpointing is O(n logN). For a �xed number of
processors, this is simply O(n). The overhead of checkpointing depends on the overhead
of individual checkpoints multiplied by the total number of checkpoints. The total number
of checkpoints is n=b (where b is the block size), which is O(n). This means that the total
overhead of checkpointing isO(n2). Thus we expect the percentage overhead of checkpointing
to decrease as n increases | this is corroborated in our experiment.

Recovery consists of taking the bitwise exclusive-or of every processor's matrix A. Thus,
recovery is O(n2 logN) = O(n2). This too is re
ected in the data. Notice that the time it
takes to recover is irrespective of the location of the failure.

An interesting thing to notice is that the block size has little impact on the overhead
of checkpointing. This is because the same total number of bytes (O(n2)) get checkpointed
during the lifetime of the computation.

6.2 LU and QR Factorization

The results from the LU and QR factorizations are in Tables 2 and 3. They are very similar
to the results from the Cholesky factorizations; however, more computation is performed,
meaning that individual factoring iterations are longer, and thus checkpointing is a smaller
percentage of the overall runtime. Note that the recovery times for LU and QR are roughly
twice those for Cholesky. This is because the matrixA is symmetric in Cholesky factorization,
and therefore only half of it needs to be checkpointed.
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Network of Sparc-2's:

Matrix Size Running With Checkpointing Recovery
Total Time # of Ckp Running Total Overhead Over- Time
Size Check- Interval Time Overhead per ckp head

n (MBytes) (sec) points (sec) (sec) (sec) (sec) (sec)
1000 8 845 20 42.2 894 49 2.45 5.8 20
2000 32 3492 40 87.3 3566 74 1.85 2.1 64
3000 72 9479 60 158.0 9578 99 1.65 1.0 156
4000 128 20201 80 252.5 20357 156 1.95 0.8 259
5000 200 37278 100 372.8 37666 388 3.88 1.0 439

IBM SP2:

Matrix Size Running With Checkpointing Recovery
Total Time # of Ckp Running Total Overhead Over- Time
Size Check- Interval Time Overhead per ckp head

n (MBytes) (sec) points (sec) (sec) (sec) (sec) (sec)
1000 8 231 20 11.6 241 10.0 0.50 4.3 2
2000 32 642 40 16.1 657 15.0 0.38 2.3 6
3000 72 1362 60 22.7 1386 24.0 0.40 1.8 15
4000 128 2512 80 31.4 2546 34.0 0.42 1.4 25
5000 200 4261 100 42.6 4302 41.0 0.41 1.0 37

Table 3: Results for QR Factorization on a 17 processor system.

6.3 Preconditioned Conjugate Gradient

We executed two instances of PCG: one with a 262144 � 262144 matrix A for 2000 iterations
on the network of Sparc-2's, and one with a 1048576 � 1048576 matrix A for 5000 iterations
on the SP2. These calculated x to within a tolerance of 10�7 and 10�10 respectively. The
results of these instances with varying values of k is in Table 4.

As stated in Section 5.4, the saved state of the PCG program consists of two parts |
the unchanging part (A and b), and the part that is checkpointed every k iterations (x, p, r,
w and �). The dense representation of A is a 5 �n matrix, where n = 262144 or 1048576.
Therefore, we expect the initial checkpointing step and each subsequent checkpointing step
to be roughly equal in duration. Table 4 corroborates this expectation | from columns
three and six, we calculate that the initial checkpointing of A and b takes approximately 38
seconds on the Sparc-2's and 30 seconds on the SP2, and each checkpoint of x, p, r, w and �
takes approximately 25 seconds on the Sparc-2's and 51 seconds on the SP2.

7 Discussion

7.1 The Results

The results presented in the previous section show that on current NOWs, the performance of
this method for fault-tolerant computation is very good. In the matrix factorizations on the
Network of Sparc-2's, the overhead of checkpointing is with only one exception under 10%.
The lone case with overhead above 10% is the n = 1000 instance of Cholesky factorization,
whose short running time (36 seconds) would preclude the necessity for fault tolerance.

On the SP2, the fault-tolerant Cholesky factorizations exhibit high overhead (40%). This
can be attributed to the fact that the fast processors and networking of the SP2 allow each
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Network of Sparc-2's:

k Running With Checkpointing Recovery
Time # of Ckp Running Total Overhead Over- Time

Check- Interval Time Overhead per ckp head
(sec) points (sec) (sec) (sec) (sec) % (sec)

10 2269 200 12 7309 5040 25.2 222 51
50 2269 40 58 3316 1047 26.2 46.1 53
100 2269 20 116 2807 538 26.9 23.7 53
500 2269 4 581 2406 137 34.3 6.0 54
1000 2269 2 1162 2355 86 43 3.8 55
2000 2269 1 2323 2330 61 61 2.7 56

IBM SP2:

k Running With Checkpointing Recovery
Time # of Ckp Running Total Overhead Over- Time

Check- Interval Time Overhead per ckp head
(sec) points (sec) (sec) (sec) (sec) % (sec)

50 2362 100 24 7548 5186 51.9 220 29
100 2362 50 47 4967 2605 52.1 110 29
500 2362 10 236 2899 523 52.3 22.1 30
1000 2362 5 472 2640 278 55.6 11.7 30
5000 2362 1 2362 2447 85 85 3.5 30

Table 4: Results for PCG on on a 17 processor system.

iteration of the factorization to run very fast with respect to the taking of each checkpoint.
The SP2 executes the factorizations so quickly (under two minutes for n = 5000) that
fault-tolerance is not really necessary. As n grows larger still and the running times get
into the range where fault-tolerance is desirable, the overhead of checkpointing will decrease
(see Section 6.1) to more reasonable values. The other factorizations on the SP2 have a
greater ratio of computation to checkpointing, and therefore exhibit very nice checkpointing
behavior.

In the PCG implementation, whenever k is greater than 265 on the Sparc-2's, and 1250
on the SP2, the overhead of checkpointing should be less than 10% (this value of k is obtained
using the checkpoint times stated in Section 6.3). This means that checkpoints can be taken
every �ve minutes on the network of Sparc-2's, and every ten minutes on the SP-2. Both
are reasonable checkpointing intervals.

7.2 Extra Parity Processors

The choice of one parity processor PN was made simply to present the concept of diskless
checkpointing. If the NOW executing the computation contains N + m processors, then
there is no reason why m � 1 of them should be idle. Instead of having all N processors
checkpoint to PN , we can partition the N processors into m groups G0; : : :Gm�1, and have
PN+j be responsible for checkpointing the processors in Gj , for 0 � j < m. This is basically
a 1-dimensional parity scheme, which can tolerate up to m simultaneous processor failures,
as long as each failure occurs in a di�erent group [GHK+89].

The extremewe have presented ism = 1. At the other extreme are systems like Isis [BJ89,
BM89] or Targon [BBG+89] where m = N , and every processor has a backup processor to
which it sends checkpoints. As m grows, the overhead of checkpointing and recovery will

15



decrease, since the recovery group size is smaller, which necessitates less information to be
combined at each parity processor.

To reliably tolerate any combination of multiple processor failures, extra parity processors
must be combined with more sophisticated error-correction techniques [BM93, BBBM94,
PFL94]. This means that every processor's checkpoint must be sent to multiple parity
processors. In the absence of broadcast hardware, this kind of fault-tolerance will likely
impose too great an overhead.

8 Related Work

Checkpointing supercomputers and distributed systems has been studied and implemented
by many people [BBG83, TS84, CL85, SY85, LY87, BBG+89, BJ89, SW89, JZ90, CJ91,
LRG91, EZ92, KMBT92, WF92, LFS93, LMJ93, PK93, VJ93, WF93, XN93, CA94, EZ94,
LNP94, PL94b, SVS94, Vai94]. All of this work however focuses on either checkpointing to
disk, or process replication. The technique of using a collection of extra processors to provide
fault-tolerance with no reliance on disk comes from Plank and Li [PL94a] and is unique to
this work.

There are e�orts to provide programming platforms for heterogeneous computing which
can adapt to changing load [Gel86, GK92, BDG+93, BSS94, CA94]. In all of these however,
the programmer must make his or her program conform to the programming model of the
platform. None are garden variety message-passing environments like PVM.

9 Conclusions

We have given a method for executing certain scienti�c computations on a changing Network
of Workstations. This method enables a computation designed to execute on N processors to
run on a NOW platform, where individual processors may leave and enter the NOW due to
failures or load. As long as the number of processors in the NOW numbers greater than N ,
and as long as processors leave the NOW singly, the computation can proceed e�ciently.

We have implemented this method on four scienti�c calculations and shown performance
results on two parallel testbeds: a network of Sparc-2 workstations connected by an eth-
ernet, and the IBM SP2. The results show that our methods exhibit low overhead while
checkpointing at a relatively �ne-grained intervals (in most cases less than 5 minutes).

Our future goals for this work are threefold. First, we are adding the ability for processors
to join the NOW in the middle of a calculation, and participate in the fault-tolerant oper-
ation of the program. Currently, once a processor quits, the system merely completes with
exactly N processors and no checkpointing. Second, we are adding the capacity for multiple
parity processors as outlined in Section 7.2. This should improve both the reliability of the
computation and the performance of checkpointing.

Finally, we would like to integrate this scheme with general load-balancing. In other
words, if a few processors are added to or deleted from the NOW, then the system continues
running using the mechanisms outlined in this paper. However, if the size of the processor
pool changes by an order of magnitude, then it makes sense to recon�gure the system with a
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di�erent value of N . Such an integration would represent a truly adaptive, high-performance
methodology for scienti�c computations on NOWs.
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