
The Performance of Finding Eigenvalues and Eigenvectors

of Dense Symmetric Matrices on Distributed Memory

Computers

J. Demmel� K. Stanleyy

Abstract

We discuss timing and performance modeling of a routine to �nd all the eigenvalues
and eigenvectors of a dense symmetric matrix on distributed memory computers. The
routine, PDSYEVX, is part of the ScaLAPACK library. It is based on bisection and
inverse iteration, but is not designed to guarantee orthogonality of eigenvectors in the
presence of clustered eigenvalues. We use our validated performance model to conclude
that PDSYEVX is very e�cient for large enough problem sizes, nearly independently
of input and output data layouts. However, e�ciency will be low if interprocessor
communication is too slow, such as on conventional workstation networks, or if per
processor memory is too small, such as on the Intel Gamma. Modeling also helps us
choose the appropriate algorithm to deal with clusters.

1 Summary

There are many algorithms for solving the dense symmetric eigenproblem[11]. Most of them

consist of 3 steps: 1) reduce the dense matrix to tridiagonal form, 2) �nd the eigenvalues

and eigenvectors of the tridiagonal matrix, and 3) back-transform the eigenvectors The

ScaLAPACK[9] routine, PDSYEVX, uses bisection and inverse iteration for step 2).

Our ultimate goal is not just to produce a scalable routine, but one where step 2) is

not the bottleneck. Among the many designs possibilities for step 2), we have so far chosen

two. The choice in PDSYEVX is fast, but will not guarantee orthogonal eigenvectors if there

are large clusters of narrowly separated eigenvalues. The choice in PDSYEV, which we do

not discuss in detail, guarantees orthogonality but is slower than steps 1 and 3. One goal

of performance modeling is to predict the performance of these and other step 2 designs,

to help design an algorithm which is simultaneously fast and guarantees orthogonality. We

discuss these design alternatives brie
y at the end.

In addition, we use our performance modeling of PDSYEVX to understand its performance

on existing computers, �nd bottlenecks and improve its performance, and predict its

performance on new platforms. Our model, which depends on 6 machine parameters and

the problem size n, predicts the performance on the CM-5 without vector units and Intel

Gamma to within 10%-30% for all but very small n. It correctly predicts that we will reach

near perfect parallel e�ciency for large enough problems, which happens on the CM-5,

�Computer Science Division and Mathematics Dept, University of California, Berkeley CA 94708. The

authors acknowledge NSF Infrastructure Grant CDA-8722788 as well as NSF grant ASC 9005933, ARPA

Grant DM28E04120 via a subcontract from Argonne National Labs, and ARPA Grant DAAL003-91-C-0047

via a subcontract from the University of Tennessee.
yComputer Science Division, University of California, Berkeley CA 94708. The author acknowledges the

National Science Foundation for his graduate student fellowship

1

2 Demmel and Stanley

Model Performance measured values �s measured

Parameter Description limited by CM5 w/o VUs Gamma by

�DGEMM BLAS3 peak
op rate 1/3.0 35. Stanley

�DGEMV BLAS2 main memory 1/2.0 25. Stanley

�� Divide 5.2 1.3 Stanley

�lat message latency comm. software 150 173 Whaley[13]

�band bandwidth�1 comm. hardware 1.62 2.86 Whaley[13]

Machine parameters used to model PDSYEVX

but that the Gamma memory is not large enough to solve such large problems. It also

predicts low e�ciency when running on a workstation network with high latency and low

bandwidth. Finally, the model helped identify bottlenecks on the Gamma from using a slow

divide instruction and slow random number generation, which let us speedup bisection and

inverse iteration by a factor of nearly 4.

2 PDSYEVX

PDSYEVX is built using the BLAS[8] Basic Linear Algebra Subroutines, the PBBLAS[4]

Parallel Block Basic Linear Algebra Subroutines, and the BLACS[13], Basic Linear Algebra

Communication Subroutines. The tridiagonal reduction was written by Jaeyoung Choi [3].

Step 2 is broken into two parts, bisection and inverse iteration, parts of which were written

by Inderjit Dhillon [5]. Both bisection and inverse iteration do O(1) communication, with

each processor responsible for a subset of eigenvalues and eigenvectors. Gram-Schmidt

reorthogonalization of the eigenvectors is only performed within a single processor. Hence,

if a cluster of eigenvalues is too large to �t on a single processor, orthogonal eigenvectors

are not guaranteed. Details of PDSYEVX will appear in a future report.

3 Method

The performance depends on how much of the spectrum is required, whether eigenvectors

are desired, how much accuracy is required, the matrix size n and distribution of eigenvalues,

the machine load, the algorithm and its implementation, the number of processors p, the

data layout, and performance characteristics of the underlying hardware and software.

Here we assume that all eigenvalues and all eigenvectors are needed to full accuracy,

and that the machine is lightly loaded. Except for the discussion in section 5, we assume

that clusters are relatively small, i.e. < (n
2

p). As discussed in section 5, we expect the cost

of redistributing the data upon input and output to be less than 5% of the total time spent.

Therefore, we model only the data layout which obtains the best performance, i.e. square

or nearly square, with a block size just large enough to allow acceptable DGEMM (BLAS 3

matrix-matrix multiply) and DGEMV (BLAS 2 matrix-vector multiply) performance.

This allows us to model the performance of PDSYEVX using just �ve measured machine

parameters, listed in table 1, counting the operations corresponding to each parameter.

The BLACS timings were performed by Whaley[13]. The rest we performed ourselves. We

validate the model against the actual running time, both of the subparts and the end to

end running time. Our method is iterative. We learn the most when our predictions do not

match measured times.

The performance of tridiagonalization and back-transformation is limited by the cost of

Performance of the Symmetric Eigenproblem 3

Computation Costs Communication Costs

Task DGEMM DGEMV
divide

cost
latency bandwidth�1

Reduction to Tridi-

agonal Form
2
3
n3

p �DGEMM
2
3
n3

p �DGEMV 21n�latlg p 5
n2p
p�bandlg p

Bisection 120
n2

p �DGEMV 60
n2

p ��

Inverse Iteration 400
n2

p �DGEMV 11
n2

p �� 4
n2

p �band
Back-

transformation
2
n3

p �DGEMM 2
n2p
p�bandlg p

Total: 8
3
n3

p �DGEMM+ (2
3
n3

p + 520
n2

p)�DGEMV+ 71
n2

p �� + 21n�latlg p+ 7
n2 lgpp

p �band + 4
n2

p �band

PDSYEVX performance model based on operation counts

the calls to the BLAS and BLACS. The time for DGEMM will be modeled as �DGEMMmnk where

m;n and k are the input matrix dimensions. Likewise, DGEMV time is modeled as �DGEMVmn.

The cost of a BLACS broadcast is modeled as (�lat +msg size�band) lg p

Other models[7] include an O(n) initiation cost for DGEMM and DGEMV, and a O(n
2

p
p) term

representing the number of extra
ops that are performed because of blocking. We do not

include the O(n) initiation cost for DGEMM and DGEMV because we believe that this cost will

always be substantially smaller than the message latency cost. Likewise we omit the O(n
2

p
p)

term representing the extra
ops because we believe that it will always be substantially

smaller than the communication bandwidth cost.

We are not yet able to predict the performance of bisection and inverse iteration

satisfactorily, because it is very compiler dependent. So, the numbers in table 2 are

empirical, we do not expect this model to predict bisection and inverse iteration well on

other architectures.

4 Validation

Our con�dence in our models for reduction to tridiagonal form and back-transformation

is based both on careful counting of
ops and communication in the critical path, and

on comparisons with measured data. Figure 1 presents our validation data. An ellipse

located at coordinates (p; n) in the �gure indicates a test with matrix dimension n run on p

processors. The size of the ellipse is proportional to the error in the running time prediction.

More precisely, it is proportional to the sum of the absolute values of the prediction errors

in each of the four parts of PDSYEVX, divided by the actual end-to-end running time. This

shows that not only is the full model accurately predict the total running time, but it also

accurately predicts each of the four parts. The actual end-to-end prediction error is smaller

in most cases because the errors in the four parts tend to cancel.

Figure 2 shows how time is distributed among computation, latency and bandwidth for

all 4 parts of PDSYEVX, for varying n and p. The 4 vertical bars for each (p; n) correspond to

tridiagonalization, bisection, inverse iteration, and back-transformation, respectively, and

their heights add up to 1 unit, representing the total running time for that (p; n).

5 Conclusions

High E�ciency for high n2=p. The largest terms in the timing formula in Table 2

are proportional to n3=p, and represent the time of the serial algorithm for steps 1 and 3,

4 Demmel and Stanley

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500

4000

Error = 10%
Error = 20%
Error = 30%

M
at

rix
 s

iz
e,

 n

Number of processors, p

CM5

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500
Error = 10%
Error = 20%
Error = 30%

M
at

rix
 s

iz
e,

 n

Number of processors, p

Gamma

Sum of the absolute errors of the four parts of PDSYEVX/ total time

10
0

10
1

10
2

0

500

1000

1500

2000

2500

3000

computation (modeled)
bandwidth (modeled)
latency (modeled)

trd − reduction to tridiagonal form (measured)
bis − bisection (measured)
ii − inverse iteration (measured)
bck − back−transformation (measured)

M
at

rix
 s

iz
e,

 n

Number of processors, p

trd
bis ii bck

trd
bis

ii
bck

trd
bis

ii
bck

Execution time breakdown for PDSYEVX on the CM−5

10
0

10
1

10
2

0

500

1000

1500

2000

2500

computation (modeled)
bandwidth (modeled)
latency (modeled)

trd − reduction to tridiagonal form (measured)
bis − bisection (measured)
ii − inverse iteration (measured)
bck − back−transformation (measured)

M
at

rix
 s

iz
e,

 n

Number of processors, p

trd
bis

ii
bck

trd
bis

ii
bck

trd

bis
ii

bck

Execution time breakdown for PDSYEVX on the Intel Gamma

PDSYEVX execution time breakdown

divided by p. Since these dominate the other terms for large n2=p (the data stored per

processor), the algorithm is scalable, provided memory per processor is kept large. The

largest problem that �ts on the 32 processor CM-5 with 32 Megabytes of memory per node

was n = 2800, which ran at 2.2 M
ops per node, an e�ciency of 80%.

PDSYEVX will not tolerate existing network of workstations latency. The

combination of high latency and a ring topology means that PDSYEVX will not work

e�ciently on existing implementations of PVM[1] on FDDI or Ethernetnetworks. Existing

implementations of PVM have latencies around 1 to 5 milliseconds, 6 to 50 times higher

than the latencies of the Gamma and CM-5. The ring topology changes the latency cost

from O(n lg p) to O(np) because concurrency between messages is not supported. The

combination of these two factors will make the latency cost the dominant cost unless new

workstations have hundreds of Megabytes of memory.

Need new algorithms to deal with large clusters. There are a large number of

alternative algorithms for this problem [6]. We wish to avoid including full reorthogonal-

ization, as in the serial LAPACK code DSTEIN, because this could increase both
oating point

and communication from O(n2) to O(n3) in the presense of large clusters. An alterna-

tive is PDSYEV in which QR is performed by each processor redundantly performing the

Performance of the Symmetric Eigenproblem 5

O(n2) e�ort of �nding the shifts and performing 1=pth of the O(n3) work of updating Q.

PDSYEV will guarantee orthogonality and because it has O(1) communication, it will scale

well though it will be several times slower than PDSYEVX. Another possibility, which is much

harder to program on a parallel machine, is Cuppen's divide and conquer routine, as mod-

i�ed by Eisenstat, Gu, Li and Rutter [12]. One attractive possibility is \intelligent brute

force", or using simulated multiple precision arithmetic on clusters, which may require no

new communication. Another possibility is spectral divide and conquer as in Tsao et al.[2]

We are still studying the tradeo�s.

We are not reaching asymptotic speed on the Intel Gamma. Using a simple

asymptotic model, we �nd that we would need 168 Mbytes per node to achieve 50% of

the asymptotic speed, limn!1
timePDSYEVX

n3=p
, on a 32 processor Gamma. By contrast, we

achieve 50% of the asymptotic speed with only 4.25 Mbytes per node on the CM-5. This

is illustrated in �gure 2. For n = 2800 on 32 processors of the CM-5, the vast majority

of the time is spent in the computational parts of reduction to tridiagonal form and back-

transformation, i.e. the asymptotically important terms. By contrast, for n=2000 on a

64 processor Gamma, less than 10% of the time is spent on the asymptotically important

terms. Latency, bandwidth and bisection all consume signi�cant amounts of time. The

O(n) latency cost becomes less signi�cant rapidly for �xed p as n increases. And, we have

shown how to reduce the cost of bisection and inverse iteration on the Gamma by a factor

of nearly 4. However, the bandwidth cost remains a problem.

The Basic Linear Algebra Communication Subroutines, BLACS, are designed to make it

possible to greatly reduce the communication cost by coding architecture speci�c versions

of the BLACS. At present the BLACS are built on top of vendor supplied communication

libraries. If they were coded at a lower level, they could achieve substantial performance

improvements at least for their collective communications routines. As shown by Karp

et al.[10], collective communications can be performed in n�band + �lat lg p whereas at

present they require n�band lg p + �lat lg p. Although this lg p factor appears small it is

quite signi�cant for the total running time of PDSYEVX.

Input and output data layout appears to be unimportant. Assuming that

every processor owns roughly n2=p elements of the input and output arrays, the cost of

redistributing the data on input and/or on output is O(n2=p�band). This is signi�cantly less

than the 5n2=
p
p�band cost in reduction to tridiagonal form. Although we do not simulate

di�erent input and output data layouts, PDSYEVX performs an internal data redistribution

which results in nearly every piece of an n2 matrix being moved to another processor. This

internal data redistribution never took more than 2.5% of the total time, which is strong

evidence that redistributing most input or output layouts would also be relatively cheap.

Judging an algorithm by its implementation is dangerous. Our modeling led

us to discover two simple performance improvements for bisection and inverse iteration.

Initially, our model predicted much faster performance on the Intel Gamma than we

actually obtained. This was traced to two factors. First, the default arithmetic on the

Gamma includes a IEEE standard conforming divide operation which takes at least 50

times as long as multiply or add. We replaced this by a much faster, but less accurate

divide. This requires a modi�cation in the simple bisection algorithm to guarantee logical

correctness despite possibly nonmonotonic arithmetic[5]. Second, a great deal of time

was spent generating random numbers for inverse iteration. We changed from computing

normally distributed random numbers, which require expensive transcendental function

evaluations, to uniform random numbers. Together, these improvements sped up bisection

and inverse iteration by a factor of nearly 4 on the Gamma.

6 Demmel and Stanley

References

[1] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. A users' guide to PVM
parallel virtual machine. Technical Report ORNL/TM-11826, Oak Ridge National Laboratory,
Oak Ridge, TN, July 1991.

[2] C. Bischof, S. Huss-Lederman, X. Sun, A. Tsao, and T. Turnbull. Parallel performance of a sym-
metric eigensolver based on the invariant subspace decomposition approach. Technical report,
Supercomputing Research Center, 1993. (Prism Working Note #15 ftp.super.org:pub/prism).

[3] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A scalable linear algebra library
for distributed memory concurrent computers. In Proceedings of the Fourth Symposium on the

Frontiers of Massively Parallel Computation, pages 120{127. IEEE Computer Society Press,
1992. (LAPACK Working Note #55).

[4] J. Choi, J. Dongarra, and D. Walker. PB-BLAS: A set of Parallel Block Basic Linear Algebra

Subprograms. University of Tennessee, Knoxville, TN, 1993. available in postscript from
netlib/scalapack.

[5] J. Demmel, I. Dhillon, and H. Ren. On the correctness of parallel bisection in
oating
point. Tech Report UCB//CSD-94-805, UC Berkeley Computer Science Division, March 1994.
available via anonymous ftp from tr-ftp.cs.berkeley.edu, in directory pub/tech-reports/cs/csd-
94-805, �le all.ps.

[6] J. Demmel, M. Heath, and H. van der Vorst. Parallel numerical linear algebra. In A. Iserles,
editor, Acta Numerica, volume 2. Cambridge University Press, 1993.

[7] F. Desprez, B. Tourancheau, and J. J. Dongarra. Performance complexity of lu factorization
with e�cient pipelining and overlap on a multiprocessor. Technical report, University of
Tennessee, Knoxville, Feb 1994. (LAPACK Working Note #67).

[8] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Soft., 16(1):1{17, March 1990.

[9] J. Dongarra, R. van de Geijn, and D. Walker. A look at scalable dense linear algebra libraries.
In Scalable High-Performance Computing Conference. IEEE Computer Society Press, April
1992.

[10] R.M. Karp, A. Sahay, E. Santos, and K.E. Schauser. Optimal broadcast and summation in the
LogP model. In Proc. 5th ACM Symposium on Parallel Algorithms and Architectures, pages
142{153, 1993.

[11] B. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cli�s, NJ, 1980.

[12] J. Rutter. A serical implementation of Cuppen's divide and conquer algorithm for the
symmetric eigenvalue problem. Mathematics Dept. Master's Thesis available by anonymous
ftp to tr-ftp.cs.berkeley.edu, directory pub/tech-reports/cs/csd-94-799, �le all.ps, University of
California, 1994.

[13] R. Clint Whaley. Basic linear algebra communication subroutines: Analysis and implementa-
tion across multiple parallel architectures. Technical report, University of Tennessee, Knoxville,
June 1994. (LAPACK Working Note #73).

