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Abstract

This paper discusses the core factorization routines included in the ScaLAPACK li-

brary. These routines allow the factorization and solution of a dense system of linear

equations via LU, QR, and Cholesky. They are implemented using a block cyclic data

distribution, and are built using de facto standard kernels for matrix and vector opera-

tions (BLAS and its parallel counterpart PBLAS) and message passing communication

(BLACS). In implementing the ScaLAPACK routines, a major objective was to parallelize

the corresponding sequential LAPACK using the BLAS, BLACS, and PBLAS as building

blocks, leading to straightforward parallel implementations without a signi�cant loss in

performance.

We present the details of the implementation of the ScaLAPACK factorization routines,

as well as performance and scalability results on the Intel iPSC/860, Intel Touchstone

Delta, and Intel Paragon systems.

Key words. BLACS, distributed LAPACK, distributed memory, linear al-

gebra, PBLAS, scalability
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1. Introduction

Current advanced architecture computers are NUMA (Non-UniformMemory Access) machines.

They possess hierarchical memories, in which accesses to data in the upper levels of the memory

hierarchy (registers, cache, and/or local memory) are faster than those in lower levels (shared

or o�-processor memory). One technique to more e�ciently exploit the power of such machines

is to develop algorithms that maximize reuse of data in the upper levels of memory. This can

be done by partitioning the matrix or matrices into blocks and by performing the computation

with matrix-vector or matrix-matrix operations on the blocks. A set of BLAS (Level 2 and

3 BLAS) [15, 16] were proposed for that purpose. The Level 3 BLAS have been successfully

used as the building blocks of a number of applications, including LAPACK [1, 2], which is

the successor to LINPACK [14] and EISPACK [23]. LAPACK is a software library that uses

block-partitioned algorithms for performing dense and banded linear algebra computations on

vector and shared memory computers.

The scalable library we are developing for distributed-memory concurrent computers will

also use block-partitioned algorithms and be as compatible as possible with the LAPACK

library for vector and shared memory computers. It is therefore called ScaLAPACK (\Scalable

LAPACK") [6], and can be used to solve \Grand Challenge" problems on massively parallel,

distributed-memory, concurrent computers [5, 18].

The Basic Linear Algebra Communication Subprograms (BLACS) [3] provide ease-of-use

and portability for message-passing in parallel linear algebra applications. The Parallel BLAS

(PBLAS) assume a block cyclic data distribution and are functionally an extended subset of

the Level 1, 2, and 3 BLAS for distributed memory systems. They are based on previous

work with the Parallel Block BLAS (PB-BLAS) [8]. The current model implementation relies

internally on the PB-BLAS, as well as the BLAS and the BLACS. The ScaLAPACK routines

consist of calls to the sequential BLAS, the BLACS, and the PBLAS modules. ScaLAPACK

can therefore be ported to any machine on which the BLAS and the BLACS are available.

This paper presents the implementation details, performance, and scalability of the ScaLA-

PACK routines for the LU, QR, and Cholesky factorization of dense matrices. These routines

have been studied on various parallel platforms by many other researchers [13, 19, 12]. We main-

tain compatibility between the ScaLAPACK codes and their LAPACK equivalents by isolating

as much of the distributed memory operations as possible inside the PBLAS and ScaLAPACK

auxiliary routines. Our goal is to simplify the implementation of complicated parallel routines

while still maintaining good performance.

Currently the ScaLAPACK library contains Fortran 77 subroutines for the analysis and

solution of systems of linear equations, linear least squares problems, and matrix eigenvalue

problems. ScaLAPACK routines to reduce a real general matrix to Hessenberg or bidiagonal
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form, and a symmetric matrix to tridiagonal form are considered in [11].

The design philosophy of the ScaLAPACK library is addressed in Section 2. In Section 3,

we describe the ScaLAPACK factorization routines by comparing them with the correspond-

ing LAPACK routines. Section 4 presents more details of the parallel implementation of the

routines and performance results on the Intel family of computers: the iPSC/860, the Touch-

stone Delta, and the Paragon. In Section 5, the scalability of the algorithms on the systems is

demonstrated. Conclusions and future work are presented in Section 6.

2. Design Philosophy

In ScaLAPACK, algorithms are presented in terms of processes, rather than the processors of

the physical hardware. A process is an independent thread of control with its own distinct

memory. Processes communicate by pairwise point-to-point communication or by collective

communication as necessary. In general there may be several processes on a physical processor,

in which case it is assumed that the runtime system handles the scheduling of processes. For

example, execution of a process waiting to receive a message may be suspended and another

process scheduled, thereby overlapping communication and computation. In the absence of

such a sophisticated operating system, ScaLAPACK has been developed and tested for the

case of one process per processor.

2.1. Block Cyclic Data Distribution

The way in which a matrix is distributed over the processes has a major impact on the load

balance and communication characteristics of the concurrent algorithm, and hence largely de-

termines its performance and scalability. The block cyclic distribution provides a simple, yet

general-purpose way of distributing a block-partitioned matrix on distributed memory concur-

rent computers. The block cyclic data distribution is parameterized by the four numbers P , Q,

mb, and nb, where P � Q is the process grid and mb � nb is the block size. Blocks separated

by a �xed stride in the column and row directions are assigned to the same process.

Suppose we haveM objects indexed by the integers 0; 1; � � �;M �1. In the block cyclic data

distribution the mapping of the global index, m, can be expressed as m 7�! hp; b; ii, where p is

the logical process number, b is the block number in process p, and i is the index within block

b to which m is mapped. Thus, if the number of data objects in a block is mb, the block cyclic

data distribution may be written as follows:

m 7�!
D
smodP;

j s
P

k
; mmodmb

E

where s = bm=mbc and P is the number of processes. The distribution of a block-partitioned

matrix can be regarded as the tensor product of two such mappings: one that distributes the
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(b) data distribution from processor point-of-view.

Figure 1: Example of a block cyclic data distribution.

rows of the matrix over P processes, and another that distributes the columns over Q processes.

That is, the matrix element indexed globally by (m;n) can be written as

(m;n) 7�! h(p; q); (b; d); (i; j)i :

Figure 1 (a) shows an example of the block cyclic data distribution, where a matrix with

12 � 12 blocks is distributed over a 2 � 3 grid. The numbered squares represent blocks of

elements, and the number indicates at which location in the process grid the block is stored {

all blocks labeled with the same number are stored in the same process. The slanted numbers,

on the left and on the top of the matrix, represent indices of a row of blocks and of a column of

blocks, respectively. Figure 1 (b) reects the distribution from a process point-of-view. Each

process has 6� 4 blocks. The block cyclic data distribution is the only distribution supported

by the ScaLAPACK routines. The block cyclic data distribution can reproduce most data

distributions used in linear algebra computations. For example, one-dimensional distributions

over rows or columns are obtained by choosing P or Q to be 1.

The non-scattered decomposition (or pure block distribution) is just a special case of the

cyclic distribution in which the block size is given by mb = dM=P e and nb = dN=Qe. That is,

(m;n) 7�!

���
m

mb

�
;

�
n

nb

��
; (0; 0); (mmodmb; nmodnb)

�
:

Similarly a purely scattered decomposition (or two dimensional wrapped distribution) is another

special case in which the block size is given by mb = nb = 1,

(m;n) 7�!

�
(mmodP; nmodQ);

��
m

P

�
;

�
n

Q

��
; (0; 0)

�
:
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BLACS

LAPACK

 BLAS

Comm Primitives (e.g., MPI, PVM)

          PBLAS

Figure 2: Hierarchical view of ScaLAPACK.

2.2. Building Blocks

The ScaLAPACK routines are composed of a small number of modules. The most fundamental

of these are the sequential BLAS, in particular the Level 2 and 3 BLAS, and the BLACS,

which perform commonmatrix-oriented communication tasks. ScaLAPACK is portable to any

machine on which the BLAS and the BLACS are available.

The BLACS comprise a package that provides ease-of-use and portability for message-

passing in a parallel linear algebra program. The BLACS e�ciently support not only point-to-

point operations between processes on a logical two-dimensional process grid, but also collective

communications on such grids, or within just a grid row or column.

Portable software for dense linear algebra on MIMD platforms may consist of calls to the

BLAS for computation and calls to the BLACS for communication. Since both packages will

have been optimized for each particular platform, good performance should be achieved with

relatively little e�ort. We have implemented the BLACS for the Intel family of computers,

the TMC CM-5, the IBM SP1 and SP2, and PVM. Several vendors are producing optimized

versions of the BLACS (e.g. Cray, IBM, and Meiko). We plan to produce an MPI version of

the BLACS in the near future.

The Parallel BLAS (PBLAS) are an extended subset of the BLAS for distributed memory

computers and operate on matrices distributed according to a block cyclic data distribution

scheme. These restrictions permit certain memory access and communication optimizations

that would not be possible (or would be di�cult) if general-purpose distributed Level 2 and

Level 3 BLAS were used [7, 9].
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The sequential BLAS, the BLACS, and the PBLAS are the modules from which the higher

level ScaLAPACK routines are built. The PBLAS are used as the highest level building blocks

for implementing the ScaLAPACK library and provide the same ease-of-use and portability for

ScaLAPACK that the BLAS provide for LAPACK. Most of the Level 2 and 3 BLAS routines in

LAPACK routines can be replaced with the corresponding PBLAS routines in ScaLAPACK, so

the source code of the top software layer of ScaLAPACK looks very similar to that of LAPACK.

Thus, the ScaLAPACK code is modular, clear, and easy to read.

Figure 2 shows a hierarchical view of ScaLAPACK. Main ScaLAPACK routines usually call

only the PBLAS, but the auxiliary ScaLAPACK routines may need to call the BLAS directly

for local computation and the BLACS for communication among processes. In many cases the

ScaLAPACK library will be su�cient to build applications. However, more expert users may

make use of the lower level routines to build customized routines not provided in ScaLAPACK.

2.3. Design Principles

ScaLAPACK is a message-passing version of LAPACK and is designed to be e�cient across

a wide range of architectures. The performance of the routines relies ultimately on the archi-

tectural characteristics of the machine. However, the codes are exible in that they allow the

tuning of certain parameters such as block size, and the size of the process grid. This exibility

ensures that the ScaLAPACK routines will be able to achieve good performance.

The ScaLAPACK routines, like their LAPACK equivalents, are designed to perform cor-

rectly for a wide range of inputs. Whenever practical, they behave appropriately when overow

and underow problems are encountered or a routine is used incorrectly. Examples of error

handling are given in Section 4.2 and Section 4.3.

3. Factorization Routines

In this section, we �rst briey describe the sequential, block-partitioned versions of the dense

LU, QR, and Cholesky factorization routines of the LAPACK library. Since we also wish to

discuss the parallel factorizations, we describe the right-looking versions of the routines. The

right-looking variants minimize data communication and distribute the computation across

all processes [17]. After describing the sequential factorizations, the parallel versions will be

discussed.

For the implementation of the parallel block partitioned algorithms in ScaLAPACK, we

assume that a matrix A is distributed over a P �Q process grid with a block cyclic distribution

and a block size of nb�nb matching the block size of the algorithm. Thus, each nb-wide column

(or row) panel lies in one column (row) of the process grid.

In the LU, QR and Cholesky factorization routines, in which the distribution of work be-
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comes uneven as the computation progresses, a larger block size results in greater load imbal-

ance, but reduces the frequency of communication between processes. There is, therefore, a

tradeo� between load imbalance and communication startup cost which can be controlled by

varying the block size.

In addition to the load imbalance that arises as distributed data are eliminated from a

computation, load imbalance may also arise due to computational \hot spots" where certain

processes have more work to do between synchronization points than others. This is the case,

for example, in the LU factorization algorithm where partial pivoting is performed over rows in

a single column of the process grid while the other processes are idle. Similarly, the evaluation

of each block row of the U matrix requires the solution of a lower triangular system across

processes in a single row of the process grid. The e�ect of this type of load imbalance can be

minimized through the choice of P and Q.

3.1. LU Factorization

The LU factorization applies a sequence of Gaussian eliminations to form A = PLU , where

A and L are M � N matrices, and U is an N � N matrix. L is unit lower triangular (lower

triangular with 1's on the main diagonal), U is upper triangular, and P is a permutation matrix,

which is stored in a min(M;N ) vector.

At the k-th step of the computation (k = 1; 2; � � �), it is assumed that the m� n submatrix

of A(k) (m =M � (k � 1) � nb, n = N � (k � 1) � nb) is to be partitioned as follows,

0
@ A11 A12

A21 A22

1
A = P

0
@ L11 0

L21 L22

1
A
0
@ U11 U12

0 U22

1
A

= P

0
@ L11U11 L11U12

L21U11 L21U12 + L22U22

1
A

where the block A11 is nb � nb, A12 is nb � (n � nb), A21 is (m � nb) � nb, and A22 is (m �

nb)� (n � nb). L11 is a unit lower triangular matrix, and U11 is an upper triangular matrix.

At �rst, a sequence of Gaussian eliminations is performed on the �rst m� nb panel of A(k)

(i.e., A11 and A21). Once this is completed, the matrices L11, L21, and U11 are known, and we

can rearrange the block equations,

U12  (L11)
�1A12;

~A22  A22 � L21U12 = L22U22:

The LU factorization can be done by recursively applying the steps outlined above to the

(m � nb) � (n � nb) matrix ~A22. Figure 3 shows a snapshot of the block LU factorization. It
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Figure 3: A snapshot of block LU factorization.

shows how the column panel, L11 and L21, and the row panel, U11 and U12, are computed, and

how the trailing submatrix A22 is updated. In the �gure, the shaded areas represent data for

which the corresponding computations are completed. Later, row interchanges will be applied

to L0 and L21.

The computation of the above steps in the LAPACK routine, DGETRF, involves the following

operations:

1. DGETF2: Apply the LU factorization on an m� nb column panel of A (i.e., A11 and A21).

� [ Repeat nb times (i = 1; � � � ; nb) ]

{ IDAMAX: �nd the (absolute) maximumelement of the i-th column and its location

{ DSWAP: interchange the i-th row with the row which holds the maximum

{ DSCAL: scale the i-th column of the matrix

{ DGER: update the trailing submatrix

2. DLASWP: Apply row interchanges to the left and the right of the panel.

3. DTRSM: Compute the nb � (n� nb) row panel of U ,

U12  (L11)�1A12:

4. DGEMM: Update the rest of the matrix, A22,

~A22  A22 � L21U12 = L22U22:

The corresponding parallel implementation of the ScaLAPACK routine, PDGETRF, proceeds

as follows:

1. PDGETF2: The current column of processes performs the LU factorization on an m � nb

panel of A (i.e., A11 and A21).
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� [ Repeat nb times (i = 1; � � � ; nb) ]

{ PDAMAX: �nd the (absolute) maximum value of the i-th column and its location

(pivot information will be stored on the column of processes)

{ PDLASWP: interchange the i-th row with the row which holds the maximum

{ PDSCAL: scale the i-th column of the matrix

{ PDGER: broadcast the i-th row columnwise ((nb � i) elements) in the current

column of processes and update the trailing submatrix

� Every process in the current process column broadcasts the same pivot information

rowwise to all columns of processes.

2. PDLASWP: All processes apply row interchanges to the left and the right of the current

panel.

3. PDTRSM: L11 is broadcast along the current row of processes, which converts the row panel

A12 to U12.

4. PDGEMM: The column panel L21 is broadcast rowwise across all columns of processes. The

row panel U12 is broadcast columnwise down all rows of processes. Then, all processes

update their local portions of the matrix, A22.

3.2. QR Factorization

Given anM�N matrixA, we seek the factorization A = QR, where Q is anM�M orthogonal

matrix, and R is an M � N upper triangular matrix. At the k-th step of the computation, we

partition this factorization to the m � n submatrix of A(k) as

A(k) =
�
A1 A2

�
=

0
@ A11 A12

A21 A22

1
A = Q �

0
@ R11 R12

0 R22

1
A

where the block A11 is nb�nb, A12 is nb� (n�nb), A21 is (m�nb)�nb, and A22 is (m�nb)�

(n�nb). A1 is an m�nb matrix, containing the �rst nb columns of the matrix A(k), and A2 is

an m � (n� nb) matrix, containing the last (n� nb) columns of A(k) (that is, A1 =

0
@ A11

A21

1
A

and A2 =

0
@ A12

A22

1
A). R11 is a nb � nb upper triangular matrix.

A QR factorization is performed on the �rst m�nb panel of A(k) (i.e., A1). In practice, Q is

computed by applying a series of Householder transformations to A1 of the form,Hi = I��iviv
T
i

where i = 1; � � � ; nb. The vector vi is of length m with 0's for the �rst i � 1 entries and 1 for

the i-th entry, and �i = 2=(vTi vi). During the QR factorization, the vector vi overwrites the
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Figure 4: A snapshot of block QR factorization.

entries of A below the diagonal, and �i is stored in a vector. Furthermore, it can be shown

that Q = H1H2 � � �Hnb
= I � V TV T , where T is nb� nb upper triangular and the i-th column

of V equals vi. This is indeed a block version of the QR factorization [4, 22], and is rich in

matrix-matrix operations.

The block equation can be rearranged as

~A2 =

0
@ ~A12

~A22

1
A 

0
@ R12

R22

1
A = QTA2 =

�
I � V TTV T

�
A2:

A snapshot of the block QR factorization is shown in Figure 4. During the computation, the

sequence of the Householder vectors V is computed, and the row panel R11 and R12, and the

trailing submatrix A22 are updated. The factorization can be done by recursively applying the

steps outlined above to the (m� nb) � (n � nb) matrix ~A22.

The computation of the above steps of the LAPACK routine, DGEQRF, involves the following

operations:

1. DGEQR2: Compute the QR factorization on an m � nb panel of A(k) (i.e., A1)

� [ Repeat nb times (i = 1; � � � ; nb) ]

{ DLARFG: generate the elementary reector vi and �i

{ DLARF: update the trailing submatrix

~A1  HT
i A1 = (I � �iviv

T
i )A1

2. DLARFT: Compute the triangular factor T of the block reector Q

3. DLARFB: Apply QT to the rest of the matrix from the left

~A2  

0
@ ~R12

~R22

1
A = QTA2 =

�
I � V TTV T

�
A2
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� DGEMM: W  V TA2

� DTRMM: W  TTW

� DGEMM: ~A2  

0
@ ~R12

~R22

1
A = A2 � V W

The corresponding steps of the ScaLAPACK routine, PDGEQRF, are as follows:

1. PDGEQR2: The current column of processes performs the QR factorization on an m � nb

panel of A(k) (i.e., A1)

� [ Repeat nb times (i = 1; � � � ; nb) ]

{ PDLARFG: generate elementary reector vi and �i

{ PDLARF: update the trailing submatrix

2. PDLARFT: The current column of processes, which has a sequence of the Householder

vectors V , computes T only in the current process row.

3. PDLARFB: Apply QT to the rest of the matrix from the left

� PDGEMM: V is broadcast rowwise across all columns of processes. The transpose of V

is locally multiplied by A2, then the products are added to the current process row

(W  V TA2).

� PDTRMM: T is broadcast rowwise in the current process row to all columns of processes

and multiplied with the sum (W  TTW ).

� PDGEMM:W is broadcast columnwise down all rows of processes. Now, processes have

their own portions of V and W , then they update the local portions of the matrix

A2 ( ~A2  

0
@ ~R12

~R22

1
A = A2 � VW ).

3.3. Cholesky Factorization

Cholesky factorization factors an N�N , symmetric, positive-de�nite matrixA into the product

of a lower triangular matrix L and its transpose, i.e., A = LLT (or A = UTU , where U is upper

triangular). It is assumed that the lower triangular portion of A is stored in the lower triangle

of a two-dimensional array and that the computed elements of L overwrite the given elements

of A. At the k-th step, we partition the n � n matrices A(k), L(k), and L(k)T , and write the

system as

0
@ A11 AT

21

A21 A22

1
A =

0
@ L11 0

L21 L22

1
A
0
@ LT

11 LT
21

0 LT
22

1
A
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Figure 5: A snapshot of block Cholesky factorization.

=

0
@ L11L

T
11 L11L

T
21

L21L
T
11 L21L

T
21 + L22L

T
22

1
A

where the block A11 is nb � nb, A21 is (n� nb) � nb, and A22 is (n � nb) � (n� nb). L11 and

L22 are lower triangular.

The block-partitioned form of Cholesky factorization may be inferred inductively as follows.

If we assume that L11, the lower triangular Cholesky factor of A11, is known, we can rearrange

the block equations,

L21  A21(L
T
11)
�1;

~A22  A22 � L21L
T
21 = L22L

T
22:

A snapshot of the block Cholesky factorization algorithm in Figure 5 shows how the column

panel L(k) (L11 and L21) is computed and how the trailing submatrix A22 is updated. The

factorization can be done by recursively applying the steps outlined above to the (n � nb) �

(n� nb) matrix ~A22.

In the right-looking version of the LAPACK routine, the computation of the above steps

involves the following operations:

1. DPOTF2: Compute the Cholesky factorization of the diagonal block A11.

A11 ! L11L
T
11

2. DTRSM: Compute the column panel L21,

L21  A21(L
T
11)
�1

3. DSYRK: Update the rest of the matrix,

~A22  A22 � L21L
T
21 = L22L

T
22
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The parallel implementation of the corresponding ScaLAPACK routine, PDPOTRF, proceeds

as follows:

1. PDPOTF2: The process Pi, which has the nb�nb diagonal block A11, performs the Cholesky

factorization of A11.

� Pi performs A11 ! L11L
T
11, and sets a ag if A11 is not positive de�nite.

� Pi broadcasts the ag to all other processes so that the computation can be stopped

if A11 is not positive de�nite.

2. PDTRSM: L11 is broadcast columnwise by Pi down all rows in the current column of pro-

cesses, which computes the column of blocks of L21.

3. PDSYRK: the column of blocks L21 is broadcast rowwise across all columns of processes and

then transposed. Now, processes have their own portions of L21 and LT
21. They update

their local portions of the matrix A22.

4. Performance Results

We have outlined the basic parallel implementation of the three factorization routines. In this

section, we provide performance results on the Intel iPSC/860, Touchstone Delta, and Paragon

systems. We also discuss speci�c implementation details to improve performance and possible

variations of the routines which might yield better performance.

The Intel iPSC/860 is a parallel architecture with up to 128 processing nodes. Each node

consists of an i860 processor with 8 Mbytes of memory. The system is interconnected with a

hypercube structure. The Delta system contains 512 i860-based computational nodes with 16

Mbytes /node, connected with a 2-D mesh communication network. The Intel Paragon located

at the Oak Ridge National Laboratory has 512 computational nodes, interconnected with a 2-D

mesh. Each node has 32 Mbytes of memory and two i860XP processors, one for computation

and the other for communication. The Intel iPSC/860 and Delta machines both use the same

40MHz i860 processor, but the Delta has a higher communication bandwidth. Signi�cantly

higher performance can be attained on the Paragon system, since it uses the faster 50 MHz

i860XP processor and has a larger communication bandwidth.

On each node all computation was performed in double precision arithmetic, using assembly-

coded BLAS (Level 1, 2, and 3), provided by Intel. Communication was performed using

the BLACS package, customized for the Intel systems. Most computation by the BLAS and

communication by the BLACS are hidden within the PBLAS.

A good choice for the block size, mb � nb, was determined experimentally for each factor-

ization on the given target machines. For all performance graphs, results are presented for
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Figure 6: Performance of the LU factorization on the Intel iPSC/860, Delta, and Paragon.

square matrices with a square block size mb = nb. The numbers of oating point operations

for an N �N matrix were assumed to be 2=3N3 for the LU factorization, 4=3N3 for the QR

factorization, and 1=3N3 for the Cholesky factorization.

4.1. LU Factorization

Figure 6 shows the performance of the ScaLAPACK LU factorization routine on the Intel

iPSC/860, the Delta, and the Paragon in Gops (gigaops or a billion oating point operations

per second) as a function of the number of processes. The selected block size on the iPSC/860

and the Paragon wasmb = nb = 8, and on the Delta wasmb = nb = 6, and the best performance

was attained with a process aspect ratio, 1=4 � P=Q � 1=2. The LU routine attained 2.4 Gops

for a matrix size of N = 10000 on the iPSC/860; 12.0 Gops for N = 26000 on the Delta; and

18.8 Gops for N = 36000 on the Paragon.

The LU factorization routine requires pivoting for numerical stability. Many di�erent im-

plementations of pivoting are possible. In the paragraphs below, we outline our implementation

and some optimizations which we chose not to use in order to maintain modularity and clarity

in the library.

In the unblocked LU factorization routine (PDGETF2), after �nding the maximum value of

the i-th column (PDAMAX), the i-th row will be exchanged with the pivot row containing the

maximumvalue. Then the new i-th row is broadcast columnwise ((nb�i) elements) in PDGER. A
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slightly faster code may be obtained by combining the communications of PDLASWP and PDGER.

That is, the pivot row is directly broadcast to other processes in the grid column, and the pivot

row is replaced with the i-th row later.

The processes apply row interchanges (PDLASWP) to the left and the right of the column

panel of A (i.e., A11 and A21). These two row interchanges involve separate communications,

which can be combined.

Finally, after completing the factorization of the column panel (PDGETF2), the column of

processes, which has the column panel, broadcasts rowwise the pivot information for PDLASWP,

L11 for PDTRSM, and L21 for PDGEMM. It is possible to combine the three messages to save the

number of communications (or combine L11 and L21), and broadcast rowwise the combined

message.

Notice that a non-negligible time is spent broadcasting the column panel of L across the

process grid. It is possible to increase the overlap of communication to computation by broad-

casting each column rowwise as soon as they are evaluated, rather than broadcasting all of the

panel across after factoring it. With these modi�ed communication schemes, the performance

of the routine may be increased, but in our experiments we have found the improvement to be

less than 5 % and, therefore, not worth the loss of modularity.

4.2. QR Factorization

To obtain the elementary Householder vector vi, the Euclidean norm of the vector, A:i, is

required. The sequential LAPACK routine, DLARFG, calls the Level-1 BLAS routine, DNRM2,

which computes the norm while guarding against underow and overow. In the corresponding

parallel ScaLAPACK routine, PDLARFG, each process in the column of processes, which holds

the vector, A:i, computes the global norm safely using the PDNRM2 routine.

For consistency with LAPACK, we have chosen to store � and V , and generate T when nec-

essary. Although storing T might save us some redundant computation, we felt that consistency

was more important.

The m� nb lower trapezoidal part of V , which is a sequence of the nb Householder vectors,

will be accessed in the form,

V =

0
@ V1

V2

1
A

where V1 is nb � nb unit lower triangular, and V2 is (m � nb) � nb. In the sequential routine,

the multiplication involving V is divided into two steps: DTRMM with V1 and DGEMM with V2.

However, in the parallel implementation, V is contained in one column of processes. Let �V

be a unit lower trapezoidal matrix containing the strictly lower trapezoidal part of V . �V is

broadcast rowwise to the other process columns so that every column of processes has its own
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Figure 7: The storage scheme of the lower trapezoidal matrix V in ScaLAPACK QR factoriza-
tion.

copy. This allows us to perform the operations involving �V in one step (DGEMM), as illustrated

in Figure 7, and not worry about the upper triangular part of V . This one step multiplication

not only simpli�es the implementation of the routine (PDLARFB), but may, depending upon the

BLAS implementation, increase the overall performance of the routine (PDGEQRF) as well.

Figure 8 shows the performance of the QR factorization routine on the Intel family of

concurrent computers. The block size of mb = nb = 6 was used on all of the machines. Best

performance was attained with an aspect ratio of 1=4 � P=Q � 1=2. The highest performances

of 3.1 Gops for N = 10000 was obtained on the iPSC/860; 14.6 Gops for N = 26000 on

the Delta; and 21.0 Gops for N = 36000 on the Paragon. Generally, the QR factorization

routine has the best performance of the three factorizations since the updating process of

QTA = (I � V TV T )A is rich in matrix-matrix operation, and the number of oating point

operations is the largest (4=3N3).

4.3. Cholesky Factorization

The PDSYRK routine performs rank-nb updates on an (n�nb)� (n�nb) symmetric matrix A22

with an (n�nb)�nb column of blocks L21. After broadcasting L21 rowwise and transposing it,

each process updates its local portion of A22 with its own copy of L21 and LT
21. The update is

complicated by the fact that the globally lower triangular matrix A22 is not necessarily stored

in the lower triangular form in the local processes. For details see [8]. The simplest way to do

this is to repeatedly update one column of blocks of A22. However, if the block size is small, this

updating process will not be e�cient. It is more e�cient to update several blocks of columns

at a time. The PBLAS routine, PDSYRK e�ciently updates A22 by combining several blocks

of columns at a time. For details, see [8].

The e�ect of the block size on the performance of the Cholesky factorization is shown in

Figure 9 on 8�16 and 16�16 processors of the Intel Delta. The best performance was obtained
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Figure 8: Performance of the QR factorization on the Intel iPSC/860, Delta, and Paragon.
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Figure 9: Performance of the Cholesky factorization as a function of the block size on 8 � 16
and 16� 16 processes of the Intel Delta (N = 10000).
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Figure 10: Performance of the Cholesky factorization on the Intel iPSC/860, Delta, and
Paragon.

at the block size of nb = 24, but relatively good performance could be expected with the block

size of nb � 6, since the routine updates multiple column panels at a time.

Figure 10 shows the performance of the Cholesky factorization routine. The best perfor-

mance was attained with the aspect ratio of 1=2 � P=Q � 1. The routine ran at 1.8 Gops

for N = 9600 on the iPSC/860; 10.5 Gops for N = 26000 on the Delta; and 16.9 Gops for

N = 36000 on the Paragon. Since it requires fewer oating point operations (1=3N3) than the

other factorizations, it is not surprising that its op rate is relatively poor.

If A is not positive de�nite, the Cholesky factorization should be terminated in the middle

of the computation. As outlined in Section 3.3, a process Pi computes the Cholesky factor L11

from A11. After computing L11, process Pi broadcasts a ag to all other processes to stop the

computation if A11 is not positive de�nite. If A is guaranteed to be positive de�nite, the process

of broadcasting the ag can be skipped, leading to a corresponding increase in performance.

5. Scalability

The performance results in Figures 6, 8, and 10 can be used to assess the scalability of the

factorization routines. In general, concurrent e�ciency, E, is de�ned as the concurrent speedup
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Figure 11: Scalability of factorization routines on the Intel Paragon (5, 20 Mbytes/node).

per process. That is, for the given problem size, N , on the number of processes used, Np,

E(N;Np) =
1

Np

Ts(N )

Tp(N;Np)

where Tp(N;Np) is the time for a problem of size N to run on Np processes, and Ts(N ) is the

time to run on one process using the best sequential algorithm.

Another approach to investigate the e�ciency is to see how the performance per process de-

grades as the number of processes increases for a �xed grain size, i. e., by plotting isogranularity

curves in the (Np; G) plane, where G is the performance. Since

G /
Ts(N )

Tp(N;Np)
= Np E(N;Np);

the scalability for memory-constrained problems can readily be accessed by the extent to which

the isogranularity curves di�er from linearity. Isogranularity was �rst de�ned in [24], and later

explored in [21, 20].

Figure 11 shows the isogranularity plots for the ScaLAPACK factorization routines on the

Paragon. The matrix size per process is �xed at 5 and 20 Mbytes on the Paragon. Refer to

Figures 6, 8, and 10 for block size and process grid size characteristics. The near-linearity of

these plots shows that the ScaLAPACK routines are quite scalable on this system.
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6. Conclusions

We have demonstrated that the LAPACK factorization routines can be parallelized fairly easily

to the corresponding ScaLAPACK routines with a small set of low-level modules, namely the

sequential BLAS, the BLACS, and the PBLAS. We have seen that the PBLAS are particularly

useful for developing and implementing a parallel dense linear algebra library relying on the

block cyclic data distribution. In general, the Level 2 and 3 BLAS routines in the LAPACK code

can be replaced on a one-for-one basis by the corresponding PBLAS routines. Parallel routines

implemented with the PBLAS obtain good performance, since the computation performed by

each process within PBLAS routines can itself be performed using the assembly-coded sequential

BLAS.

In designing and implementing software libraries, there is a tradeo� between performance

and software design considerations, such as modularity and clarity. As described in Section 4.1,

it is possible to combine messages to reduce the communication cost in several places, and to

replace the high level routines, such as the PBLAS, by calls to the lower level routines, such as

the sequential BLAS and the BLACS. However, we have concluded that the performance gain

is too small to justify the resulting loss of software modularity.

We have shown that the ScaLAPACK factorization routines have good performance and

scalability on the Intel iPSC/860, Delta, and Paragon systems. Similar studies may be per-

formed on other architectures to which the BLACS have been ported, including PVM, TMC

CM-5, Cray T3D, and IBM SP1 and SP2.

The ScaLAPACK routines are currently available through netlib for all numeric data types,

single precision real, double precision real, single precision complex and double precision com-

plex. To obtain the routines, and the ScaLAPACK Reference Manual [10], send the message

\send index from scalapack" to netlib@ornl.gov.
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